Changhong Fu

Changhong Fu
Tongji University · School of Mechanical Engineering

Ph.D. in Robotics & Automation

About

108
Publications
12,595
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,843
Citations
Citations since 2016
88 Research Items
1789 Citations
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
Introduction
Dr. Changhong Fu received his Ph.D. degree in Robotics & Automation from Computer Vision & Aerial Robotics Lab, Technical University of Madrid, Spain. During his Ph.D., he held two research positions at Arizona State University, USA & Nanyang Technological University (NTU), Singapore. After received his Ph.D., he worked at the NTU as Research Fellow. Currently, he is an Associate Professor at Tongji University, China. For more Info., please kindly find at https://vision4robotics.github.io/
Additional affiliations
January 2021 - present
Tongji University
Position
  • Professor (Associate)
December 2017 - December 2020
Tongji University
Position
  • Professor (Assistant)
November 2015 - October 2017
Nanyang Technological University
Position
  • Group Leader
Description
  • Supported by the Industry Technology Transfer Project: Precise landing for unmanned aerial vehicles. Funded by the Singapore Technologies (ST) Aerospace.

Publications

Publications (108)
Preprint
Full-text available
Visual object tracking is an essential capability of intelligent robots. Most existing approaches have ignored the online latency that can cause severe performance degradation during real-world processing. Especially for unmanned aerial vehicle, where robust tracking is more challenging and onboard computation is limited, latency issue could be fat...
Article
This article presents a novel outlier rejection approach for feature-based visual odometry. The proposed approach is based on an empirical observation that shows that some 2D–3D correspondences with very low reprojection error can cause a high error in pose estimation. This work exploits such observations for odometry when a stereo camera is availa...
Preprint
Low-light environments have posed a formidable challenge for robust unmanned aerial vehicle (UAV) tracking even with state-of-the-art (SOTA) trackers since the potential image features are hard to extract under adverse light conditions. Besides, due to the low visibility, accurate online selection of the object also becomes extremely difficult for...
Preprint
Transformer-based visual object tracking has been utilized extensively. However, the Transformer structure is lack of enough inductive bias. In addition, only focusing on encoding the global feature does harm to modeling local details, which restricts the capability of tracking in aerial robots. Specifically, with local-modeling to global-search me...
Preprint
Unmanned aerial vehicle (UAV)-based visual object tracking has enabled a wide range of applications and attracted increasing attention in the field of remote sensing because of its versatility and effectiveness. As a new force in the revolutionary trend of deep learning, Siamese networks shine in visual object tracking with their promising balance...
Article
Most previous progress in object tracking is realized in daytime scenes with favorable illumination. State-of-the-arts can hardly carry on their superiority at night so far, thereby considerably blocking the broadening of visual tracking-related unmanned aerial vehicle (UAV) applications. To realize reliable UAV tracking at night, a spatial-channel...
Preprint
Full-text available
Previous advances in object tracking mostly reported on favorable illumination circumstances while neglecting performance at nighttime, which significantly impeded the development of related aerial robot applications. This work instead develops a novel unsupervised domain adaptation framework for nighttime aerial tracking (named UDAT). Specifically...
Preprint
Temporal contexts among consecutive frames are far from been fully utilized in existing visual trackers. In this work, we present TCTrack, a comprehensive framework to fully exploit temporal contexts for aerial tracking. The temporal contexts are incorporated at \textbf{two levels}: the extraction of \textbf{features} and the refinement of \textbf{...
Preprint
Visual tracking is adopted to extensive unmanned aerial vehicle (UAV)-related applications, which leads to a highly demanding requirement on the robustness of UAV trackers. However, adding imperceptible perturbations can easily fool the tracker and cause tracking failures. This risk is often overlooked and rarely researched at present. Therefore, t...
Preprint
Full-text available
Estimating a scene's depth to achieve collision avoidance against moving pedestrians is a crucial and fundamental problem in the robotic field. This paper proposes a novel, low complexity network architecture for fast and accurate human depth estimation and segmentation in indoor environments, aiming to applications for resource-constrained platfor...
Preprint
Full-text available
Most existing Siamese-based tracking methods execute the classification and regression of the target object based on the similarity maps. However, they either employ a single map from the last convolutional layer which degrades the localization accuracy in complex scenarios or separately use multiple maps for decision making, introducing intractabl...
Preprint
Recent years have witnessed the fast evolution and promising performance of the convolutional neural network (CNN)-based trackers, which aim at imitating biological visual systems. However, current CNN-based trackers can hardly generalize well to low-light scenes that are commonly lacked in the existing training set. In indistinguishable night scen...
Article
Full-text available
Object tracking approaches based on the Siamese network have demonstrated their huge potential in the remote sensing field recently. Nevertheless, due to the limited computing resource of aerial platforms and special challenges in aerial tracking, most existing Siamese-based methods can hardly meet the real-time and state-of-the-art performance sim...
Article
Object tracking is a fundamental task for the visual perception system on the intelligent unmanned aerial vehicle (UAV). The high efficiency of correlation filter (CF) based trackers has advanced the widespread development of online UAV object tracking. This kind of method can effectively train a filter to discriminate the target from the backgroun...
Article
As a sort of model-free tracking approach, discriminative correlation filter (DCF)-based trackers have shown prominent performance in unmanned aerial vehicle (UAV) tracking. Nevertheless, typical DCFs acquire all samples oriented to filter training merely from the current frame by cyclic shift operation in the spatial domain but ignore the consiste...
Preprint
Full-text available
Recently, the Siamese-based method has stood out from multitudinous tracking methods owing to its state-of-the-art (SOTA) performance. Nevertheless, due to various special challenges in UAV tracking, \textit{e.g.}, severe occlusion, and fast motion, most existing Siamese-based trackers hardly combine superior performance with high efficiency. To th...
Preprint
Full-text available
Unmanned aerial vehicle (UAV) based visual tracking has been confronted with numerous challenges, e.g., object motion and occlusion. These challenges generally introduce unexpected mutations of target appearance and result in tracking failure. However, prevalent discriminative correlation filter (DCF) based trackers are insensitive to target mutati...
Preprint
Full-text available
Prior correlation filter (CF)-based tracking methods for unmanned aerial vehicles (UAVs) have virtually focused on tracking in the daytime. However, when the night falls, the trackers will encounter more harsh scenes, which can easily lead to tracking failure. In this regard, this work proposes a novel tracker with anti-dark function (ADTrack). The...
Article
Aerial tracking, which has received widespread attention and exhibited excellent performance, is one of the most active applications in the remote sensing field. In particular, an unmanned aerial vehicle (UAV)-based remote sensing system equipped with visual tracking has been widely used in aviation, navigation, agriculture, transportation, public...
Article
An automated container terminal (ACT) is a cutting-edge type of container terminal that uses automated equipment and sensors to achieve autonomous applications such as container loading/unloading, horizontal transportation, and yard operations. It has integrated state-of-the-art sensing technologies, ensuring low operating costs, high throughput ca...
Preprint
Full-text available
As a crucial robotic perception capability, visual tracking has been intensively studied recently. In the real-world scenarios, the onboard processing time of the image streams inevitably leads to a discrepancy between the tracking results and the real-world states. However, existing visual tracking benchmarks commonly run the trackers offline and...
Preprint
Full-text available
Visual object tracking, which is representing a major interest in image processing field, has facilitated numerous real world applications. Among them, equipping unmanned aerial vehicle (UAV) with real time robust visual trackers for all day aerial maneuver, is currently attracting incremental attention and has remarkably broadened the scope of app...
Article
Traditional discriminative correlation filter (DCF) has received great popularity due to its high computational efficiency. However, the lightweight framework of DCF cannot promise robust performance when the tracker faces appearance variations within the background. These unpredictable appearance variations always distract the filter. Most existin...
Preprint
In the domain of visual tracking, most deep learning-based trackers highlight the accuracy but casting aside efficiency, thereby impeding their real-world deployment on mobile platforms like the unmanned aerial vehicle (UAV). In this work, a novel two-stage siamese network-based method is proposed for aerial tracking, \textit{i.e.}, stage-1 for hig...
Article
With high efficiency and efficacy, the trackers based on the discriminative correlation filter have experienced rapid development in the field of unmanned aerial vehicle (UAV) over the past decade. In literature, these trackers aim at solving a regression problem in which the circulated samples are mapped into a Gaussian label for online filter tra...
Preprint
Aerial tracking, which has exhibited its omnipresent dedication and splendid performance, is one of the most active applications in the remote sensing field. Especially, unmanned aerial vehicle (UAV)-based remote sensing system, equipped with a visual tracking approach, has been widely used in aviation, navigation, agriculture, transportation, and...
Article
Aerial object tracking approaches based on discriminative correlation filter (DCF) have attracted wide attention in the tracking community due to their impressive progress recently. Many studies introduce temporal regularization into the DCF-based framework to achieve a more robust appearance model and further enhance the tracking performance. Howe...
Article
In the field of UAV object tracking, correlation filter based approaches have received lots of attention due to their computational efficiency. The methods learn filters by the ridge regression and generate response maps to distinguish the specified target from the background. An ideal filter can predict the object’s position in a new frame, and in...
Preprint
Full-text available
Current unmanned aerial vehicle (UAV) visual tracking algorithms are primarily limited with respect to: (i) the kind of size variation they can deal with, (ii) the implementation speed which hardly meets the real-time requirement. In this work, a real-time UAV tracking algorithm with powerful size estimation ability is proposed. Specifically, the o...
Preprint
Visual tracking has yielded promising applications with unmanned aerial vehicle (UAV). In literature, the advanced discriminative correlation filter (DCF) type trackers generally distinguish the foreground from the background with a learned regressor which regresses the implicit circulated samples into a fixed target label. However, the predefined...
Preprint
Correlation filter (CF)-based methods have demonstrated exceptional performance in visual object tracking for unmanned aerial vehicle (UAV) applications, but suffer from the undesirable boundary effect. To solve this issue, spatially regularized correlation filters (SRDCF) proposes the spatial regularization to penalize filter coefficients, thereby...
Preprint
Full-text available
Object tracking has been broadly applied in unmanned aerial vehicle (UAV) tasks in recent years. However, existing algorithms still face difficulties such as partial occlusion, clutter background, and other challenging visual factors. Inspired by the cutting-edge attention mechanisms, a novel object tracking framework is proposed to leverage multi-...
Article
Full-text available
In recent years, the correlation filter (CF)-based method has significantly advanced in the tracking for unmanned aerial vehicles (UAV). As the core component of most trackers, CF is a discriminative classifier to distinguish the object from the surrounding environment. However, the poor representation of the object and lack of contextual informati...
Conference Paper
Object tracking has been broadly applied in unmanned aerial vehicle (UAV) tasks in recent years. However, existing algorithms still face difficulties such as partial occlusion, clutter background, and other challenging visual factors. Inspired by the cutting-edge attention mechanisms, a new visual tracking framework leveraging multi-level visual at...
Article
Object tracking plays a crucial role in remote sensing for the unmanned aerial vehicle (UAV). In recent years, deep learning contributes hugely to the visual object tracking, and one typical application is that deep features extracted from convolutional neural networks are widely employed for robust representations of the tracked object, as early l...
Article
Spatial regularization has been proved as an effective method for alleviating the boundary effect and boosting the performance of a discriminative correlation filter (DCF) in aerial visual object tracking. However, existing spatial regularization methods usually treat the regularizer as a supplementary term apart from the main regression and neglec...
Article
Visual tracking, one of the most favorable multimedia applications, has been widely used in unmanned aerial vehicle (UAV) for civil infrastructure monitoring, aerial cinematography, autonomous navigation, etc. Most existing trackers utilize deep convolutional feature to enhance tracking robustness in scenarios of various appearance variation. Howev...
Preprint
Full-text available
Most existing trackers based on discriminative correlation filters (DCF) try to introduce predefined regularization term to improve the learning of target objects, e.g., by suppressing background learning or by restricting change rate of correlation filters. However, predefined parameters introduce much effort in tuning them and they still fail to...
Preprint
Full-text available
Correlation filter (CF) has recently exhibited promising performance in visual object tracking for unmanned aerial vehicle (UAV). Such online learning method heavily depends on the quality of the training-set, yet complicated aerial scenarios like occlusion or out of view can reduce its reliability. In this work, a novel time slot-based distillatio...
Preprint
Full-text available
Correlation filter-based tracking has been widely applied in unmanned aerial vehicle (UAV) with high efficiency. However, it has two imperfections, i.e., boundary effect and filter corruption. Several methods enlarging the search area can mitigate boundary effect, yet introducing undesired background distraction. Existing frame-by-frame context lea...
Article
Full-text available
The rapid growth of IoT era is shaping the future of mobile services. Advanced communication technology enables a heterogeneous connectivity where mobile devices broadcast information to everything. Mobile applications such as robotics and vehicles connecting to cloud and surroundings transfer the short-range on-board sensor perception system to lo...
Preprint
Full-text available
The outstanding computational efficiency of discriminative correlation filter (DCF) fades away with various complicated improvements. Previous appearances are also gradually forgotten due to the exponential decay of historical views in traditional appearance updating scheme of DCF framework, reducing the model's robustness. In this work, a novel tr...
Article
The great advance of visual object tracking has provided unmanned aerial vehicle (UAV) with intriguing capability for various practical applications. With promising performance and efficiency, discriminative correlation filter-based trackers have drawn great attention and undergone remarkable progress. However, background interference and boundary...
Preprint
Full-text available
Due to implicitly introduced periodic shifting of limited searching area, visual object tracking using correlation filters often has to confront undesired boundary effect. As boundary effect severely degrade the quality of object model, it has made it a challenging task for unmanned aerial vehicles (UAV) to perform robust and accurate object follow...
Preprint
Full-text available
Traditional framework of discriminative correlation filters (DCF) is often subject to undesired boundary effects. Several approaches to enlarge search regions have been already proposed in the past years to make up for this shortcoming. However, with excessive background information, more background noises are also introduced and the discriminative...