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Mobile Edge Computing:
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Abstract—Driven by the visions of Internet of Things and
5G communications, recent years have seen a paradigm shift in
mobile computing, from the centralized Mobile Cloud Computing
towards Mobile Edge Computing (MEC). The main feature of
MEC is to push mobile computing, network control and storage
to the network edges (e.g., base stations and access points) so as
to enable computation-intensive and latency-critical applications
at the resource-limited mobile devices. MEC promises dramatic
reduction in latency and mobile energy consumption, tackling
the key challenges for materializing 5G vision. The promised
gains of MEC have motivated extensive efforts in both academia
and industry on developing the technology. A main thrust of
MEC research is to seamlessly merge the two disciplines of
wireless communications and mobile computing, resulting in a
wide-range of new designs ranging from techniques for compu-
tation offloading to network architectures. This paper provides a
comprehensive survey of the state-of-the-art MEC research with
a focus on joint radio-and-computational resource management.
We also present a research outlook consisting of a set of promising
directions for MEC research, including MEC system deployment,
cache-enabled MEC, mobility management for MEC, green
MEC, as well as privacy-aware MEC. Advancements in these
directions will facilitate the transformation of MEC from theory
to practice. Finally, we introduce recent standardization efforts
on MEC as well as some typical MEC application scenarios.

Index Terms—Mobile edge computing, fog computing, mobile
cloud computing, computation offloading, resource management,
green computing.

I. INTRODUCTION

The last decade has seen Cloud Computing emerging as a
new paradigm of computing. Its vision is the centralization of
computing, storage and network management in the Clouds,
referring to data centers, backbone IP networks and cellular
core networks [1], [2]. The vast resources available in the
Clouds can then be leveraged to deliver elastic computing
power and storage to support resource-constrained end-user
devices. Cloud Computing has been driving the rapid growth
of many Internet companies. For example, the Cloud business
has risen to be the most profitable sector for Amazon [3], and
Dropbox’s success depended highly on the Cloud service of
Amazon.

However, in recent years, a new trend in computing is
happening with the function of Clouds being increasingly
moving towards the network edges [4]. It is estimated that
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tens of billions of Edge devices will be deployed in the near
future, and their processor speeds are growing exponentially,
following Moore’s Law. Harvesting the vast amount of the
idle computation power and storage space distributed at the
network edges can yield sufficient capacities for performing
computation-intensive and latency-critical tasks at mobile de-
vices. This paradigm is called Mobile Edge Computing (MEC)
[5]. While long propagation delays remain a key drawback
for Cloud Computing, MEC, with the proximate access, is
widely agreed to be a key technology for realizing various
visions for next-generation Internet, such as Tactile Internet
(with millisecond-scale reaction time) [6], Internet of Things
(IoT) [7], and Internet of Me [8]. Presently, researchers from
both academia and industry have been actively promoting
MEC technology by pursuing the fusion of techniques and
theories from both disciplines of computing and wireless
communications. This paper aims at providing a survey of key
research progress in this young field. We shall also present a
research outlook containing an ensemble of promising research
directions for MEC.

A. Mobile Computing for 5G: From Clouds to Edges

In the past decade, the popularity of mobile devices and the
exponential growth of mobile Internet traffic have been driving
the tremendous advancements in wireless communications and
networking. In particular, the breakthroughs in small-cell net-
works, multi-antenna, and millimeter-wave communications
promise to provide users gigabit wireless access in next-
generation systems [9]. The high-rate and highly-reliable air
interface allows to run computing services of mobile devices
at the remote cloud data center, resulting in the research area
called Mobile Cloud Computing (MCC). However, there is
an inherent limitation of MCC, namely, the long propagation
distance from the end user to the remote cloud center, which
will result in excessively long latency for mobile applications.
MCC is thus not adequate for a wide-range of emerging
mobile applications that are latency-critical. Presently, new
network architectures are being designed to better integrate the
concept of Cloud Computing into mobile networks, as will be
discussed in the latter part of this article.

In 5G wireless systems, ultra-dense edge devices, including
small-cell base stations (BSs), wireless access points (APs),
laptops, tablets, and smartphones, will be deployed, each
having a computation capacity comparable with that of a
computer server a decade ago. As such, a large population of
devices will be idle at every time instant. It will, in particular,
be harvesting enormous computation and storage resources
available at the network edges, which will be sufficient to
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enable ubiquitous mobile computing. In a nutshell, the main
target of wireless systems, from 1G to 4G, is the pursuit of
increasingly higher wireless speeds to support the transition
from voice-centric to multimedia-centric traffic. As wireless
speeds approach the wireline counterparts, the mission of 5G
is different and much more complex, namely to support the
explosive evolution of ICT and Internet. In terms of functions,
5G systems will support communications, computing, control
and content delivery (4C). In terms of applications, a wide-
range of new applications and services for 5G are emerging,
such as real-time online gaming, virtual reality and ultra-high-
definition (UHD) video streaming, which require unprece-
dented high access speed and low latency. The past decade
also saw the take-off of different visions of next-generation
Internet including IoT, Tactile Internet (with millisecond la-
tency), Internet-of-Me, and social networks. In particular, it
was predicted by Cisco that about 50 billion IoT devices
(e.g., sensors and wearable devices) will be added to the
Internet by 2020, most of which have limited resources for
computing, communication and storage, and have to rely on
Clouds or edge devices for enhancing their capabilities [10]. It
is now widely agreed that relying only on Cloud Computing is
inadequate to realize the ambitious millisecond-scale latency
for computing and communication in 5G. Furthermore, the
data exchange between end users and remote Clouds will
allow the data tsunami to saturate and bring down the backhaul
networks. This makes it essential to supplement Cloud Com-
puting with MEC that pushes traffic, computing and network
functions towards the network edges. This is also aligned
with a key characteristic of next-generation networks that
information is increasingly generated locally and consumed
locally, which arises from the booming of applications in IoT,
social networks and content delivery [4].

The concept of MEC was firstly proposed by the Euro-
pean Telecommunications Standard Institute (ETSI) in 2014,
and was defined as a new platform that “provides IT and
cloud-computing capabilities within the Radio Access Network
(RAN) in close proximity to mobile subscribers” [5]. The
original definition of MEC refers to the use of BSs for
offloading computation tasks from mobile devices. Recently,
the concept of Fog Computing has been proposed by Cisco as a
generalized form of MEC where the definition of edge devices
gets broader, ranging from smartphones to set-top boxes [11].
This led to the emergence of a new research area called
Fog Computing and Networking [4], [12], [13]. However,
the areas of Fog Computing and MEC are overlapping and
the terminologies are frequently used interchangeably. In this
paper, we focus on MEC but many technologies discussed are
also applicable to Fog Computing.

MEC is implemented based on a virtualized platform that
leverages recent advancements in network functions virtualiza-
tion (NFV), information-centric networks (ICN) and software-
defined networks (SDN). Specifically, NFV enables a single
edge device to provide computing services to multiple mobile
devices by creating multiple virtual machines (VMs) 1 for si-

1The VM is a virtual computer mapped to the physical machine’s hard-
wares, providing virtual CPU, memory, hard drive, network interface, and
other devices [14].
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Fig. 2. Main computation components in an AR application [18].

multaneously performing different tasks or operating different
network functions [15]. On the other hand, ICN provides an
alternative end-to-end service recognition paradigm for MEC,
shifting from a host-centric to an information-centric one
for implementing context-aware computing. Last, SDN allows
MEC network administrators to manage services via function
abstraction, achieving scalable and dynamic computing [16].
A main focus of MEC research is to develop these general
network technologies so that they can be implemented at the
network edges.

There is an increasing number of emerging mobile ap-
plications that will benefit from MEC, by offloading their
computation-intensive tasks to the MEC servers for cloud
execution. In the following, we will provide two examples to
illustrate the basic principle of MEC. One is the face recog-
nition application as shown in Fig. 1, which typically con-
sists of five main computation components, including image
acquisition, face detection, pre-processing, feature extraction,
and classification [17]. While the image acquisition component
needs to be executed at the mobile device for supporting the
user interface, the other components could be offloaded for
cloud processing, which contain complex computation such
as signal processing and machine learning (ML) algorithms.
Another popular stream of applications that can leverage the
rich resources at the network edges are augmented reality
(AR) applications, which are able to combine the computer-
generated data with physical reality. AR applications as shown
in Fig. 2 have five critical components [18], [19], namely,
the video source (which obtains raw video frames from the
mobile camera), a tracker (which tracks the position of the
user), a mapper (which builds a model of the environment),
an object recognizer (which identifies known objects in the
environment), and a renderer (which prepares the processed
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TABLE I
COMPARISON OF MEC AND MCC SYSTEMS.

MEC MCC

Server hardware Small-scale data centers Large-scale data centers (each contains
with moderate resources a large number of highly-capable servers)

Server location Co-locate with wireless gateways, Installed at dedicated buildings,
WiFi routers, and LTE BSs with size of several football fields

Deployment
Densely deployed by telecom operators, Deployed by IT companies, e.g., Google

MEC vendors, enterprises, and home users. and Amazon, at a few locations over the world.
Require lightweight configuration and planning Require sophisticated configuration and planning

Distance to end users Small Large
(tens to hundreds of meters) (may accross the country boarder)

Backhaul usage Infrequent use Frequent use
Alleviate congestion Likely to cause congestion

System management Hierarchical control Centralized control
(centralized/distributed)

Supportable latency Less than tens of milliseconds Larger than 100 milliseconds

Applications
Latency-critical and computation-intensive Latency-tolerant and computation-intensive
applications, e.g., AR, automatic driving, applications, e.g., online social networking,

and interactive online gaming. and mobile commerce/health/learning.

frame for display). Among these components, the video source
and renderer should be executed locally, while the most
computation-intensive components, i.e., the tracker, mapper
and object recognizer, can be offloaded for cloud execution.
In this way, mobile users can enjoy various benefits from
MEC such as latency reduction and energy savings, as will
be elaborated in the next subsection.

B. Mobile Edge Computing Versus Mobile Cloud Computing

As shown in Table I, there exist significant disparities
between MEC and MCC systems in terms of computing server,
distance to end users and typical latency, etc. Compared with
MCC, MEC has the advantages of achieving lower latency,
saving energy for mobile devices, supporting context-aware
computing, and enhancing privacy and security for mobile
applications. These advantages are briefly described through
some examples and applications in the following.

Low Latency: The latency for a mobile service is the
aggregation of three components: propagation, computation,
and communication latency, depending on the propagation dis-
tance, computation capacity, and data rate, respectively. First,
the information-propagation distances for MEC are typically
tens-of-meters for the cases of dense small-cell networks or
device-to-device (D2D) transmissions, and typically no longer
than 1km for general cases. In contrast, Cloud Computing
requires transmissions from end users to nodes in core net-
works or data centers with distances ranging from tens of
kilometers to that across continents. This results in much
shorter propagation delay for MEC than that for MCC. Second,
MCC requires the information to pass through several net-
works including the radio-access network, backhaul network
and Internet, where traffic control, routing and other network-
management operations can contribute to excessive delay. With
the communication constrained at the network edges, MEC
is free from these issues. Last, for the computation latency,
a Cloud has a massive computation power that is several
orders of magnitude higher than that of an edge device (e.g.,
a BS). However, the Cloud has to be shared by a much larger
number of users than an edge device, reducing their gap in the

computation latency. Furthermore, a modern BS is powerful
enough for running highly sophisticated computing programs.
For instance, the edge cloud at a BS has 102-104 times higher
computation capability than the minimum requirement (e.g.,
a CPU over 3.3GHz, 8GB RAM, 70GB storage space) for
running the Call-of-Duty 13, a popular shooter game2. In
general, experiments have shown that the total latency for
MCC is in the range of 30-100ms [20]. This is unacceptable
for many latency-critical mobile applications such as real-
time online gaming, virtual sports and autonomous driving,
which may require tactile speed with latency approaching
1ms [21]. In contrast, with short propagation distances and
simple protocols, MEC has the potential of realizing tactile-
level latency for latency-critical 5G applications.

Mobile Energy Savings: Due to their compact forms,
IoT devices have limited energy storage but are expected to
cooperate and perform sophisticated tasks such as surveillance,
crowd-sensing and health monitoring [22]. Powering the tens
of billions of IoT devices remains a key challenge for de-
signing IoT given that frequent battery recharging/replacement
is impractical if not impossible. By effectively supporting
computation offloading, MEC stands out as a promising solu-
tion for prolonging battery lives of IoT devices. Specifically,
computation-intensive tasks can be offloaded from IoT devices
to edge devices so as to reduce their energy consumption.
Significant energy savings by computation offloading have
been demonstrated in experiments, e.g., the completion of up
to 44-time more computation load for a multimedia application
eyeDentify [23] or the increase of battery life by 30-50% for
different AR applications [24].

Context-Awareness: Another key feature that differentiates
MEC from MCC is the ability of an MEC server for lever-
aging the proximity of edge devices to end users to track
their real-time information such as behaviors, locations, and
environments. Inference based on such information allows the
delivery of context-aware services to end users [25]–[27]. For
instance, the museum video guide, an AR application, can
predict users’ interests based on their locations in the museum

2https://www.callofduty.com/
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to automatically deliver contents related to e.g., artworks and
antiques [28]. Another example is the CTrack system that uses
the BS fingerprints to track and predict the trajectories of a
large number of users for the purposes of traffic monitoring,
navigation and routing, and personalized trip management
[29].

Privacy/Security Enhancement: The capability of enhanc-
ing the privacy and security of mobile applications is also
an attractive benefit brought by MEC compared to MCC.
In MCC systems, the Cloud Computing platforms are the
remote public large data centers, such as the Amazon EC2
and Microsoft Azure, which are susceptible to attacks due to
their high concentration of information resources of users. In
addition, the ownership and management of users’ data are
separated in MCC, which shall cause the issues of private
data leakage and loss [30]. The use of proximate edge servers
provides a promising solution to circumvent these problems.
On one hand, due to the distributed deployment, small-scale
nature, and the less concentration of valuable information,
MEC servers are much less likely to become the target of a
security attack. Second, many MEC servers could be private-
owned cloudlets, which shall ease the concern of informa-
tion leakage. Applications that require sensitive information
exchange between end users and servers would benefit from
MEC. For instance, the enterprise deployment of MEC could
help avoid uploading restricted data and material to remote
data centers, as the enterprise administrator itself manages the
authorization, access control, and classifies different levels of
service requests without the need of an external unit [31].

C. Paper Motivation and Outline

MEC has emerged as a key enabling technology for realiz-
ing the IoT and 5G visions [15], [32], [33]. MEC research
lies at the intersection of mobile computing and wireless
communications, where the existence of many research oppor-
tunities has resulted in a highly active area. In recent years,
researchers from both academia and industry have investigated
a wide-range of issues related to MEC, including system and
network modeling, optimal control, multiuser resource allo-
cation, implementation and standardization. Numerous survey
articles have been written to provide overviews of the MEC
area with different focuses including system models, architec-
tures and applications [34]–[37]. Specifically, an overview of
MEC platforms is presented in [34] where different existing
MEC architectures and their application scenarios, including
FemtoClouds, REPLISM and ME-VOLTE, are discussed. In
[35], the MEC architecture comprising a number of functional
blocks is presented to facilitate practical implementation. The
survey in [36] presents a taxonomy for MEC applications and
identifies potential directions for research and development,
such as content scaling, local connectivity, augmentation, and
data aggregation and analytics. Recent work [37] introduced
several attractive use cases of MEC in 5G networks ranging
from mobile-edge orchestration, collaborative caching and
processing, and multi-layer interference cancellation. In view
of prior works, there still lacks a survey article providing
comprehensive and concrete discussions on specific MEC

research results with a deep integration of mobile computing
and wireless communications, which motivates the current
work. In particular, there exist extensive literatures on joint
radio-and-computational resource allocation for MEC, which
is a key topic for the current paper, but there exist few articles
providing relevant surveys.

This paper is organized as follows. In Section II, we
summarize the basic MEC models, comprising models of
computation tasks, communications, mobile devices and MEC
servers, based on which the models of MEC latency and
energy consumption are developed. Next, a comprehensive
review is presented in Section III, focusing on the research
of joint radio-and-computational resource management for
different types of MEC systems, including single user, mul-
tiuser systems as well as multi-server MEC. Subsequently,
a set of key research directions are discussed in Section IV
including 1) deployment of MEC systems, 2) cache-enabled
MEC, 3) mobility management for MEC, 4) green MEC,
and 5) security-and-privacy issues in MEC. Specifically, we
analyze the design challenges for each research problem
and provide several potential research approaches. Last, the
MEC standardization efforts and applications are reviewed and
discussed in Section V, followed by concluding remarks in
Section VI.

II. MEC COMPUTATION AND COMMUNICATION MODELS

In this section, system models are introduced for the key
computation/communication components of the typical MEC
system. The models provide mechanisms for abstracting var-
ious functions and operations into optimization problems and
facilitating theoretical analysis as discussed in the following
sections.

For the MEC system shown in Fig. 3, the key components
include mobile devices (a.k.a. end users, clients, service sub-
scribers) and MEC servers. The MEC servers are typically
small-scale data centers deployed by the cloud and telecom
operators in close proximity with end users and can be co-
located with wireless APs. Through a gateway, the servers
are connected to the data centers via Internet. Mobile de-
vices and servers are separated by the air interface where
reliable wireless links can be established using advanced
wireless communications and networking technologies. In
the following subsections, we will introduce the models for
different components of the MEC systems, including models
for the computation tasks, wireless communication channels
and networks, as well as the computation latency and energy
consumption models of mobile devices and MEC servers.

A. Computation Task Models
There are various parameters that play critical roles in

modeling the computation tasks, including latency, bandwidth
utilization, context awareness, generality, and scalability [38].
Though it is highly sophisticated to develop accurate models
for tasks, there exist simple ones that are reasonable and allow
mathematical tractability. In this subsection, we introduce two
computation-task models popularly used in existing literatures
on MCC and MEC, corresponding to binary and partial
computation offloading, respectively.
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1) Task Model for Binary Offloading: A highly integrated
or relatively simple task cannot be partitioned and has to be
executed as a whole either locally at the mobile device or
offloaded to the MEC server, called binary offloading. Such a
task can be represented by a three-field notation A (L, ⌧d, X).
This commonly-used notation contains the information of
the task input-data size L (in bits), the completion deadline
⌧d (in second), and the computation workload/intensity X
(in CPU cycles per bit). These parameters are related to
the nature of the applications and can be estimated through
task profilers [39], [40]. The use of these three parameters
not only captures essential properties of mobile applications
such as the computation and communication demands, but
also facilitates simple evaluation of the execution latency and
energy consumption performance (which will be analyzed in
Section II-C).

The task A (L, ⌧d, X) is required to be completed before
a hard deadline ⌧d. This model can also be generalized to
allow a soft deadline which allows a small portion of tasks to
be completed after ⌧d [41]. In this case, the number of CPU
cycles needed to execute 1-bit of task input data is modeled
as a random variable X . Specifically, define x0 as a positive
integer such that Pr(X > x0)  ⇢ where ⇢ is a small real
number: 0 < ⇢ ⌧ 1. It follows that Pr(LX > W⇢)  ⇢ where
W⇢ = Lx0. Then given the L-bit task-input data, W⇢ upper
bounds the number of required CPU cycles almost surely.

2) Task Models for Partial Offloading: In practice,
many mobile applications are composed of multiple proce-
dures/components (e.g., the computation components in an
AR application as shown in Fig. 2), making it possible
to implement fine-grained (partial) computation offloading.
Specifically, the program can be partitioned into two parts with
one executed at the mobile device and the other offloaded for

edge execution.
The simplest task model for partial offloading is the data-

partition model, where the task-input bits are bit-wise indepen-
dent and can be arbitrarily divided into different groups and
executed by different entities in MEC systems, e.g., parallel
execution at the mobiles and MEC server.

Nevertheless, the dependency among different proce-
dures/components in many applications cannot be ignored
as it significantly affects the procedure of execution and
computation offloading due to the following reasons:

• First, the execution order of functions or routines cannot
be arbitrarily chosen because the outputs of some com-
ponents are the inputs of others.

• Second, due to either software or hardware constraints,
some functions or routines can be offloaded to the server
for remote execution, while the ones can only be executed
locally such as the image display function.

This calls for task models that are more sophisticated
than the mentioned data-partition model that can capture
the inter-dependency among different computation functions
and routines in an application. One such model is called the
task-call graph. The graph is typically a directed acyclic
graph (DAG), which is a finite directed graph with no
directed cycles. We shall denote it as G (V, E), where the set
of vertices V represents different procedures in the application
and the set of edges E specifies their call dependencies. There
are three typical dependency models of sub-tasks (i.e., task
components such as functions or routines), namely sequential,
parallel, and general dependency [42], [43], as illustrated
in Fig. 4. For the mobile initiated applications, the first and
the last steps, e.g., collecting the I/O data and displaying
the computation results on the screen, are normally required
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Fig. 4. Typical topologies of the task-call graphs.

to be executed locally. Thus, node 1 and node N in Fig.
4(a)-4(c) are components that must be executed locally.
Besides, the required computation workloads and resources
of each procedure, e.g., the number of required CPU cycles
and the amount of needed memory, can also be specified
in the vertices of the task-call graph, while the amount of
input/output data of each procedure can be characterized by
imposing weights on the edges.

B. Communication Models

In the literatures of MCC, communication channels be-
tween the mobile devices and cloud servers are typically
abstracted as bit pipes with either constant rates or random
rates with given distributions. Such coarse models are adopted
for tractability and may be reasonable for the design of MCC
systems where the focuses are to tackle the latency in the
core networks and management of large-scale cloud but not
the wireless-communication latency. The scenario is different
for MEC systems. Given small-scale edge clouds and targeting
latency-critical applications, reducing communication latency
by designing a highly efficient air interference is the main
design focus. Consequently, the mentioned bit-pipe models
are insufficient as they overlook some fundamental properties
of wireless propagation and are too simplified to allow the
implementation of advanced communication techniques. To be
specific, wireless channels differ from the wired counterparts
in the following key aspects [44]:

1) Due to atmospheric ducting, reflection and refraction
from scattering objects in the environment (e.g., build-
ings, walls and trees), there exists the well-known multi-
path fading in wireless channels, making the channels
highly time-varying and can cause severe inter-symbol
inference (ISI). Thus, effective ISI suppression tech-
niques, such as equalization and spread spectrum, are
needed for reliable transmissions.

2) The broadcast nature of wireless transmissions results
in a signal being interfered by other signals occupy-
ing the same spectrum, which reduces their respective
receive signal-to-interference-plus-noise ratios (SINRs)
and thereby results in the probabilities of error in detec-
tion. To cope with the performance degradation, inter-
ference management becomes one of the most important

design issues for wireless communication systems and
have attracted extensive research efforts [45]–[47].

3) Spectrum shortage has been the main foe for very
high-rate radio access, motivating extensive research on
exploiting new spectrum resources [48], [49], designing
novel transceiver architectures [50]–[52] and network
paradigms [53], [54] to improve the spectrum efficiency,
as well as developing spectrum sharing and aggregation
techniques to facilitate efficient use of fragmented and
underutilized spectrum resources [55]–[57].

The random variations of wireless channels in time, fre-
quency and space make it important for designing efficient
MEC systems to seamlessly integrate control of computation
offloading and radio resource management. For instance, when
the wireless channel is in deep fade, the reduction on execution
latency by remote execution may not be sufficient to compen-
sate for the increase of transmission latency due to the steep
drop in transmission-data rates. For such cases, it is desirable
to defer offloading till the channel gain is favorable or switch
to an alternative frequency/spatial channel with a better quality
for offloading. Furthermore, increasing transmission power can
increase the data rate, but also lead to a larger transmission
energy consumption. The above considerations necessitate the
joint design of offloading and wireless transmissions, which
should be adaptive to the time-varying channels based on the
accurate channel-state information (CSI).

In MEC systems, communications are typically between
APs and mobile devices with the possibility of direct D2D
communications. The MEC servers are small-scale data cen-
ters deployed by the Cloud Computing/telecom operators,
which can be co-located with the wireless APs e.g., the
public WiFi routers and BSs, as so to reduce the capital
expenditure (CAPEX) (e.g., site rental). As shown in Fig. 3,
the wireless APs not only provide the wireless interface for
the MEC servers, but also enable the access to the remote
data center through backhaul links, which could help the MEC
server to further offload some computation tasks to other MEC
servers or to large-scale cloud data centers. For the mobile
devices that cannot communicate with MEC servers directly
due to insufficient wireless interfaces, D2D communications
with neighboring devices provide the opportunity to forward
the computation tasks to MEC servers. Furthermore, D2D
communications also enable the peer-to-peer cooperation on
resource sharing and computation-load balancing within a
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TABLE II
CHARACTERISTICS OF TYPICAL WIRELESS COMMUNICATIONS TECHNOLOGIES.

NFC RFID Bluetooth WiFi LTE
Max. Coverage Range 10 cm 3 m 100 m 100 m 100 km

Operation Frequency
LF: 120-134 KHz

13.56 MHz HF: 13.56 MHz 2.4 GHz 2.4 GHz, 5 GHz TDD: 1850-3800 MHz
UHF: 850-960 MHz FDD: 700-2600 MHz

Data Rate 106, 212, Low (LF) to 135 Mbps DL: 300 Mbps
414 Kbps high (UHF) 22 Mbps (IEEE 802.11n) UL: 75 Mbps

cluster of mobile devices.
Presently, there exists different types of commercialized

technologies for mobile communications, including the near-
filed communications (NFC), radio frequency identification
(RFID), Bluetooth, WiFi, and cellular technologies such as
the long-term evolution (LTE). These technologies can sup-
port wireless offloading from mobiles to APs or peer-to-peer
mobile cooperation for varying data rates and transmission
ranges. We list the key characteristics of typical wireless com-
munication technologies in Table II, which differ significantly
in terms of the operation frequency, the maximum coverage
range, and data rate. For NFC, the coverage range and data
rate are very low and thus the technology is suitable for
applications that require little information exchange, e.g., e-
payment and physical access authentication. RFID is similar
to NFC, but only allows one-way communications. Bluetooth
is a more powerful technique to enable short-range D2D com-
munications in MEC systems. For long-range communications
between mobiles and MEC servers, WiFi and LTE are two
primary technologies enabling the access to MEC systems,
which can be adaptively switched depending on their link
reliability. For the deployment of wireless technologies in
MEC systems, the communication and networking protocols
need redesign to integrate both the computing and communi-
cation infrastructures, and effectively improve the computation
efficiency that is more sophisticated than the data transmission.

C. Computation Models of Mobile Devices
In this subsection, we introduce the computation models of

mobile devices and discuss methodologies of evaluating the
computation performance.

The CPU of a mobile device is the primary engine for
local computation. The CPU performance is controlled by
the CPU-cycle frequency fm (also known as the CPU clock
speed). The state-of-the-art mobile CPU architecture adopts
the advanced dynamic frequency and voltage scaling (DVFS)
technique, which allows stepping-up or -down of the CPU-
cycle frequency (or voltage), resulting in growing and reducing
energy consumption, respectively. In practice, the value of
fm is bounded by a maximum value, fmax

CPU, which reflects
the limitation of the mobile’s computation capability. Based
on the computation task model introduced in Section II-A,
the execution latency for task A (L, ⌧, X) can be calculated
accordingly to

tm =
LX

fm
, (1)

which indicates that a high CPU clock speed is desirable in
order to reduce the execution latency, at the cost of high CPU

energy consumption.
As the mobile devices are energy-constrained, the energy

consumption for local computation is another critical mea-
surement for the mobile computing efficiency. According to
the circuit theory [58]–[61], the CPU power consumption can
be divided into several factors including the dynamic, short-
circuit, and leakage power consumption3, where the dynamic
power consumption dominates the others. In particular, it
is shown in [60] that the dynamic power consumption is
proportional to the product of V 2

cirfm where Vcir is the circuit
supplied voltage. It is further noticed in [58], [61] that, the
clock frequency of the CPU chip is approximately linear
proportional to the voltage supply when operating at the low
voltage limits. Thus, the energy consumption of a CPU cycle
is given by f2

m, where  is a constant related to the hardware
architecture. For the computation task A (L, ⌧, X) with CPU
clock speed fm, the energy consumption can be derived:

Em = LXf2
m. (2)

One can observe from (1) and (2) that the mobile device may
not be able to complete a computation-intensive task within
the required deadline, or else the energy consumption incurred
by mobile execution is so high that the onboard battery will be
depleted quickly. In such cases, offloading the task execution
process to an MEC server is desirable.

Besides CPUs, other hardware components in the mobile
devices, e.g., the random access memory (RAM) and flash
memory, also contribute to the computation latency and
energy consumption [62], while detailed discussions are
beyond the scope of this survey.

D. Computation Models of MEC Servers
In this subsection, we introduce the computation models

of the MEC servers. Similar as the mobile devices, the
computation latency and energy consumption are of particular
interests.

The server-computation latency is negligible compared with
communication or local-computation latency in MEC systems
where the computation loads for servers are much lower than
their computation capacities [61], [63]. This model can be also

3The dynamic power consumption comes from the toggling activities of the
logic gates inside a CPU, which shall charge/discharge the capacitors inside
the logic gates. When a logic gate toggles, some of its transistors may change
states, and thus, there might be a short period of time when some transistors
are conducting simultaneously. In this case, the direct path between the source
and ground will result in some short-circuit power loss. The leakage power
dissipation is due to the flowing current between doped parts of the transistors
[60], available on https://en.wikipedia.org/wiki/CPU power dissipation.
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relevant for multiuser MEC systems with resource-constrained
servers if the servers’ computation loads are regulated by mul-
tiuser resource management under latency and computation-
capacity constrains [64].

On the other hand, as edge servers have relatively limited
computation resources, it is necessary to consider the non-
negligible server execution time in the general design of
MEC systems, yielding the computation model for the severs
discussed in the remainder of this subsection. Two possible
models are considered in the literature, corresponding to
the deterministic and stochastic server-computation latency.
The deterministic model is proposed to consider the exact
server-computation latency for latency-sensitive applications,
which is implemented using techniques such as VMs and
DVFS. Specifically, assume the MEC server allocates VMs for
different mobile devices, allowing independent computation
[65]. Let fs,k denote the allocated servers’ CPU-cycle number
for mobile device k. Similar to Section II-C, it follows that
the server execution time denoted by ts,k can be calculated
as ts,k =

wk

fs,k
, where wk is the number of required CPU

cycles for processing the offloaded computation workload.
This model has been widely used for designing computation-
resource allocation policies [66]–[68]. A similar model was
proposed in [64], where the MEC server is assumed to
perform load balancing for the total offloaded computation
workloads. In other words, the CPU cycles at the MEC server
are proportionally allocated to each mobile device such that
they experience the same execution latency. Furthermore, in
addition to the CPU processing time, the server scheduling
queuing delay should be accounted for MEC servers with
relatively small computation capacities, where parallel com-
puting via virtualization techniques is not feasible and thus
it needs to process the computation workloads sequentially.
Without loss of generality, denote k as the processing order for
a mobile device and name it as mobile k. Thus, the total server-
computation latency including the queuing delay for device k
denoted by Ts,k can be given as

Ts,k =
X

ik

ts,i. (3)

For latency-tolerant applications, the average server-
computation time can be derived based on the stochastic
model. For example, in [69], the task arrivals and service
time are modeled by the Poisson and exponential processes,
respectively. Thus, the average server-computation time can
be derived using techniques from queuing theory. Last,
for all above models, as investigated in [1], multiple VMs
sharing the same physical machine will introduce the I/O
interference among different VMs. It results in the longer
computation latency for each VM denoted by T

0

s,k, which
can be modeled by T

0

s,k = Ts,k(1 + ✏)n where ✏ is the
performance degradation factor as the percentage increasing
of the latency [70].

The energy consumption of an MEC server is jointly
determined by the usage of the CPU, storage, memory, and
network interfaces. Since the CPU contribution is dominant
among these factors, it is the main focus in the literature. Two

tractable models are widely used for the energy consumption
of the MEC servers. One model is based on the DVFS
technique described as follows. Consider an MEC server that
handles K computation tasks and the k-th task is allocated
with wk CPU cycles with CPU-cycle frequency fs,k. Hence,
the total energy consumed by the CPU at the MEC server,
denoted by Es, can be expressed as

Es =
KX

k=1

wkf
2
s,k, (4)

which is similar to that for the mobile devices. The other model
is based on an observation in recent works [71]–[73] that the
server-energy consumption is linear to the CPU utilization
ratio which depends on the computation load. Moreover, even
for an idle server, it still, on average, consumes up to 70%
of the energy consumption for the case with the full CPU
speed. Thus, the energy consumption at the MEC server can
be calculated according to

Es = ↵Emax + (1� ↵)Emaxu, (5)

where Emax is the energy consumption for a fully-utilized
server, ↵ is the fraction of the idle energy consumption (e.g.,
70%) and u denotes the CPU utilization. This model suggests
that energy-efficient MEC should allow servers to be switched
into the sleep mode in the case of light load and consolidation
of computation loads into fewer active servers.

III. RESOURCE MANAGEMENT IN MEC SYSTEMS

The joint radio-and-computational resource management
plays a pivotal role in realizing energy-efficient and low-
latency MEC. The implementation of relevant techniques is
facilitated by the network architecture where MEC servers
and wireless APs (e.g., BSs and WiFi routers) are co-located.
In this section, we provide a comprehensive overview of
the literatures on resource management for MEC systems
summarized in Fig. 5. Our discussion starts from the simple
single-user systems comprising a single mobile device and a
single MEC server, allowing the exposition of the key design
considerations and basic design methodologies. Subsequently,
more complex multiuser MEC systems are considered where
multiple offloading users compete for the use of both the radio
and server-computation resources and have been coordinated.
Last, we extend the discussion to MEC systems with het-
erogeneous servers which not only provide the freedom of
server selection but also allow the cooperation among servers.
Such network-level operations can significantly enhance the
performance of MEC systems.

A. Single-User MEC Systems

This subsection focuses on the simple single-user MEC sys-
tems and reviews a set of recent research efforts for this case.
The discussion is divided according to three popularly-used
task models, namely, deterministic task model with binary
offloading, deterministic task model with partial offloading,
and stochastic task model.
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Fig. 5. Classification of resource management techniques for MEC.

1) Deterministic Task Model with Binary Offloading:
Consider the mentioned single-user MEC system where the
binary offloading decision is on whether a particular task
should be offloaded for edge execution or local computation.
The investigations for the optimal offloading policies can
be dated back to those for conventional Cloud Computing
systems, where the communication links are typically assumed
to have a fixed rate B. In [74] and [75], general guidelines
are developed for determining the offloading decision for the
purposes of minimizing the mobile-energy consumption and
computation latency. Denote w as the amount of computation
(in CPU cycles) for a task, fm as the CPU speed of the mobile
device, d as the input data size, and fs as the CPU speed at the
cloud server. Offloading the computation to the cloud server
can improve the latency performance only when

w

fm
>

d

B
+

w

fs
, (6)

which holds for applications that require heavy computation
and have small amount of data input, or when the cloud server
is fast, and the transmission rate is sufficiently high. Moreover,
let pm represent the CPU power consumption at the mobile
device, and pt as the transmission power, pi as the power
consumption at the device when the task is running at the
server. Offloading the task could help save mobile energy when

pm ⇥ w

fm
> pt ⇥

d

B
+ pi ⇥

w

fs
(7)

holds, i.e., applications with heavy computation and light
communication should be offloaded.

Nevertheless, the data rates for wireless communications are
not constant and change with the time-varying channel gains
as well as depend on the transmission power. This calls for
the design of control policies for power adaptation and data
scheduling to streamline the offloading process. In addition, as

the CPU power consumption increases super-linearly with the
CPU-cycle frequency, the computation energy consumption for
mobile execution can be minimized using DVFS techniques.
These issues led to the active field of adaptive MEC as
summarized below.

In [76], the problem of transmission-energy minimization
under a computation-deadline constraint was formulated with
the optimization variable being the input-data transmission
time, where the famous Shannon-Hartley formula gives the
power-rate function. The optimization problem is convex and
can be solved in closed form. In particular, task offloading
is desirable when the channel power gain is greater than a
threshold and the server CPU is fast enough, which reveals
the effects of the wireless channels on the offloading decision.
A further study was conducted by Zhang et al. in [61] to
minimize the energy consumption for executing a task with
a soft real-time requirement, targeting e.g., multimedia appli-
cations, which requires the task to be completed within the
deadline with a given probability ⇢. The offloading decision
was determined by the computation mode (either offloading
or local computing) that incurs less energy consumption. On
one hand, the energy consumption for local execution was
optimized using the DVFS technique, which was formulated
as a convex optimization problem with the objective function
being the expected energy consumption of the W⇢ CPU cycles
and a time duration constraint for these CPU cycles. The
optimal CPU-cycle frequencies over the computation duration
were derived in closed form by solving the Karush-Kuhn-
Tucker (KKT) conditions, suggesting that the processor should
speed up as the number of completed CPU cycles increases.
On the other hand, the expected energy consumption for
task offloading was minimized via data transmission schedul-
ing. Under the Gilbert-Elliott channel model, the optimal
data transmission scheduling was obtained through dynamic
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programming (DP) techniques, and the scaling law of the
minimum expected energy consumption with respect to the
execution deadline was also derived.

2) Deterministic Task Model with Partial Offloading: The
running of a relatively sophisticated mobile application can
be decomposed into a set of smaller sub-tasks. Inspired by
recent advancements of parallel computing, partial offloading
(also known as program partitioning) schemes were proposed
to further optimize the MEC performance in [42], [43], [77]–
[82].

In [77], full granularity in program partitioning was con-
sidered where the task-input data can be arbitrarily divided
for local and remote executions. Joint optimization of the
offloading ratio, transmission power and CPU-cycle frequency
was performed to minimize the mobile-energy consumption
(or latency) subject to a latency (or energy consumption)
constraint. Both the energy and latency minimization problems
are non-convex in contrast to the ones for binary-offloading.
The former problem can be solved optimally with a variable-
substitution technique while a sub-optimal algorithm was
proposed for the latter one [77].

In [42], [43], [78]–[82], applications were modeled by
task-call graphs discussed earlier that specify the dependency
among different sub-tasks, and the code partitioning schemes
designed to dynamically generate the optimal set of tasks for
offloading. In [42], by leveraging the concept of load balancing
between the mobile device and the server, a heuristic program-
partitioning algorithm was developed to minimize the execu-
tion latency. Kao et al. investigated the latency minimization
problem with a prescribed resource utilization constraint in
[78], and proposed a polynomial-time approximate solution
with guaranteed performance. To maximize the energy savings
achieved by computation offloading, the scheduling and cloud
offloading decisions were jointly optimized using an integer
programming approach in [43]. In [79], considering the wire-
less channel models including the block fading channel, in-
dependent and identical distributed (i.i.d.) stochastic channel,
and the Markovian stochastic channel, the expected energy
consumption minimization problem with a completion time
constraint was found to be a stochastic shortest-path problem,
and the one-climb policies (i.e., the execution only migrates
once from the mobile device to the server) were shown to be
optimal. In addition, the program-partitioning schemes were
also optimized together with the physical layer parameters,
such as the transmission and reception power, constellation
size, as well as the data allocation for different radio interfaces
[80]–[82].

3) Stochastic Task Model: Resource management policies
have been also developed for MEC systems with stochastic
task models characterized by random task arrivals, where the
arrived but not yet executed tasks join the queues in buffers
[83]–[88]. For such systems, the long-term performance, e.g.,
the long-term average energy consumption and execution la-
tency, are more relevant compared with those of deterministic
task arrivals, and the temporal correlation of the optimal
system operations makes the design more challenging. As a
result, the design of MEC systems with random task arrivals
is an area less explored compared with the simpler cases

with deterministic task models. In [83], in order to minimize
the mobile-energy consumption while keeping the proportion
of executions violating the deadline requirement below a
threshold, a dynamic offloading algorithm was proposed to
determine the offloaded software components from an applica-
tion running at a mobile user based on Lyapunov optimization
techniques, where 3G and WiFi networks are accessible to the
device but their rates vary at different locations. Assuming
that concurrent local and edge executions are feasible, the
latency-optimal task scheduling policies were designed in [84]
based on the theory of Markov decision process (MDP), which
controls the states of the local processing and transmission
units and the task buffer queue length based on the channel
state. It was shown that the optimal task-scheduling policy
significantly outperforms the greedy scheduling policy (i.e.,
tasks are scheduled to the local CPU/transmission unit when-
ever they are idle). To jointly optimize the computation latency
and energy consumption, the problem of minimizing the long-
term average execution cost was considered in [82] and [86],
where the former only optimized the offloading data size
based on the MDP theory while the latter jointly controlled
the local CPU frequency, modulation scheme as well as the
data rates under a semi-MDP framework. In [87], the energy-
latency tradeoff in MEC systems with heterogeneous types of
applications was investigated, including the non-offloadable
workload, cloud-offloadable workload and network traffic.
A Lyapunov optimization-based algorithm was proposed to
jointly decide the offloading policy, task allocation, CPU clock
speed, and selected network interface. It was also shown
that the energy consumption decreases inversely proportional
to V while the latency increases linearly with V , where V
is a control parameter in the proposed algorithm. Similar
investigation was conducted for MEC systems with a multi-
core mobile device in [88].

B. Multiuser MEC Systems

While the preceding subsection aims at resource manage-
ment policies for single-user MEC systems with a dedicated
MEC server, this subsection considers the multiuser MEC
system comprising multiple mobile devices that share one edge
server. Several new challenges are investigated in the sequel,
including the multiuser joint radio-and-computational resource
allocation, MEC server scheduling, and multiuser cooperative
edge computing.

1) Joint Radio-and-Computational Resource Allocation:
Compared with the central cloud, the MEC servers have much
less computational resources. Therefore, one key issue in
designing a multiuser MEC system is how to allocate the
finite radio-and-computational resources to multiple mobiles
for achieving a system-level objective, e.g., the minimum
sum mobile-energy consumption. Both the centralized and
distributed resource allocation schemes have been studied for
different MEC systems.

For centralized resource allocation [64], [66], [81], [89]–
[93], the MEC server obtains all the mobile information, in-
cluding the CSI and computation requests, makes the resource-
allocation decision, and informs the mobile devices about
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the decisions. In [64], mobile users time-share a single edge
server and have different computation workloads and local-
computation capacities. A convex optimization problem was
formulated to minimize the sum mobile-energy consumption.
The key finding is that the optimal policy for controlling
offloading data size and time allocation has a simple threshold-
based structure. Specifically, an offloading priority function
was firstly derived according to mobile users’ channel condi-
tions and local computing energy consumption. Then, the users
with priorities above and below a given threshold performed
full and minimum offloading (so as to meet a given compu-
tation deadline), respectively. This result was also extended
to the OFDMA-based MEC systems for designing a close-
to-optimal computation offloading policy. In [66], instead of
controlling the offloading data size and time, the MEC server
determined the mobile-transmission power and assigned the
server CPU cycles to different users in order to reduce the
sum mobile-energy consumption. The optimal solution shows
that, there exists an optimal one-to-one mapping between
the transmission power and the number of allocated CPU
cycles for each mobile device. This work was further extended
in [81] to account for the optimal binary offloading based
on the model of task-call graphs. Different from [64], [66],
[81], the revenue of service providers was maximized in [89]
under constraints on quality of service (QoS) requirements
for all mobile devices. The assumed fixed resource usage
of each user resulted in a semi-MDP problem, which was
transformed into a linear programming (LP) model and ef-
ficiently solved. In [93], assuming a stochastic task arrival
model, the energy-latency tradeoff in multiuser MEC systems
was investigated via a Lyapunov optimization-based online
algorithm, which jointly managed the available radio-and-
computational resources. Centralized resource management for
multiuser MEC systems have also be investigated when multi-
antenna transmission techniques are adopted in [90]–[92].

Another thrust of research targets distributed resource allo-
cation for multiuser MEC systems which were designed using
game theory and decomposition techniques [67], [68], [94],
[95]. In [67], the computation tasks were assumed to be either
locally executed or fully offloaded via multiple interference
channels. With fixed mobile-transmission power, an integer
optimization problem was formulated to minimize the total
energy consumption and offloading latency, which was proved
to be NP-hard. Instead of designing a centralized solution,
the game-theoretic techniques were applied to develop a dis-
tributed algorithm that is able to achieve a Nash equilibrium.
Moreover, it was shown that for each user, offloading is
beneficial only when the received interference power is lower
than a threshold. Furthermore, this work was extended in
[94], where the mobiles can offload computation to multiple
APs connected by a common edge-server. For the offloading
process, in addition to transmission energy, this work has
also accounted for the scanning energy of the APs and the
fixed circuit power. The proposed distributed offloading policy
showed that a mobile device should handover the computation
to a different AP only when a new user choosing the same AP
achieves a larger benefit. Building on the system model in [67],
the joint optimization for the mobile-transmission power and

the CPU-cycle allocation of the edge server was investigated
in [68]. To solve the formulated mixed-integer problem, the
decomposition technique was utilized to optimize the resource
allocation and offloading decision sequentially. Specifically,
the offloading decision problem was reduced to a sub-modular
maximization problem and solved by designing a heuristic
greedy algorithm. Similar decomposition technique was also
utilized in [95] to design distributed resource allocation algo-
rithm for MEC systems.

2) MEC Server Scheduling: The works discussed earlier
[64], [66]–[68], [89], [94] are based on the assumptions of
user synchronization and the feasibility of parallel local-and-
edge computation. However, studying practical MEC server
scheduling requires relaxation of these assumptions as dis-
cussed below together with the resultant designs. First, the
arrival times of different users are in general asynchronous so
that it is desirable for the edge server with finite computation
resource to buffer and compute the tasks sequentially, which
incurs the queuing delay. In [96], to cope with the bursty
task arrivals, the server scheduling was integrated with uplink-
downlink transmission scheduling to minimize the average
latency using queuing theory. Second, even for synchronized
task arrivals, the latency requirements can differ significantly
over users running different types of applications ranging
from latency-sensitive to latency-tolerant applications. This
fact calls for the server scheduling assigning users different
levels of priorities based on their latency requirements. In [97],
after the pre-resource allocation, the MEC server checked the
deadline of different tasks during the server computing process
and adaptively adjusted the task execution order to satisfy the
heterogeneous latency requirements. Last, some computation
tasks each consists of several dependent sub-tasks such that the
scheduling of these modules must satisfy the task-dependency
requirements. The task model with a sequential sub-task
arrangement was considered in [98] that jointly optimized
the program partitioning for multiple users and the server-
computation scheduling to minimize the average completion
time. As a result, a heuristic algorithm was proposed to solve
the formulated mixed-integer problem. Specifically, it first
optimized the computation partition for each user. Under these
partitions, it searched the time intervals violating the resource
constraint and adjusted them accordingly. Furthermore, the
general dependency-task model as shown in Fig. 4(c) was
considered for multiple users in [95]. This model drastically
complicated the computing time characterization. To address
this challenge, a measure of ready time was defined for each
sub-task as the earliest time when all the predecessors have
been computed. Then, the offloading decision, mobile CPU-
cycle frequency and mobile-transmission power were jointly
optimized to reduce the sum mobile-energy consumption and
computation latencies with a proposed distributed algorithm.

3) Multiuser Cooperative Edge Computing: Multiuser
cooperative computing is envisioned as a promising technique
to improve the MEC performance by providing two advantages
[99]–[102]. First, MEC servers with limited computational
resources may be overloaded when they have to serve a
large number of offloading mobile users. In such cases, the
burdens on the servers can be lightened via peer-to-peer mobile
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cooperative computing. Second, sharing the computational
resources among the users can balance the uneven distribution
of the computation workloads and computation capabilities
over users. In [99], D2D communication was proposed to
enable multiuser cooperative computing. In particular, this
work studied how to detect and utilize computational resources
on other users. This idea was adopted in [100] to propose
a D2D-based heterogeneous MCC networks. Such a novel
framework was shown to enhance the network capacity and
offloading probability. Moreover, for wireless sensor networks,
cooperative computing was proposed in [101] to enhance
its computation capability. First, the optimal computation
partition for minimizing the total energy consumption of two
cooperative nodes was investigated. This result was then uti-
lized to design the fairness-aware energy-efficient cooperative
node selection. Furthermore, Song et al. showed that sharing
computation results among the peer users can significantly
reduce the communication traffic for a multiuser MEC system
[102]. Assuming the task can either be offloaded or computed
locally, a mixed-integer optimization problem was formulated
to minimize the total energy consumption under the constraint
of the system communication traffic. To tackle this challenging
problem, two online task scheduling algorithms were proposed
based on pricing and Lyapunov optimization theories.

C. MEC Systems with Heterogeneous Servers

To enable ubiquitous edge computing, heterogeneous MEC
(Het-MEC) systems were proposed in [103] comprising one
central cloud and multiple edge servers. The coordination
and interaction of multi-level central/edge clouds introduces
many interesting new research challenges and recently have
attracted extensive relevant investigations on server selection,
cooperation and computation migration, as discussed in the
sequel.

1) Server Selection: For users served by a Het-MEC
system, a key design issue is to determine the destination of
computation offloading, i.e., either the edge or central cloud
server. In [104], the server selection problem was studied
for a multiuser system comprising a single edge server and
a single central cloud. To maximize the total successful
offloading probability, a heuristic scheduling algorithm was
proposed to leverage both the low communication latency due
to the proximity of the MEC server and the low computation
latency arising from abundant computational resources at the
central-cloud server. Specifically, when the computation load
of the MEC server exceeds a given threshold, latency-tolerant
tasks are offloaded to the central cloud to spare enough
computational resources at the edge server for processing
latency-sensitive tasks. In addition, [105] explored the problem
of server selection over multiple MEC servers. The major
challenge arises from the correlation between the amounts
of the offloaded computation and selected edge servers for
multiple users. To cope with this issue, a congestion game
was formulated and solved to minimize the sum energy
consumption of mobile users and edge servers.

2) Server Cooperation: Resource sharing via server co-
operation can not only improve the resource utilization and

increase the revenues of computing service providers, but also
provide more resources for mobile users to enhance their
user experience. This framework was originally proposed in
[106], which included components such as resource allocation,
revenue management and service provider cooperation. First,
resource allocation was optimized for cases with deterministic
and random user information to maximize the total revenues.
Second, considering self-interested cloud service providers, a
distributed algorithm based on game theory was proposed to
maximize service providers’ own profits, which was shown
to achieve the Nash equilibrium. This study was further
extended in [107], which considered both the local and remote
resource sharing. The former refers to resource sharing among
different service providers within the same data center, while
the latter one means the cooperation across different data
centers. To realize the resource sharing and cooperation among
different servers, a coalition game was formulated and solved
by a game-theoretic algorithm with stability and convergence
guarantees.

3) Computation Migration: In [108], [109], apart from op-
timizing the offloading decisions, the authors also investigated
the computation migration among different remote servers.
Specifically, the computation migration over MEC servers was
motivated by the mobility of offloading users. When a user
moves closer to a new MEC server, the network controller
can choose to migrate the computation to this server, or
compute the task in the original server and then forward the
results back to the user via the new server. The computation
migration problem was formulated as an MDP problem based
on a random-walk mobility model in [108]. It was shown that
the optimal policy has a threshold-based structure, i.e., the
migration should be selected only when the distance of two
servers is bounded by two given thresholds. Another com-
putation migration framework was proposed in [109], where
the MEC server can either process offloaded computation
tasks locally or migrate them to the central cloud server. An
optimization problem was formulated to minimize the sum
mobile-energy consumption and computation latencies. This
problem was solved by a heuristic two-stage algorithm, which
first determined the offloading decision for each user by the
semi-definite relaxation and randomization techniques, and
then performed the resource allocation optimization for all the
users.

D. Challenges

In the preceding subsections, we have conducted a compre-
hensive survey on the state-of-the-art resource management
techniques for MEC systems. However, the progress is still
in the infancy stage and many critical factors have been
overlooked for simplicity, which need to be addressed in future
research efforts. In the following, we identify three critical
research challenges for resource management in MEC that
remain to be solved.

1) Two-Timescale Resource Management: In most exist-
ing works, e.g., [67], [68], [76], [90], [91], [97], wireless
channels are assumed to remain static during the whole task
execution process for simplicity. Nevertheless, this assumption
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Fig. 6. Research outlook for MEC.

may be unreasonable when the channel coherence time is
much shorter than the latency requirement. For instance, at a
carrier frequency of 2GHz, the channel coherence time can be
as small as 2.5ms when the speed is 100km/h. For some mobile
applications such as the MMORPG game PlaneShift4, the
acceptable response time is 440ms and the excellent latency
is 120ms [110]. In such scenarios, the task offloading process
may across multiple channel blocks, necessitating the two-
timescale resource management for MEC. This problem is
a very challenging even for a single-user MEC system with
deterministic task arrivals [61].

2) Online Task Partitioning: For ease of optimization,
existing literatures tackling the task partitioning problems
ignore the fluctuation of the wireless channels, and obtain
the task partitioning decision before the start of the execution
process. With such an offline task partitioning decision, the
change of the channel condition may lead to inefficient or
even infeasible offloading, which shall severely degrade the
computation performance. To develop online task partitioning
policies, one should incorporate the channel statistics into the
formulated task partitioning problem, which may easily belong
to an NP-hard problem even under a static channel. In [79],
approximate online task partitioning algorithms are derived for

4http://www.planeshift.it/

applications with a serial task-call graph, while solutions for
general task models remain unexploited.

3) Large-Scale Optimization: The collaboration of multi-
ple MEC servers allows their resources to be jointly managed
for serving a large number of mobile devices simultaneously.
However, the increase of the network size renders the resource
management a large-scale optimization problem with respect
to a large number of offloading decision as well as radio-and-
computational resource allocation variables. To achieve effi-
cient resource management, it is required to design distributed
low-complexity large-scale optimization algorithms with light
signaling overhead. Although the recent advancements in
large-scale convex optimization [111] provide powerful tools
for radio resource management, they cannot be directly applied
to optimize the computation offloading decision due to its
combinatorial and non-convex nature, which calls for new
algorithmic techniques.

IV. AN OUTLOOK FOR MEC RESEARCH

Recent years have witnessed substantial research efforts on
resource management for MEC as surveyed in the preced-
ing section. However, there are lots of emerging research
directions of MEC that are still largely uncharted. In this
section, technical challenges and research opportunities will
be identified and discussed as summarized in Fig. 6, including
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the large-scale MEC system deployment, cache-enabled MEC,
mobility management, green MEC and security-and-privacy
issues in MEC.

A. Deployment of MEC Systems

The primary motivation of MEC is to shift the Cloud
Computing capability to the network edges in order to reduce
the latency caused by congestion and propagation delays in
the core network. However, there is no formal definition of
what an MEC server should be, and the server locations
in the system are not specified. These invoke the site se-
lection problems for MEC servers, which are significantly
different from the conventional BS site selection problems,
as the optimal placement of edge servers is coupled with the
computational resource provisioning, and both of them are
constrained by the deployment budget. Besides, the efficiency
of an MEC system relies heavily on its architecture, which
should account for various aspects such as workload intensity
and communication rate statistics. In addition, it is critical
for MEC vendors to determine the required server density
for catering the service demand, which is closely related to
the infrastructure deployment cost and marketing strategies.
Nonetheless, the large-scale nature of MEC systems makes
traditional simulation-based methods inapplicable, and solu-
tions based on network-scale analysis are preferred. In this
subsection, we will discuss three research problems related
to MEC deployment, including the site selection for MEC
servers, the MEC network architecture, and server density
planning.

1) Site Selection for MEC Servers: Selecting the sites
for MEC infrastructures, especially MEC servers, is the first
step towards building up the MEC system. To make the
cost-effective server-site selection, the system planners and
administrators should account for two important factors: site
rentals and computation demands. In general, given the system
deployment budget, more MEC servers should be installed at
regions with higher computation demands, such as business
districts, commercial areas and densely populated areas. This,
however, contradicts the cost requirement as such areas are
likely to have high site rentals. Fortunately, thanks to the well-
deployed telecom networks, it is a promising idea to install the
MEC servers co-located with the existing infrastructures such
as macro BSs, which is even more attractive for the telecom
operators who would like to participate in the MEC market.

However, this would not solve all the problems. On one
hand, due to the ever-increasing computation-quality require-
ment and ubiquitous smart devices, satisfactory user experi-
ence cannot be guaranteed due to the poor signal quality and
congestion in the macro cells. For some applications, e.g.,
smart home [112], it is desirable to move the computation
capability even closer to the end users. This can be achieved
by injecting some computational resources at small-cell BSs
[113], which are low-cost and small-size BSs. Despite the
potential benefits, there are still obstacles on the way:

• First, due to physical limitations, the computation ca-
pabilities of such kind of MEC servers will be much
smaller than those at macro BSs, which makes them

challenging to handle computation-intensive tasks. One
feasible solution is to build a hierarchical network archi-
tecture for MEC systems comprising MEC servers with
heterogeneous communication-and-computation capabil-
ity as detailed in the sequel.

• Second, some of the small-cell BSs may be self-deployed
by the home users, and many femto BSs owners may not
have the motivation to collaborate with MEC vendors.
To overcome this issue, MEC vendors need to design
a proper incentive mechanism in order to stimulate the
owners of the small-cell BSs for renting the sites.

• Moreover, deploying MEC servers at small-cell BSs may
incur security problems as they are easy-to-reach and
vulnerable to external attacks, which shall degrade the
levels of reliability.

On the other hand, the computation hot spots do not
always coincide with the communication hot spots. In other
words, for some of the computation hot spots, there exist
no available communication infrastructures (either macro or
small-cell BSs). For these circumstances, we need to deploy
edge servers with wireless transceivers by properly choosing
new locations.

Besides, the site selection for MEC servers is dependent
on the computational resource-allocation strategy, which poses
extra challenges compared to the conventional BS site selec-
tion. Intuitively, concentrating the computational resources at
a few MEC servers can help save the site rentals. However,
this comes at the prices of potential degradation of the service
coverage and communication quality. In addition, the optimal
computational resource allocation should take into account
both site rentals and computation demands. For example, for
an MEC server at a site with high site rental, it is preferred
to allocate huge computational resource and thus serve a large
number of users, for achieving the high revenue. Hence, a
joint site selection and computational resource provisioning
problem needs to be solved before deploying MEC systems.

2) MEC Network Architecture: The promotion of MEC
does not mean the extinction of the data-center networks
(DCNs). Instead, future mobile computing networks are en-
visioned to be consisted of three layers as shown in Fig. 7,
i.e., cloud, edge (a.k.a. fog layer), and the service subscriber
layer [103], [114]. While the cloud layer is mature and well-
deployed, there is still some flexibility and uncertainty in
designing the edge layer.

By analogy to the heterogeneous networks (HetNets) in
cellular systems, it is intuitive to design the Het-MEC systems,
which consist of multiple tiers. Specifically, the MEC servers
in different tiers have distinct computation and communication
capabilities. Such kinds of hierarchical MEC system structures
can not only preserve the advantage of efficient transmission
offered by HetNets, but also possess strong ability to handle
the peak computation workloads by distributing them across
different tiers [115]. However, the computation capacity provi-
sioning problem is highly challenging and remains unsolved,
as it should account for many different factors, such as
the workload intensity, communication cost between different
tiers, workload distribution strategies, etc.

Another thrust of research efforts focuses on exploiting
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Fig. 7. A 3-tier heterogeneous MEC system. Tier-1 servers are located
in close proximity to the end users, such as at WiFi routers and small-cell
BSs, which are of relatively small computation capabilities. Tier-2 servers are
deployed at LTE BSs with moderate computation capabilities. Tier-3 servers
are the existing Cloud Computing infrastructures, such as data centers.

the potential of the service subscriber layer, and utilizing
the undedicated computational resources, e.g., laptops, smart
phones, and vehicles, overlaid with dedicated edge nodes.
This paradigm is termed as the Ad-hoc mobile cloud in
literatures [116]–[119]. The ad-hoc mobile cloud enjoys the
benefits of amortizing the stress of MEC systems, increasing
the utilization of the computational resources, and reducing
the deployment cost. However, it also brings difficulties in
resource management and security issues due to its ad-hoc
and self-organized nature.

3) Server Density Planning: As mentioned in Sec-
tion IV-A2, the MEC infrastructure may be a combination
of different types of edge servers, which provides various
levels of computation experience and contributes different
deployment costs. Hence, it is critical to determine the number
of edge nodes as well as the optimal combination of different
types of MEC servers with a given deployment budget and
computation demand statistics. Conventionally, this problem
can only be addressed by numerical simulations, which is
time-consuming and has poor scalability. Fortunately, owing
to the recent development of stochastic geometry theory and
its successful applications in performance analysis for wireless
networks [120]–[123], as well as the similarity between Het-
MEC systems and HetNets, it is feasible to conduct per-
formance analysis for MEC systems using techniques from
stochastic geometry theory. Such analysis of MEC systems
should address the following challenges: 1) The timescales
of computation and wireless channel coherence time may
be different [61], [84], which makes existing results for
wireless networks not readily applicable for MEC systems.
One possible solution is to combine the Markov chain and
stochastic geometry theories to capture the steady behavior
of computations. 2) The computation offloading policy will
affect the radio resource management policy, which should
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Fig. 8. Illustration of the clustering behavior of the computation demands.
The mobile devices requesting for MEC services will be more concentrated
around the MEC servers.

be taken into consideration. 3) The computation demands are
normally non-uniformly distributed and clustered (see Fig. 8),
prohibiting the use of the homogeneous Poisson point process
(HPPP) model for edge servers and service subscribers. It thus
calls for the investigation of more advanced point processes,
e.g., the Ginibre ↵-determinantal point process (DPP), to
capture the clustering behaviors of edge nodes [124].

B. Cache-Enabled MEC

It has been predicted by Cisco that mobile video streaming
will occupy up to 72% of the entire mobile data traffic by 2019
[125]. One unique property of such services is that the content
requests are highly concentrated and some popular contents
will be asynchronously and repeatedly requested. Motivated
by this fact, wireless content caching or FemtoCaching was
proposed in [126]–[128] to avoid frequent replication for the
same contents by caching them at BSs. This technology has
attracted extensive attention from both academia and industry
due to its striking advantages on reducing content acquisition
latency, as well as relieving heavy overhead burden of the
network backhaul. While caching is to move popular contents
close to end users, MEC is to deploy edge servers to handle
computation-intensive tasks for edge users to enhance user
experience. Note that these two techniques seem to target
for diverse research directions, i.e., one for popular content
delivery and the other for individual computation offloading.
However, they will be integrated seamlessly in this subsection
and envisioned to create a new research area, namely, the
cache-enabled MEC.

Consider the novel cache-enabled MEC system shown in
Fig. 9. In such systems, the MEC server can cache several
application services and their related database, called service
caching (or service placement [129]) and data caching, respec-
tively, and handle the offloaded computation from multiple
users. To efficiently reduce the computation latency, several
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Fig. 9. Cache-enabled MEC systems.

key and interesting problems need to be solved, which are
described in the following with potential solutions.

1) Service Caching for MEC Resource Allocation: Unlike
the central cloud server that is always assumed with huge and
diverse resources (e.g., computing, memory and storage), the
current edge server has much less resources, making it unable
to accommodate all users’ computation requests. On the other
hand, different mobile services require different resources,
based on which, they can be classified into CPU-hungry (e.g.,
cloud chess and VR), memory-hungry (e.g., online Matlab),
and storage-hungry (e.g., VR) applications. Such a mismatch
between resource and demand introduces a key challenge on
how to allocate heterogeneous resources for service caching.

Note that similar problems have been investigated in con-
ventional Cloud Computing systems [130]–[133], termed as
VM placement, as well as MCC systems [129]. Specifically,
the authors in [130] proposed a novel architecture for VM
management and optimized the VM placement over multiple
clouds to reduce the deployment costs and improve user
experience, given constraints on hardware configuration, the
number of VMs as well as load balancing. Similar VM-
placement problems were also investigated in [131], [132] for
maximizing the energy savings of cloud servers and in [133]
for different cloud scheduling strategies. Recently, the authors
in [129] extended the VM placement idea to MCC systems and
studied the joint optimization of service caching/placement
over multiple clouds and load dispatching for end users’
requests. As a result, one efficient algorithm was proposed to
minimize both the computation latency and service placement
transition cost. These works, however, cannot be directly
applied to design efficient service caching policies for MEC
systems, since it should take into accounts more refined
information including users’ location, preference, experience
as well as edge servers’ capacities in terms of the memory,
storage and VM instance. To this end, two possible approaches
are described as follows.

The first one is spatial popularity-driven service caching,
referring to caching different combinations and amounts of
services in different MEC servers according to their specific

locations and surrounding users’ common interests. This idea
is motivated by the fact that users in one small region are likely
to request similar computing services. For example, visitors in
a museum tend to use AR for better sensational experience.
Thus, it is desirable to cache multiple AR services at the MEC
server of this region for providing the real-time service. To
achieve the optimal spatial service caching, it is essential to
construct a spatial-application popularity distribution model
for characterizing the popularity of each application over
different locations. Based on this, we can design resource-
allocation policies using various optimization algorithms, e.g.,
the game theory and convex optimization techniques.

An alternative approach is temporal popularity-driven ser-
vice caching. The main idea is similar to that of the spatial
counterpart, but it exploits the popularity information in the
temporal domain, since the computation requests also depend
on the time period. One example is that users are apt to play
mobile cloud gaming after dinner. This kind of information
will suggest MEC operators to cache several gaming services
during this typical period for handling the huge computation
loads. One disadvantage of this temporal-based approach is
the additional server cost resulted from frequent cache-and-
tear operations since popularity information is time-varying
and the MEC servers possess finite resources.

2) Data Caching for MEC Data Analytics: Many modern
mobile applications involve intensive computation based on
data analytics, e.g., ranking and classification. Take VR as an
instance. It creates an imaginary environment similar to the
real world by generating realistic images, sounds and other
sensations for enhancing users’ experience. Achieving this end
is nontrivial as it requires the MEC server to finish multiple
complicated processes within the ultra-short duration (e.g.,
1ms), such as recognizing users’ actions via pattern recog-
nition, “understanding” users’ requests via data mining, as
well as rendering virtual settings via video streaming or other
sensation techniques [134]. All the above data-analytics based
techniques should be supported by comprehensive database,
which, however, imposes extremely heavy burden on the edge
server storage. This challenge can be relieved by intelligent
data caching that only reserves frequently-used database. From
another perspective, caching parts of computation-result data
that is likely to be reused by others can further boost the
computation performance of the entire MEC system. One
typical example is mobile cloud gaming, which enables fast
and energy-efficient gaming by shifting game computing
engines from mobiles to edge servers and supporting real-
time gaming by game video streaming. Thus, it emerges as
a leading technique for next generation mobile computing
infrastructures [135]. Since certain game rendered videos, e.g.,
gaming scenes, can be reused by other players, caching these
computation results would not only significantly reduce the
computation latency of the players with the same computation
request, but also ease the computation burden for edge servers.
Similar idea has been proposed in [136], which investigated
collaborative multi-bitrate video caching and processing in
MEC.

For MEC data caching at a single edge server, one key
problem is how to balance the tradeoff between massive
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Fig. 10. Mobility management for MEC.

database and finite storage capacity. Unlike FemtoCaching
networks where content (data) caching mainly introduces
a new multiple-access mechanism termed as cache-enabled
access [137], data caching in MEC systems brings about
manifold effects on the computation accuracy, latency and
edge server-energy consumption, which, however, have not
been characterized in existing literatures. This calls for model
building research efforts for accurately quantifying the men-
tioned effects for various MEC applications. Furthermore, it
is also essential to establish a practical database popularity
distribution model that is able to statistically characterize the
usage of each database set for different MEC applications.
Based on the above models, the said tradeoff can be achieved
by solving an optimization problem that maximizes the achiev-
able QoS and minimizes the storage cost in MEC systems
simultaneously.

The above framework can be further extended to MEC
systems with multiple servers where each server can serve
multiple users and each user can offload computation to mul-
tiple edge servers. The fundamental problem is similar to that
of the cache-enabled HetNets [138], that is, how to spatially
distribute the database over the heterogeneous edge servers
under both storage and computation-load constraints on each
of them, for increasing network-wide revenues. Intuitively, for
each MEC server, it is desirable to spare more storage to cache
the database of the most popular applications in its cell, and
it also needs to utilize partial storage to accommodate less
popular ones, whose computation performance will be further
improved by cooperative caching in different MEC servers.
Moreover, the performance of the large-scale cache-enabled
MEC networks can be analyzed using stochastic geometry by
modeling nearby users as clusters [139].

C. Mobility Management for MEC
Mobility is an intrinsic trait of many MEC applications,

such as VR assisted museum tour to enhance experience of
visitors. In these applications, the movement and trajectory of
users provide location and personal preference information for
the edge servers to improve the efficiency of handling users’
computation requests. On the other hand, mobility also poses
significant challenges for realizing ubiquitous and reliable

computing (i.e., without interruptions and errors) due to the
following reasons. First, MEC will be typically implemented
in the HetNet architecture comprising of multiple macro,
small-cell BSs and WiFi APs. Thus, users’ movement will
call for frequent handovers among the small-coverage edge
servers as shown in Fig. 10, which is highly complicated
due to the diverse system configurations and user-server as-
sociation policies. Next, users moving among different cells
will incur severe interference and pilot contamination, which
shall greatly degrade the communication performance. Last,
frequent handovers will increase the computation latency and
thus deteriorate users’ experience.

Mobility management has been extensively studied for tra-
ditional heterogeneous cellular networks [140]–[142]. In these
prior works, users’ mobility is modeled by the connectivity
probability or the link reliability according to such information
as the users’ moving speed. Based on such models, dynamic
mobility management has been proposed to achieve high data
rate and low bit-error rate. However, these policies cannot
be directly applied for MEC systems with moving users,
since they neglect the effects of the computation resources
at edge servers on the handover policies. Recent works in
[143]–[146] have made initial efforts to design mobility-aware
MEC systems. Specifically, the inter-contact time and contact
rate were defined in [143] to model users’ mobility. An
opportunistic offloading policy was then designed by solving
a convex optimization problem for maximizing the successful
task offloading probability. Alternatively, to account for the
mobility, the number of edge servers that users can access was
modeled by a HPPP in [144]. Then, the offloading decision
was optimized by addressing the formulated MDP problem
to minimize the offloading cost including mobile-energy con-
sumption, latency and failure penalty. Other mobility models
were also proposed in [145], [146], which characterized the
mobility by a sequence of networks that users can connect to
and a two-dimensional location-time workflow, respectively.
In addition, mobility management for MEC was integrated
with traffic control in [147] to provide better experience
for users with latency-tolerant tasks via designing intelligent
cell association mechanisms. Moreover, recent proposals on
mobility-aware wireless caching in [148] also provided valu-
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able guidelines on mobility management in MEC systems.
Note that most of the existing works focused on optimizing

mobility-aware server selection. However, to achieve better
user experience and higher network-wide profit, the offloading
techniques at mobile devices and scheduling policies at MEC
servers should be jointly considered. This introduces a set
of interesting research opportunities with some described as
follows.

1) Mobility-Aware Online Prefetching: In practice, the
full information of the user trajectory may be unavailable.
Conventional design for mobile computation offloading will
fetch a computation task to another server only when it is
handoverred. This mechanism requires excessive fetching of
a large volume of data for handover and thus brings long
fetching latency. Moreover, it also causes heavy loads on the
MEC network. One promising solution to handle this issue is
to leverage the statistical information of the user trajectory and
prefetch parts of future computation data to potential servers
during the server-computation time, referred to as online
prefetching [149]. This technique can not only significantly
reduce the handover latency via mobility prediction, but also
enable energy-efficient computation offloading by enlarging
the transmission time. However, it also encounters several
challenges with two most critical ones described as follows.
The first challenge arises from the trajectory prediction. Ac-
curate prediction can allow seamless handovers among edge
servers and reduce the prefetching redundancy. Achieving it,
however, requires precise modeling and high-complexity ML
techniques, e.g., Bayesian, reinforcement and deep learning.
For example, the trajectory of a typical visitor in a museum
can be predicted according to his own interest-information
and statistical route information of some previous visitors
with similar interests that can be obtained by ML algorithms.
Therefore, it is important to balance the tradeoff between the
modeling accuracy and computation complexity. The second
challenge lies in the selection of the prefetched computation
data. To maximize the successful offloading probability of the
edge users, the computation-intensive components should be
prefetched earlier with adaptive transmission power control in
dynamic fading channels.

2) Mobility-Aware Offloading Using D2D Communica-

tions: D2D communications was first proposed in [150] to
improve the network capacity and alleviate the data traffic
burden in cellular systems. This paradigm can also be used
to handle the user mobility problems in MEC systems [99],
which creates numerous D2D communication links. These
links allow the computation of a user to be offloaded to
its nearby users which have more powerful computation ca-
pabilities. The short-range communication offered by D2D
links reduces energy consumption of data transmission as
well. However, the user mobility brings new design issues as
follows. The first one is how to exploit the advantages of both
D2D and cellular communications. One possible approach is
to offload the computation-intensive data to the edge servers
at BSs that have huge computation capabilities in order to
reduce the server-computing time; while the components of
large data sizes and strict computation requirements should
be fetched to nearby users via D2D communications for

higher energy efficiency. Next, the selection of surrounding
users for offloading should be optimized to account for users’
mobility information, dynamic channels and heterogeneous
users’ computation capabilities. Last, massive D2D links will
introduce severe interference for reliable communications.
This issue is more complicated in the mobility-based MEC
systems due to the fast-changing wireless fading environments.
Hence, advanced interference cancellation and cognitive radio
techniques can be applied for MEC systems, together with
mobility predication to increase the offloading rate and reduce
the service latency.

3) Mobility-Aware Fault-Tolerant MEC: User mobility
poses significant challenges for providing reliable MEC ser-
vices due to dynamic environments. Computation offloading
may fail due to intermittent connections and rapid-changing
wireless channels. The induced failure is catastrophic for
the latency-sensitive and resource-demanding applications. For
instance, AR-based museum video guide aims to provide fluent
and fancy virtual sensations for visitors, and the disruption
or failure of video streaming due to intermittent connections
would upset visitors. Another example is the military operation
which always requires fast and ultra-reliable computation,
even in high-mobility environments. Any computation failure
would bring serious consequences. These facts necessitate the
design for mobility-aware fault-tolerant MEC systems [151],
[152], with three major and interesting problems illustrated as
follows, including fault prevention, fault detection and fault
recovery. Fault prevention is to avoid or prevent MEC fault
by backing up extra stable offloading links. Macro BSs or
central clouds can be chosen as protection-clouds, since they
have large network coverage that allows continuous MEC
service. The key design challenges lie in how to balance the
tradeoff between QoS (i.e., the failure probability) and energy
consumption due to extra offloading links for the single-
user case, and how to allocate protection-clouds for multiuser
MEC applications. Next, fault detection is to collect fault
information, which can be realized by setting intelligent timing
checks or receiving feedbacks for MEC services. In addition,
channel and mobility estimation techniques can also be applied
to estimate the fault so as to reduce the detection time.
Last, for detected MEC faults, recovery approaches should be
performed to continue and accelerate the MEC service. The
suspended service can be switched to more reliable backup
wireless links with adaptive power control for higher-speed
offloading.

4) Mobility-Aware Server Scheduling: For multiuser MEC
systems, traditional MEC server scheduling is to serve the
users according to the offloading priority order that depends
on users’ distinct local computing information, channel gains
and latency requirements [64]. However, this static scheduling
design cannot be directly applied for the multiuser MEC
systems with mobility due to dynamic environments, e.g.,
time-varying channels and intermittent connectivities. Such
dynamics motivate the design of adaptive server scheduling
that regenerates the scheduling order from time to time,
incorporating the real-time user information. In such adaptive
scheduling mechanisms, users with the worse conditions will
be allocated with higher offloading priorities to meet their
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computing deadlines. Another potential approach is to design
mobility-aware offloading priority function by the following
two steps. The first step is to accurately predict users’ mobility
profiles and channels, where the major challenge is how
to reflect the mobility effects and re-define the offloading
priority function. The second step is resource reservation that
can enhance the server scheduling performance [153], [154].
Specifically, to guarantee the QoS of latency-sensitive and
high-mobility users, MEC servers can reserve some dedicated
computational resources and provide reliable computing ser-
vice for such users. While for other latency-tolerant users, the
MEC server can perform on-demand provisioning. For such a
hybrid MEC server provisioning scheme, the server scheduling
can be optimized for serving the maximum number of users
with QoS guarantees, as well as maximizing MEC servers’
revenues.

D. Green MEC

MEC servers are small-scale data centers, each of which
consumes substantially less energy than the conventional cloud
data center. However, their dense deployment pattern raises a
big concern on the system-wide energy consumption. There-
fore, it is unquestionably important to develop innovative tech-
niques for achieving green MEC [155], [156]. Unfortunately,
designing green MEC is much more challenging compared
to green communication systems or green DCNs. Compared
to green communication systems, the computational resource
needs to be managed to guarantee satisfactory computation
performance, making the traditional green radio techniques not
readily applicable. On the other hand, the previous research
efforts on green DCNs have not considered the radio resource
management, which makes them not suitable for green MEC.
Besides, the highly unpredictable computation workload pat-
tern in MEC servers poses another big challenge for resource
management in MEC systems, calling for advanced estimation
and optimization techniques. In this subsection, we will intro-
duce different approaches on designing green MEC systems,
including dynamic right-sizing for energy-proportional MEC,
geographical load balancing (GLB) for MEC, and MEC
systems powered by renewable energy.

1) Dynamic Right-Sizing for Energy-Proportional MEC:
The energy consumption of an MEC server highly depends
the utilization radio [see Eq. (5)]. Even when the server is
idling, it still consumes around 70% of the energy as it
operates at the full speed. This fact motivates the design
of energy-proportional (or power-proportional) servers, i.e.,
the energy consumption of a server should be proportional
to its computation load [157]. One way to realize energy-
proportional servers is to switch off/slow down the processing
speeds of some edge servers with light computation loads.
Such an operation is termed as dynamic right-sizing in the
literature on green DCNs [158]. However, along with the
potential energy savings, toggling servers between the active
and sleep modes could bring detrimental effects. First of all,
it will incur the switching energy cost and application data-
migration latency. Also, user experience may be degraded due
to the less amount of allocated computational resources, which

may in turn reduce the operator’s revenue. Besides, the risk
associated with server toggling as well as the wear-and-tear
cost of the servers might be increased, which can in turn
increase the maintenance cost of MEC vendors. As a result,
switching off the edge servers in a myopic manner is not
always beneficial.

In order to make an effective decision on dynamic right-
sizing, the profile of computation workload at each edge server
should be accurately forecasted. In conventional DCNs, this
can be achieved rather easily as the workload at each data
center is an aggregation of the computation requests across
a large physical region, e.g., several states in the United
States, which is relatively stable so that it can be estimated
by referring to the readily available historical data at the data
centers. However, for MEC systems, the serving area of each
edge server is much smaller, and hence its workload pattern
is affected by many factors, such as the location of the server,
time, weather, the number of nearby edge servers, and the
user mobility. This leads to a fast-changing workload pattern,
and requires more advanced prediction techniques. Moreover,
online dynamic right-sizing algorithms that require less future
information need to be developed.

2) Geographical Load Balancing for MEC: GLB is an-
other key technique for green DCNs [159], [160], which
leverages the spatial diversities of the workload patterns,
temperatures, and electricity prices, to make workload routing
decision among different data centers. This technique can also
be applied to MEC systems. For instance, a cluster of MEC
servers can coordinate together to serve a mobile user, i.e.,
the tasks can be routed from the edge server located in a
hot spot (such as a restaurant) to a nearby edge server with
light workload (such as the one in a park). On one hand, this
helps to improve the energy efficiency of the lightly-loaded
edge servers as well as user experience. On the other hand, it
can prolong the battery lives of mobile devices, as offloading
the tasks through the nearby server could save transmission
energy. It is worthwhile to note that, the implementation of
GLB requires efficient resource management techniques at
edge servers, such as dynamic right-sizing and VM manage-
ment [161]–[164].

Meanwhile, there are many factors to be incorporated when
applying GLB in MEC environments. Firstly, since the mi-
grated tasks should go through the cellular core network, the
network congestion state should be monitored and considered
when making the GLB decisions. Secondly, to enable seamless
task migration, a VM should be migrated/set up in another
edge server beforehand, which may cause additional energy
consumption. Thirdly, the mutual interests of MEC operators
and edge computing service subscribers should be carefully
considered when performing GLB, due to the tradeoff between
the energy savings and latency reduction. Last but not least,
the existence of conventional Cloud Computing infrastructures
endows the edge servers with an extra option of offloading
the latency-critical and computation-intensive tasks to remote
cloud data centers, creating a new design dimension and
further complicating the optimization.

3) Renewable Energy-Powered MEC Systems: Traditional
grid energy is normally generated by coal-fired power plants.
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Fig. 11. Renewable energy-powered MEC systems.

Hence, powering mobile systems with grid energy inevitably
causes a huge amount of carbon emission, which opposes the
target of green computing. Off-grid renewable energy, such
as solar radiation and wind energy, recently, has emerged as
a viable and promising power source for various IT systems
thanks to the recent advancements of energy harvesting (EH)
techniques [165], [166]. This fact motivates the design of
innovative MEC systems, called renewable energy-powered
MEC systems, which are shown in Fig. 11 comprising both
EH-powered MEC servers and mobile devices. On one hand,
as the MEC servers are expected to be densely-deployed
and have low power consumption similar to that of small-
cell BSs [167], it is reasonable and feasible to power the
MEC infrastructures with the state-of-the-art EH techniques.
On the other hand, the mobile devices can also get benefits
from using renewable energy as EH is able to prolong their
battery lives, which is one of the most favorable features for
mobile phones [168]. Besides, the use of renewable energy
sources eliminates the need of human intervention such as
replacing/recharging the batteries, which is difficult if not
impossible for certain types of application scenarios where
the devices are hard and dangerous to reach. Meanwhile, these
advantages of using renewable energy are accompanied with
new design challenges.

A fundamental problem to be addressed for renewable
energy-powered MEC systems is the green energy-aware
resource allocation and computation offloading. Instead of
minimizing the energy consumption subject to satisfactory
user experience, the design principle for the renewable energy-
powered MEC systems should be changed to optimizing the
achievable performance given the renewable energy constraint,
as the renewable energy almost comes for free. Also, with
renewable energy supplies, the energy side information (ESI),
which indicates the amount of available renewable energy, will
play a key role in the decision making. Initial investigations
on renewable energy-powered MEC systems were conducted
in [169] and [170], which focused on EH-powered MEC
servers and EH-powered mobile devices, respectively. For EH-
powered MEC servers, the system operator should decide the
amount of workload required to be offloaded from the edge

server to the central cloud, as well as the processing speed
of the edge server, according to the information of the core
network congestion state, computation workload, and ESI.
This problem was solved by a learning-based online algorithm
in [169]. While for EH-powered mobile devices, a dynamic
computation offloading policy has been proposed in [170]
using Lyapunov optimization techniques based on both CSI
and ESI. However, these two works only considered small-
scale MEC systems that consist of either one edge server (in
[169]) or one mobile device (in [170]), which cannot provide
a comprehensive solution for large-scale MEC systems.

For large-scale MEC systems where multiple MEC servers
are deployed across a large geographic region, the concept
of GLB could be modified as the green energy-aware GLB
to optimize the MEC systems by further utilizing the spatial
diversity of the available renewable energy. This idea was
originally proposed for green DCNs, where the “follow the
renewables” routing scheme offers a huge opportunity in
reducing the grid energy consumption [159], [171]–[174].
Moreover, as mentioned before, there exist significant differ-
ences between MEC systems and conventional DCNs in terms
of the wireless channel fluctuation and resource-management
design freedom of system operators. These factors make the
offloading decision making for the green energy-aware GLB in
MEC systems much more complicated, as it needs to consider
the CSI and ESI in the whole system.

The randomness of renewable energy may introduce the
offloading unreliability and risks of failure, bringing about
a major concern for using renewable energy to power MEC
systems. Fortunately, there are several potential solutions to
circumvent this issue as described below.

• First, thanks to the low deployment cost, renewable
energy-powered edge servers can be densely deployed
over the system to provide more offloading opportunities
for the users. The resultant overlapping serving areas
offer the offloading diversity in the available energy to
avoid performance degradation. A similar idea has been
proposed for EH cooperative communication systems in
[175].

• Second, the chance of energy shortage can be reduced
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by properly selecting the renewable energy sources. It
was found in [159] that solar energy is more suitable
for workloads with a high peak-to-mean ratio (PMR),
while wind energy fits better for workloads with a small
PMR. This provides guidelines for renewable energy
provisioning for edge servers.

• Third, MEC servers can be powered by hybrid energy
sources to improve reliability [176]–[178], i.e., powered
by both the electric grid and the harvested energy. Also,
equipping uninterrupted power supply (UPS) units at the
edge servers can provide a short period of stable energy
supply when green energy is in deficit, and it can be
recharged when the surrounding energy condition returns
to a good state.

• Moreover, wireless power transfer (WPT), which charges
mobile devices using RF wave [179], [180], is a newly-
emerged solution that enables wireless charging and
extends the battery life. This technique has been provided
in modern mobile phones such as Samsung Galaxy S6.
In renewable energy-powered MEC systems, the edge
servers can be powered by WPT when the renewable
energy is insufficient for reliability [181]. This technology
also applies to the computation offloading for mobile
devices in MEC systems [63] and data offloading for
collaborate mobile clouds [182]. However, novel en-
ergy beamforming techniques are needed to increase the
charging efficiency. Moreover, due to the double near-
far problem in wireless powered systems, it requires a
delicate scheduling to guarantee fairness among multiple
mobile devices.

E. Security and Privacy Issues in MEC

There are increasing demands for secure and privacy-
preserving mobile services. While MEC enables new types
of services, its unique features also bring new security and
privacy issues. First of all, the innate heterogeneity of MEC
systems makes the conventional trust and authentication mech-
anisms inapplicable. Second, the diversity of communication
technologies that support MEC and the software nature of
the networking management mechanisms bring new security
threats. Besides, secure and private computation mechanisms
become highly desirable as the edge servers may be an
eavesdropper or an attacker. These motivate us to develop
effective mechanisms as described in the following.

1) Trust and Authentication Mechanisms: Trust is an
important security mechanism in almost every mobile system,
behind which, the basic idea is to know the identity of the entity
that the system is interacting with. Authentication management
provides a possible solution to ensure “trust” [183]. However,
the inherent heterogeneity of MEC systems, i.e., different types
of edge servers may be deployed by multiple vendors and
different kinds of mobile devices coexist, makes the conven-
tional trust and authentication mechanisms designed for Cloud
Computing systems inapplicable. For example, the reputation-
based trust model will lead to severe trust threats in MEC
systems, as demonstrated in [184]. This fact calls for a unified
trust and authentication mechanism that is able to assess the

reliability of edge servers and identify the camouflaged edge
servers. Besides, within the mobile network, there will be a
large number of edge servers serving massive mobile devices.
This makes the trust and authentication mechanism design
much more complicated compared with that in conventional
Cloud Computing systems, since the edge servers are of
small computation capabilities and designed to enable latency-
sensitive applications. Therefore, it is critical to minimize
the overhead of the authentication mechanisms and design
distributed policies [185], [186].

2) Networking Security: The communication technologies
to support MEC systems, e.g., WiFi, LTE and 5G, have their
own security protocols to protect the system from attacks and
intrusions. However, these protocols inevitably create different
trust domains. The first challenge of networking security in
MEC systems comes from the difficulties in the distribution
of credentials, which can be used to negotiate session keys
among different trust domains [183]. In existing solutions,
the certification authority can only distribute the credentials
to all the elements located within its own trust domain [183],
making it hard to guarantee the privacy and data integrity for
communications among different trust domains. To address
this problem, we can use the cryptographic attributes as
credentials in order to exchange session keys [187], [188].
Also, the concept of federated content networks, which defines
how multiple trust domains can negotiate and maintain inter-
domain credentials [189], can be utilized.

Besides, techniques such as SDN and NFV are introduced
to MEC systems to simplify the networking management as
well as to provide isolation [5]. However, these techniques
are softwares by nature and thus vulnerable [190], [191].
Moreover, the large number of devices and entities in MEC
systems increase the chance of successfully attacking a single
device, which provides means to launch an attack to the
whole system [192]. Therefore, novel and robust security
mechanisms, such as hypervisor introspection, run-time mem-
ory analysis, and centralized security management [193], are
needed to guarantee a secured networking environment for
MEC systems.

3) Secure and Private Computation: Migrating
computation-intensive applications to the edge servers is
the most important function and motivation of building MEC
systems. In practice, the task input data commonly contains
sensitive and private information such as personal clinical data
and business financial records. Therefore, such data should be
properly pre-processed before being offloaded to edge servers,
especially the untrusted ones, in order to avoid information
leakage. In addition to information leakage, the edge servers
may return inaccurate and even incorrect computation results
due to either software bugs or financial incentives, especially
for tasks with huge computation demands [194]. To achieve
the secure and private computation, it is highly preferred
that the edge platforms can execute the computation tasks
without the need of knowing the original user data and
the correctness of the computation results can be verified,
which can be realized by encryption algorithms and verifiable
computing techniques [195]. An interesting example of secure
computation mechanisms for LP problems was developed
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Fig. 12. MEC platform overview [5].

in [194], where the LP problem was decomposed into the
public-owned solvers and the private-owned data. By using a
privacy-preserving transformation, the customer will offload
the encrypted private data for cloud execution, and the server
will return the results for the transformed LP problem. A
set of necessary and sufficient conditions for verifying the
correctness of the results were developed based on duality
theory. Upon receiving the correct result, the clients can
map back the desired solution for the original problem using
the secret transformation. This method of result validation
achieves a big improvement in computation efficiency via
high-level LP computation compared to the generic circuit
representation, and it incurs close-to-zero additional overhead
on both the client and cloud server, which provides hints to
develop secure and private computation mechanisms for other
cloud applications.

V. STANDARDIZATION EFFORTS AND USE SCENARIOS OF
MEC

Standardization is an indispensable step for successful pro-
motion of a new technology, which documents the consensus
among multiple players and defines voluntary characteristics
and rules in a specific industry. Due to the availability of
structured methods and reliable data, standardization helps to
promote innovation and disseminate groupbreaking ideas and
knowledge about cutting-edge techniques. More importantly,
standardization can build customer trust in products, services
and systems, which helps to develop favorable market condi-
tion. The technical standards for MEC are being developed
by ETSI, and a new industry specification group (ISG) was

established within ETSI by Huawei, IBM, Nokia Networks,
NTT docomo and Vodafone. The aim of the ISG is to build
up a standardized and open environment, which will allow the
efficient and seamless integration of applications from vendors,
service providers, and third-parties across multi-vendor MEC
platforms [196]. In September 2014, an introductory technical
white paper on MEC was published by ETSI, which defined
the concept of MEC, proposed the referenced MEC platform,
as well as pointed out a set of technical requirements and
challenges for MEC [5]. Also, typical use scenarios and their
relationships with MEC have been discussed. These aspects
have also been documented in the ETSI specifications in 2015
[31], [197]–[199]. Most recently, ETSI has announced six
Proofs of Concepts (PoCs) that were accepted by the MEC ISG
in MEC World Congress 2016, which will assist the strategic
planning and decision-making of organizations, as well as
help to identify which MEC solutions may be viable in the
network [200]. This provides the community with confidence
in MEC and will accelerate the pace of the standardization. It
is interesting to note that, in this congress, the ETSI MEC ISG
has renamed Mobile Edge Computing as Multi-access Edge
Computing in order to reflect the growing interest in MEC
from non-cellular operators, which will take effects starting
from 2017 [201]. In this section, we will first introduce the
recent standardization efforts from the industry, including the
referenced MEC server framework as well as the technical
challenges and requirements of MEC systems. Typical use
scenarios of MEC will be then elaborated.
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A. Referenced MEC Server Framework
In the MEC introductory technical white paper [5], the

ETSI MEC ISG has defined a referenced framework for MEC
servers (a.k.a. MEC platforms), where each server consists of a
hosting infrastructure and an application platform as shown in
Fig. 12. The hosting infrastructure includes the hardware com-
ponents (such as the computation, memory, and networking
resources) and an MEC virtualization layer (which abstracts
the detailed hardware implementation to the MEC application
platform). Also, the MEC host infrastructure provides the
interface to the host infrastructure management system as well
as the radio network elements, which, however, are beyond the
scope of the MEC initiative due to the availability of multiple
implementation options.

The MEC application platform includes an MEC virtual-
ization manager together with an Infrastructure as a Service
(IaaS) controller, and provides multiple MEC application
platform services. The MEC virtualization manager supports
a hosting environment by providing IaaS facilities, while the
IaaS controller provides a security and resource sandbox (i.e.,
a virtual environment) for both the applications and MEC
platform. The MEC application platform offers four main
categories of services, i.e., traffic offloading function (TOF),
radio network information services (RNIS), communication
services, and service registry. An MEC application platform
management interface is used by the operators for MEC
application platform management, supporting the application
configuration and life cycle control, as well as VM operation
management.

On top of the MEC application platform, the MEC appli-
cations are deployed and executed within the VMs, which
are managed by their related application management systems
and agnostic to the MEC server/platform and other MEC
applications.

B. Technical Challenges and Requirements
In this subsection, we will briefly summarize the technical

challenges and requirements specified in [5], [199].
1) Network Integration: As MEC is a new type of service

deployed on top of the communication networks, the MEC
platform is supposed to be transparent to the 3rd Generation
Partnership Project (3GPP) network architectures, i.e., the
existing 3GPP specifications should not be largely affected
by the introduction of MEC.

2) Application Portability: Application portability requires
MEC applications to be seamlessly loaded and executed by the
MEC servers deployed by multiple vendors. This eliminates
the need for dedicated development or integration efforts for
each MEC platform, and provides more freedom on optimizing
the location and execution of MEC applications. It requires
the consistency of the MEC application platform management
systems, as well as mechanisms used to package, deploy and
manage applications from different platforms and vendors.

3) Security: The MEC systems face more security chal-
lenges than communication networks due to the integration
of computing and IT services. Hence, the security require-
ments for the 3GPP networks and the IT applications (e.g.,

isolating different applications as much as possible) should
be simultaneously satisfied. Besides, because of the nature
of proximity, the physical security of the MEC servers is
more vulnerable compared to conventional data centers. Thus,
the MEC platforms need to be designed in a way that both
logical intrusions and physical intrusions are well protected.
Moreover, authorization is an important aspect to prevent the
unauthorized/untrusted third-party applications from destroy-
ing MEC hosts as well as the valued radio access network.

4) Performance: As mentioned previously, the telecom
operators expect that introducing MEC will have minimal
impacts on the network performance, e.g., the throughput,
latency, and packet loss. Thus, sufficient capacity should be
provisioned to process the user traffic in the system deploy-
ment stage. Also, because of the highly-virtualized nature, the
provided performance may be impaired especially for those
applications that require intensive use of hardware resources
or have low latency requirements. As a result, how to improve
the efficiency of the virtualized environments becomes a big
challenge.

5) Resilience: The MEC systems should offer certain
level of resilience and meet the high-availability requirements
demanded by their network operators. The MEC platforms
and applications should have fault-tolerant abilities to prevent
them from adversely affecting other normal operations of the
network.

6) Operation: The virtualization and Cloud technologies
make it possible for various parties to participate in the
management of the MEC systems. Thus, the implementation of
the management framework should also consider the diversity
of potential deployments.

7) Regulatory and legal considerations: The development
of MEC systems should meet the regulatory and legal require-
ments, e.g., the privacy and charging.

Besides the aforementioned challenges and requirements,
there still exist more aspects that should be considered in the
final MEC standards, such as the support for user mobility,
applications/traffic migration, and requirements on the con-
nectivity and storage. However, currently, the standardization
efforts and even efforts from the research communities are still
on their infancy stages.

C. Use Scenarios

MEC will enable numerous mobile applications. In this
subsection, we will introduce four typical use scenarios that
have been documented by ETSI MEC ISG in [31].

1) Video Stream Analysis Service: Video stream analysis
has a broad range of applications such as the vehicular
license plate recognition, face recognition, and home security
surveillance, for which, the basic operations include object
detection and classification. The video analysis algorithms
normally have a high computation complexity, and thus it is
preferable to move the analysis jobs away from the video-
capturing devices (e.g., the camera) to simplify the device
design and reduce the cost. If these processing tasks are
handled in the central cloud, the video stream should be routed
to the core network [202], which will consume a great amount



24

9LGHR
0DQDJHPHQW

9LGHR
$QDO\WLFV

&RUH�1HWZRUN 9LGHR�6WRUDJH

9LGHR�6WUHDP

9LGHR�&OLSV�6QDSVKRWV

0(&�6HUYHU

Fig. 13. MEC for video stream analysis [5].

$5�2EMHFW�
'DWD�&DFKH

0(&�6HUYHU

&HQWUDO�
$5�&DFKH

,QWHUQHW�&RQWHQW�6HUYHU
2EMHFW�,'

&RUH�1HWZRUN

TrackerTracker MapperMapper Object�
Recognizer
Object�

Recognizer

9LGHR

0RELOH�'HYLFH

Fig. 14. MEC for AR services [5].

of network bandwidth due to the nature of video stream.
By performing the video analysis in the place close to edge
devices, the system can not only enjoy the benefits of low
latency, but also avoid the problem of network congestion
caused by the video stream uploading. The MEC-based video
analysis system is shown in Fig. 13, where the edge server
should have the ability to conduct video management and
analysis, and only the valuable video clips (screenshots) will
be backup to the cloud data centers.

2) Augmented Reality Service: AR is a live direct or
indirect view of a physical, real-world environment whose
elements are augmented (or supplemented) by computer-
generated sensory inputs such as sound, video, graphics,
or GPS data5. Upon analyzing such information, the AR
applications can provide additional information in real-time.
The AR applications are highly localized and require low
latency as well as intensive data processing. One of the
most popular applications is the museum video guides, i.e., a
handheld mobile device that provides the detailed information
of some exhibits that cannot be easily shown on the scene.
Online games, such as the Pokémon Go6, is another important
application that AR techniques play a critical role. An MEC-
based AR application system is shown in Fig. 14, where
the MEC server should be able to distinguish the requested
contents by accurately analyzing the input data, and then
transmit back the AR data back to the end user. Much attention
has been paid on the MEC-enabled AR systems recently, and

5https://en.wikipedia.org/wiki/Augmented reality
6http://www.pokemongo.com/

one demo has been implemented by Intel and roadshowed in
the Mobile World Congress 2016 [203].

3) IoT Applications: To simplify the hardware complexity
of IoT devices and prolong their battery lives, it is promising to
offload the computation-intensive tasks for remote processing
and retrieve the results (required action) once the processing
is completed. Also, some IoT applications need to obtain
distributed information for computation, which might be dif-
ficult for an IoT device without the aid of an external entity.
Since the MEC servers host high-performance computation
capabilities and are able to collect distributed information,
their deployment will significantly simplify the design of IoT
devices, without the need to have strong processing power
and capability to receive information from multiple sources
for performing meaningful computation. Another important
feature of IoT is the heterogeneity of the devices running
different forms of protocols, and their management should be
accomplished by a low-latency aggregation point (gateway),
which could be the MEC server.

4) Connected Vehicles: The connected vehicle technology
can increase safety, reduce traffic congestion, sense vehicles’
behaviors, as well as provide opportunities for numerous
value-added services such as the car finder and parking lo-
cation [205]–[207]. However, the maturity of such technology
is yet to come as the latency requirement cannot be met with
the existing connected car clouds, which contributes to an end-
to-end latency between 100ms to 1s. MEC is a key enabling
technique for connected vehicles by adding computation and
geo-distributed services to the roadside BSs. By receiving
and analyzing the messages from proximate vehicles and
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roadside sensors, the connected vehicle cloudlets are able to
propagate the hazard warnings and latency-sensitive messages
within a 20ms end-to-end delay, allowing the drivers to react
immediately (as shown in Fig. 15) and make it possible for
autonomous driving. The connected vehicle technology has
already attracted extensive attention from the automobile man-
ufacturers (e.g., Volvo, Peugeot), automotive supplier (e.g.,
BOSCH), telecom operators (e.g., Orange, Vodafone, NTT
docomo), telecom vendors (e.g., QualComm, Nokia, Huawei),
as well as many research institutes. In November 9 2015,
Nokia7 presented two use cases for connected vehicles on
an automotive driving testbed, including the emergency brake
light and cooperative passing assistance.

Due to limited space, we omit the description of some other
interesting application scenarios, such as active device track-
ing, RAN-aware content optimization, distributed content and
Domain Name System (DNS) caching, enterprise networks, as
well as safe cities and smart security. Interested readers may
refer to the white papers on MEC [5], [208], [209] for details.

VI. CONCLUSION

MEC is an innovative network paradigm to cater for the
unprecedented growth of computation demands and the ever-
increasing computation quality of user experience require-
ments. It aims at enabling Cloud Computing capabilities and
IT services in close proximity to end users, by pushing
abundant computation and storage resources towards the net-
work edges. The direct interaction between mobile devices
and edge servers through wireless communications brings the
possibility of supporting applications with ultra-low latency
requirement, prolonging device battery lives and facilitating
highly-efficient network operations. However, they come along

7https://networks.nokia.com/solutions/mobile-edge-computing

with various new design considerations and unique challenges
due to reasons such as the complex wireless environments and
the inherent limited computation capacities of MEC servers.

In this survey, we presented a comprehensive overview and
research outlook of MEC. To this end, we first summarized
the modeling methodologies on key components of MEC
systems such as the computation tasks, communications, as
well as mobile devices and MEC servers computation. This
help characterize the latency and energy performance of MEC
systems. Based upon the system modeling, we conducted a
comprehensive literature review on recent research efforts on
resource management for MEC under various system architec-
tures, which exploit the concepts of computation offloading,
joint radio-and-computational resource allocation, MEC server
scheduling, as well as multi-server selection and coopera-
tion. A number of potential research directions were then
identified, including MEC deployment issues, cache-enabled
MEC, mobility management for MEC, green MEC, as well as
security-and-privacy issues in MEC. Key research problems
and preliminary solutions for each of these directions were
elaborated. Finally, we introduced the recent standardization
efforts from industry, along with several typical use scenarios.
The comprehensive overview and research outlook on MEC
provided in this survey hopefully can serve as useful references
and valuable guidelines for further in-depth investigations of
MEC.
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