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Abstract

We consider doing Bayesian inference by minimizing the KL divergence on the
2-Wasserstein space P2. By exploring the Riemannian structure of P2, we develop
two inference methods by simulating the gradient flow on P2 via updating particles,
and an acceleration method that speeds up all such particle-simulation-based
inference methods. Moreover we analyze the approximation flexibility of such
methods, and conceive a novel bandwidth selection method for the kernel that
they use. We note that P2 is quite abstract and general so that our methods can
make closer approximation, while it still has a rich structure that enables practical
implementation. Experiments show the effectiveness of the two proposed methods
and the improvement of convergence by the acceleration method.

1 Introduction

Bayesian inference is an important topic in the machine learning community for its power in modeling
and reasoning uncertainty among data. Its task is to get access to the posterior distribution p given
data for a Bayesian model. As p is intractable for general Bayesian models, various methods are
developed for approximation. Variational inference methods (VIs) try to approximate p by a tractable
distribution q that minimizes the Kullback-Leibler divergence (KLD) to p. A parametric distribution
family is typically chosen for tractability (e.g. [33, 11]) and the problem can be efficiently solved
by classical optimization methods. But this restricts the flexibility of the approximation thus the
closeness to p suffers. Markov chain Monte Carlo methods (MCMCs) (e.g. [9, 23, 35, 4]) aim to
directly draw samples from p. Although they are asymptotically accurate, a large sample size is
required due to the autocorrelation between samples, which makes a big cost at test time.

Recently, there appear methods that minimize the KLD on distribution spaces that are more abstract
and general than parametric families. In algorithmic appearance, such methods iteratively update a
set of samples, or particles, so that the set of particles gradually becomes representative for p. They
can achieve a better approximation than classical VIs because of the greater flexibility of particles
over parametric forms, and they are more particle-efficient than MCMCs, in the sense that a better
approximation can be achieved with the same sample size, since they take the particle interaction into
account and focus on finite-particle performance. Stein Variational Gradient Descent (SVGD) [18] is a
remarkable instance. It updates particles along the gradient flow (GF) (steepest descending curves) of
the KLD on the distribution manifoldPH, whose tangent space is the reproducing kernel Hilbert space
of a kernel [17]. Its unique benefits make it a popular method: it has been modified for Riemannian
support space [16] and structured posterior [39], and applied to deep generative models [34, 27]
and Bayesian reinforcement learning [19, 10]. Another instance is the particle optimization method
(PO) [3] where particles are updated by solving an optimization problem known as the variational
formulation of the Langevin dynamics [12]. The algorithm resembles the Polyak’s momentum [26]
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version of SVGD. We call such methods particle-simulation-based variational inference methods
(PSVIs) to highlight the difference to VIs and MCMCs.

In this work, we propose to minimize the KLD on the 2-Wasserstein spaceP2, which is general enough
to contain all distributions with finite second-order moment, while still tractable for computation
thanks to its Riemannian structure. We contribute to the field of PSVI in three folds: (i) We make
a theoretical analysis on the flexibility of PSVIs and find out that the particle update rule can be
expressed by either a density function or an optimization problem over a family of test functions,
and PSVIs have the flexibility up to either a smoothed density or a smoothed test function family.
Typically kernel is used to satisfy this restriction (Section 3.1). (ii) We propose two PSVIs: Gradient
Flow with Smoothed Density / test Function (GFSD/GFSF), by simulating the GF of the KLD on
P2 (Section 3.2). We also develop a principled bandwidth selection method (Section 3.2.3) for them
based on their relation to the Langevin dynamics (Remark 4). (iii) We develop an acceleration method
for PSVIs based on the Riemannian version [20] of the Nesterov’s acceleration method [24], by
studying the exponential map and the parallel transport on P2 (Section 4). The effectiveness of
GFSD/GFSF and the acceleration effect is observed in experiments.

Related work As mensioned, SVGD simulates the GF on PH, while ours on P2. We note in
Remark 3 that P2 is a more natural and well-defined manifold of distributions, while PH is not
guaranteed for the existence of the tangent vector of every smooth curve on it. Moreover, P2 provides
essential ingredients to develop the bandwidth selection method as well as the acceleration method.
Algorithmically, GFSD/GFSF does not average gradients for each particle, enabling every particle to
find the high-probability region near it more efficiently in early stage.

The idea of the PO method is essentially to simulate the GF of the KLD on P2 as well, but their
simulation is based on the discretization using the minimal movement scheme (MMS) ([1], Def 2.0.6)
on P2, while ours is based on simulating the associated dynamics on the support space (Section 2.1),
which has an intuitive physics picture and easy to implement. To find the desired tangent vector on
P2, the PO method adds a noise to the SVGD tangent vector in PH, which is unnatural and may affect
convergence. Although the PO algorithm takes the form of Polyak’s momentum acceleration [26]
of SVGD for each particle, it requires further theoretical interpretation to be an actual acceleration
method, since SVGD is not an optimization method for each particle. Additionally, Nesterov’s
acceleration is known to be more stable than Polyak’s momentum [31].

2 Preliminaries
In this part, we briefly introduce the Wasserstein space as a Riemannian manifold and the gradient
flow on it, as well as the theory of SVGD. We use bold symbols (e.g. q) to represent probability
measures and regular ones (e.g. q) for the corresponding density functions when exist.

2.1 P2 as a Riemannian Manifold
The concept of Wasserstein space rises from the optimal transport problem. Let X = RD be the
support space, d(·, ·) be the typical Euclidean distance, andP(X ) be the space of probability measures
on X . We define P2(X ) := {q ∈ P(X ) : ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞};W2(q,p) :=(
infπ∈Π(q,p) Eπ(x,y)[d(x, y)2]

)1/2
,∀q,p ∈ P(X ),where Π(q,p) := {π ∈ P(X×X ) : π(·,X ) =

q,π(X , ·) = p} is the space of joint probability measures with q and p as the marginals. It is well
known that (P2(X ),W2) is a metric space ([32], Def 6.4), which is called the 2-Wasserstein space,
and W2 is called the 2-Wasserstein distance. We use P2 to denote (P2(X ),W2) for brevity. More
precisely, P2 is a length space ([32], Thm 7.21), which inspires the exploration for any possible
Riemannian structures on P2 (e.g. [25]). It is an appealing task since a Riemannian structure provides
rich ingredients that enable explicit calculation thus practical implementation of quantities of interests,
e.g. the gradient of a function on P2.

In the sense of Riemannian manifold, a smooth curve defines a tangent vector at some point on it
as the differentiation along the curve (e.g. [5], Def 2.6). Specifically, for an absolutely continuous
(AC) curve (roughly a “smooth” curve) (qt)t∈[0,1], it defines a tangent vector q̇t0 at qt0 as: q̇t0 [F ] :=
d

dhF (qt0+h)
∣∣
h=0

for any function F of the form F (q) =
∫
X fdq with f ∈ C∞c (X ) (compactly

supported smooth function). All such q̇t0 form a vector space: the tangent space TpP2. On the other
hand, another notion of differentiating qt is the weak derivative ∂tqt, which is the generalization of
the typical derivative through the rule of integration by parts: (∂tqt)[ϕ] :=

∫ 1

0

∫
X ϕt(x)d(∂tqt) =

2



−
∫ 1

0

∫
X (∂tϕt(x))dqtdt,∀ϕt(x) ∈ C∞c ([0, 1]×X ). The two notions are related by considering q̇t[F ]

as a weak derivative: (q̇t[F ])[g] = (∂tqt)[fg],∀g ∈ C∞c ([0, 1]). The weak derivative description
brings the vector field representation of tangent vectors in P2:

Lemma 1 (Continuity Equation ([32], Thm 13.8; [1], Thm 8.3.1, Prop 8.4.5)). Denote the Lebesgue
measure on R as L 1. For any AC curve (qt)t∈[0,1] on P2, there exists a time-dependent Borel

vector field vt(x) such that for L 1-a.e. t ∈ [0, 1], vt ∈ {∇ϕ : ϕ ∈ C∞c (X )}
L2(qt;RD)

(where the
overline means closure), and the continuity equation ∂tqt + ∇ · (vtqt) = 0 holds in the weak
sense:

∫ 1

0

∫
X
(
∂tϕt(x) + vt(x) · ∇ϕt(x)

)
dqt(x)dt, ∀ϕ ∈ C∞c ([0, 1]× X ). Moreover, such a v is

(q ×L 1)-a.e. unique.

We denote q̇t ∼ vt (similarly for ∂tqt) if both notions refer to a same tangent vector on P2, from their
own perspectives. Furthermore, the above space of vt is recognized as the tangent space TqP2 at q ([1],
Def 8.4.1). With the inner product on TqP2: 〈ξ, ζ〉TqP2 := 〈ξ, ζ〉L2(q;RD) =

∫
X ξ(x) · ζ(x)dq(x),

the Riemannian distance recovers the metric-space-sense distance due to the Benamou-Brenier
formula [2]: W2(q0, q1)2 = infqt

∫ 1

0
‖q̇t‖TqtP2dt. Now P2 can be treated as a Riemannian manifold.

The vector field representation has a solid physical intuition. Consider at time t = 0 there is a set
of particles {x(i)

0 }i that distributes as q0. Let the i-th particle move with velocity vt(x
(i)
t ) for any

moment t ≥ 0. If q̇t ∼ vt, {x(i)
t }i will distribute as qt. This intuition can be formally stated:

Lemma 2 (Simulating a curve on P2 ([1], Prop 8.1.8)). Let (qt)t∈[0,1] be an AC curve of AC measure
(wrt the Lebesgue measure on RD, if not specified). Then for q0-a.e. x ∈ X , there exists a globally
defined differentiable map X : [0, 1] × X → X such that ∂tXt(x) = vt(x) where vt ∼ q̇t, and
qt = (Xt)#q0, which means for any Borel subset Ω ⊂ X , qt(Ω) = q0(X−1

t (Ω)).

2.2 Gradient Flows on P2

There are various ways to define the gradient flow (GF) of a function on metric spaces (e.g. [1], Def
11.1.1; [32], Def 23.7) following the intuition of steepest descending curves, and they all coincide
(e.g. [32], Prop 23.1, Rem 23.4) on Riemannian manifolds. Particularly, the GF defined by the MMS,
which the PO method uses, is equivalent to the GF on Riemannian manifolds ([1], Thm 11.1.6; [7],
Lemma 2.7). Now consider the Kullback–Leibler divergence (KLD) (or relative entropy in some
literatures) that we want to minimize in this paper:

KL(·||p) : q 7→

{∫
X log

(
dq
dp

)
dq, if q is absolutely continuous (AC) wrt p,

+∞, otherwise,

where dq
dp is the Radon-Nikodym derivative. A curve qt of the GF of the KLD is characterized

by q̇t ∼ vt ([32], Thm 23.18; [1], Example 11.1.2) where vt = ∇ log
(

dqt
dp

)
. Note that the GF of

KL(·||p) cannot be defined where q is not AC wrt p. When KL(·||p) is geodesically λ-convex on
P2 (e.g. when p is λ-log-concave on X ([32], Thm 17.15)), qt enjoys the exponential convergence
W2(q

(1)
t , q

(2)
t ) ≤ e−λtW2(q

(1)
0 , q

(2)
0 ) ([32], Thm 23.25, Thm 24.7; [1], Thm 11.1.4), as expected.

We indistinguishably write KL(q||p) and Eq when the measures are AC.

2.3 Stein Variational Gradient Descent (SVGD)
SVGD [18] is a Bayesian inference method that updates particles by a proper vector field v so that
the the distribution of particles q (assumed AC) approaches the posterior p (typically AAC) as fast
as possible in terms of KL(q||p). Specifically, v is found by maximizing − d

dtKL(qt||p)
∣∣
t=0

=

Eq[∇ log p · v +∇ · v], where qt with q0 = q is the varying density of moving particles with velocity
v. By choosing v ∈ HD whereH is the reproducing kernel Hilbert space (RKHS) of a kernel K(·, ·),
the optimal v can be solved explicitly: vH(·) = Eq(x)[K(x, ·)∇ log p(x) +∇xK(x, ·)]. Samples are
then updated using vH, which is estimated by averaging over the samples.

The SVGD vector field vH is then interpreted as the tangent vector of the GF of the KLD on the
H-Wasserstein space PH [17], whose tangent space is taken as TqPH := {∇ · (qφ) : φ ∈ HD}
(weak derivative description)3. However, we note that this may not be a natural tangent space:

3 Or the vector field description: the quotient spaceHD/ ' where φ1 ' φ2 : ∇ · (q(φ1 − φ2)) = 0.
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Remark 3. Lemma 1 guarantees that for any AC curve that passes q, the unique existence of a
tangent vector of the curve at q in TqP2 is guaranteed. But there is no such guarantee in TqPH.
Therefore tangent vectors in TqPH may not be able to exactly fit a GF on PH at q.

3 Bayesian Inference via Gradient Flow on P2

We aim to do Bayesian inference via simulating the gradient flow (GF) of KL(·||p) on P2 which
approaches to p, the target posterior distribution. For typical inference tasks p is AC, thus is any
measure on the GF since it should be AC wrt p, as mentioned. Therefore, we can use density functions
to write the vector field form of the GF of the KLD introduced in Section 2.2:

vt(x) = ∇ log p(x)−∇ log qt(x).

The simulation of the GF follows the physical intuition detailed in Section 2.1, i.e. update samples
{x(i)

t }i of qt by x(i)
t+h = x

(i)
t + hvt(x

(i)) then {x(i)
t+h}i is a set of samples of qt+h.

Remark 4. We note that the deterministic dynamics dx = vt(x)dt with vt above, produces the same
evolution rule for the probability density qt of x as the Langevin dynamics: dx = ∇ log p(x)dt +√

2dBt(x), where Bt(x) is the Brownian motion, due to the Fokker-Planck equation. This meets the
known recognition of the Langevin dynamics as the GF of the KLD on P2 (e.g. [12]).

Now we engage in estimating vt. We first analyze the requirements of two possible ways to do this
and further the flexibility of PSVIs, then propose our methods GFSD/GFSF following the two ways.
We fix an arbitrary time t and drop the subscript for notation brevity.

3.1 Smoothing Density or Smoothing Test Functions
The key obstacle to estimating v is the approximation of −∇ log q(x). We know that {x(i)}Ni=1 is
a finite set of samples of q, but we cannot directly approximate q by the empirical distribution4

q̂(x) := 1
N

∑N
i=1 δ(x−x(i)) where δ is the Dirac delta function, since q̂ is not AC thus the GF of the

KLD is undefined at q̂. To well-define the vector field, a straightforward way is to smooth q̂ with a
smooth kernel K on X , leading to the AC approximation q̃(x) := (q̂ ∗K)(x) = 1

N

∑N
i=1K(x, x(i))

(where “∗” denotes convolution).

Beside the expression in density, we shall show in Section 3.2.2 that the vector field can also be
characterized by the optimization problem of the form minϕ∈C∞c (X ) Eq[ϕ]. By noting the equality
Eq̃[ϕ] = Eq̂∗K [ϕ] = Eq̂[ϕ ∗K] (due to the interchangeability of integral and summation), we claim
that smoothing density is equivalent to smoothing test function in this optimization formulation.
Furthermore, we show that when K is a Gaussian kernel, smoothing test functions in C∞c (X ) is
equivalent to taking test functions from the RKHS of K.

Proposition 5. For Gaussian kernel K and X = RD, G := {ϕ ∗K : ϕ ∈ C∞c (X )}
L2(X )

is isomet-
rically isomorphism to the RKHSH of K.

Proof is provided in Appendix A1. As we shall analyze below, other PSVIs also have to face this
issue. We claim that for all PSVIs, either density or test function has to be a smoothed one, and
PSVIs have this extend of flexibility. This is an intrinsic requirement by the KLD that they minimize.

Case study: SVGD As introduced in Section 2.3, SVGD identifies its vector field by solving

max
v∈L2(p;RD),‖v‖=1

Eq[∇ log p · v +∇ · v], (1)

where v ∈ L2(p;RD) ⊃ C∞c (X ;RD) is required by the condition of Stein’s identity [17]. We first
claim that neither smoothing density q nor smoothing test function v will disable the problem to
identify the vector field, as the GF of KL(·||p) is not defined at q̂.
Proposition 6. For q = q̂ and v ∈ L2(p;RD), problem (1) has no optimal solution. In fact the
supremum of the objective is infinite, indicating that a maximizing sequence of v tend to be ill-posed.

Proof is provided in Appendix A2. Intuitively, without a restriction on the sharpness of the test
functions, v could be extremely peaked around the samples, which produces unreasonably large

4 q̂ is not AC and rigorously q̂ is not a density function. We informally treat it as a special function to avoid
verbose language.
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vectors at the samples. If we choose to smooth the test function v with a Gaussian kernel K, we
only need to choose v fromHD according to Proposition 5, which is exactly what SVGD does. This
in turn is equivalent to smoothing the density by noticing Eq̂[∇ log p · (v ∗K) + ∇ · (v ∗K)] =
Eq̂[(∇ log p · v) ∗K + (∇ · v) ∗K] = E(q̂∗K)[∇ log p · v +∇ · v].

SVGD makes no assumption on the form of the density q as long as its samples are known, but it
actually transmits the restriction on q to the test function v. The choice for v inHD is not just for a
tractable solution, but more importantly, for guaranteeing a valid vector field. There is no free lunch
in the approximation flexibility. This claim also holds for the particle optimization (PO) method [3],
since it adopts the vector field of SVGD for the KLD term in its optimization objective in each step.

3.2 Simulating the Gradient Flow on P2

Now we propose two practical methods based on smoothing density and smoothing test functions for
simulating the gradient flow (GF) on P2 as Bayesian inference methods. A novel bandwidth selection
method is also proposed.

3.2.1 Gradient Flow with Smoothed Density (GFSD)
By directly estimating q with the smoothed density q̃ = q̂ ∗ K, we compute the vector field as
v(t) = ∇ log p(x) − ∇ log q̃(x) = ∇ log p(x) −

(∑
i∇xK(x, x(i))

)
/
(∑

j K(x, x(j))
)
. We call

this method the Gradient Flow with Smoothed Density (GFSD).

We note that GFSD is closely related to SVGD: by the method of variation, the optimal solution to
problem (1) with q = q̃ and v ∈ L2(q̃;RD) is proportional to the GFSD vector field. This indicates
that the smoothing density version of SVGD coincides with GFSD. In fact, the revised optimization
problem characterizes the gradient of the KLD on P2.

3.2.2 Gradient Flow with Smoothed Test Functions (GFSF)
For the problematic part u(x) = −∇ log q(x), or equivalently q(x)u(x) +∇q(x) = 0, we treat it as
an equality that holds in the weak sense, which means Eq[φ ·u−∇ ·φ] = 0,∀φ ∈ C∞c (X ;RD)5. We
take q = q̂ and smooth the test function, which means taking φ fromHD according to Proposition 5.
To enforce the equality to hold, we require the desired u to solve the following optimization problem:

min
u

max
φ∈HD,‖φ‖=1

(
Eq̂[φ · u−∇ · φ]

)2
=

1

N2

( N∑
i=1

(
φ(x(i)) · u(x(i))−∇ · φ(x(i))

))2

. (2)

The closed-form solution of the problem is û = K̂ ′K̂−1 in matrix form, where û:,i = u(x(i)),
K̂ij = K(x(i), x(j)), and K̂ ′:,i =

∑
j ∇x(j)K(x(j), x(i)) (see Appendix A3). So the total vector field

in matrix form can be expressed as g + K̂ ′K̂−1, where g:,i = ∇x(i) log p(x(i)). We call this method
the Gradient Flow with Smoothed test Functions (GFSF). Note that the inverse K̂−1 does not incur a
serious computational cost since PSVIs are particle-efficient and we do not need a large particle size.

An interesting relation of GFSF to SVGD is that the SVGD vector field can be expressed as K̂g+ K̂ ′.
We also note that the GFSF estimate of −∇ log q coincides with the method of [15], which is derived
by using Stein’s identity (a more general form of the weak derivative) and choosing one particular
test function. In the work, gradient in the data space is estimated to train implicit generative models.

For both GFSD and GFSF, the only information needed on p is the gradient ∇ log p, which is
tractable for Bayesian inference tasks. Unlike SVGD, the gradient term in both our methods is
not weighted-averaged among all particles, thus each particle moves more efficiently towards the
high-probability region around it. Moreover, due to the relation to the Langevin dynamics (LD)
(Remark 4), both methods can adopt stochastic gradient for large scale inference tasks, in the same
way that LD does [35].

3.2.3 Bandwidth Selection via Heat Equation
Since kernel is involved to smooth either density or test functions, the bandwidth of the kernel will
affect the estimation of the vector field. SVGD chooses the bandwidth with a median method, which
is based on a numerical consideration. Here we propose a novel method for selecting the bandwidth
by exploring the dynamics of the gradient flow.

5 We also consider scalar-valued test functions ϕ ∈ C∞c (X ) and smooth them inH, which gives the same
result, as shown in Appendix A4.
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As noted in Remark 4, the deterministic dynamics of GF and the Langevin dynamics realizes the
same rule of density evolution. Particularly, both the deterministic dynamics dx = −∇ log qt(x)dt

and the Brownian motion dx =
√

2dBt(x) produce the evolution rule of the heat equation (HE)
∂tqt(x) = ∆qt(x). So we would like to select the bandwidth of the smoothing kernel by enforcing the
vector field−∇ log q̃ to recover the effect of HE. Specifically, we explicitly express the dependence of
q̃(x) on the samples as q̃(x; {x(j)}j) when needed, which is an approximation on the current density
qt. After an infinitesimal time ε, qt+ε(x) should be approximated by both qt + ε∆qt ≈ q̃ + ε∆q̃
due to the HE, and by q̃t+ε = q̃(x; {x(i) − ε∇ log q̃(x(i))}i) due to the deterministic dynamics. As a
result, we require the equality ∆q̃(x; {x(i)}i) +

∑
j ∇x(j) q̃(x; {x(i)}i) · ∇ log q̃(x(j); {x(i)}i) = 0

to hold. So in practice, a reasonable bandwidth can be selected by minimizing∑
k

(
∆q̃(x(k); {x(i)}i) +

∑
j

∇x(j) q̃(x(k); {x(i)}i) · ∇ log q̃(x(j); {x(i)}i)
)2

. (3)

We call it the HE method. Due to the equivalence of smoothing density and smoothing test functions
analyzed in Section 3.1, the HE method can also be applied to methods based on smoothing test
functions, e.g. SVGD and GFSF. Implementation details are provided in Appendix A5.

4 Accelerated First-order Methods on P2

The gradient flow methods described in the above section can be regarded as the gradient descent
method on Riemannian manifold. Beyond that, there exist accelerated first-order methods on
Riemannian manifold, e.g. Riemannian Nesterov’s Accelerated Gradient (RNAG) [20], that enjoy
a faster convergence rate. To apply the RNAG method to the Riemannian manifold P2, two more
ingredients are required: exponential map (and its inverse) and parallel transport. Intuitively, the
exponential map Expq : TqP2 → P2 acts as the addition (displacement) of the point q with a vector
to get to another point, and the parallel transport Γq2q1 : Tq1P2 → Tq2P2 relates tangent vectors at
different points and should be invoked before using a tangent vector at a different point.

Exponential map on P2 As indicated by Corollary 7.22 and Theorem 10.38 of [32], for an AC
measure q and ξ ∈ TqP2, Expqξ = (id + ξ)#q (notation defined in Lemma 2). For its inverse,

consider two AC measures q1, q2 that are close. Let {x(j)
1 }j be a set of samples of q1 and {x(j)

2 }j of
q2, and assume that they are pairwisely close: ‖x(j)

1 −x
(j)
2 ‖ � min{mini ‖x(i)

1 −x
(j)
1 ‖,mini ‖x(i)

2 −
x

(j)
2 ‖},∀j. Then the optimal transport map from q1 to q2 satisfies T q2q1 (x

(j)
1 ) = x

(j)
2 ,∀j. According

to Theorem 7.2.2 of [1], we have T qtq1 = (1 − t)id + tT q2q1 where (qt)t∈[0,1] is the geodesic (in
the Riemannian manifold sense) from q1 to q2, and Proposition 8.4.6 further asserts that q̇0 ∼
limt→0

1
t (T

qt
q1 − id) = T q2q1 − id (vector field form), while by definition Exp−1

q1 (q2) ∼ q̇0. So we

have
(
Exp−1

q1 (q2)
)
(x

(j)
1 ) = x

(j)
2 −x

(j)
1 ,∀j. Note that only the knowledge on the samples is sufficient

for our use to update the samples. Also note that when we apply Exp−1
· (·) in the following, the two

measures are close since one is derived by an infinitesimal displacement of another, so is each pair of
their samples x(j)

1 and x(j)
2 (see Appendix A6.1, A6.2).

Parallel Transport on P2 We first note that there have been formal researches on the parallel
transport on P2 [21, 22], but the result requires differentiating the vector field thus hard to implement.

Figure 1: Illustration of the Schild’s lad-
der method. Figure inspired by [13].

We propose to use the Schild’s ladder method [6, 13],
which provides a tractable first-order approximation of
the parallel transport Γq2q1 . As shown in Fig. 1, given
q1, q2 and ξ ∈ Tq1P2, the procedure to approxi-
mate Γ̃q2q1ξ is (i) find the point Expq1ξ; (ii) find the
midpoint of the geodesic from q2 to Expq1ξ: qM =

Expq1( 1
2Exp−1

q1 (Expq1ξ)); (iii) extrapolate the geodesic
from q1 to qM by doubling the length to find qE :=
Expq1(2Exp−1

q1 (qM )); (iv) the approximator is taken as
Γ̃q2q1ξ = Exp−1

q2 (qE). Note that the Schild’s ladder method
only requires the exponential map and its inverse.

Following the procedure, we find that for AC measures q1, q2 with pairwisely close samples
{x(j)

1 }j , {x
(j)
2 }j , the approximation to the parallel transport satisfies

(
Γ̃q2q1(ξ)

)
(x

(j)
2 ) = ξ(x

(j)
1 )

(See Appendix A6.1). By applying the RNAG algorithm [20] on P2 (details in Appendix A6.2), we
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have the Wasserstein Nesterov’s Accelerated Gradient method (WNAG), as presented in Alg. 1. To
highlight the difference, we call the vanilla implementation of PSVIs as Wasserstein Gradient Descent
method (WGD). We emphasize that one cannot directly apply the vanilla Nesterov’s acceleration
method [24] on the update rule of every single particle, since each particle is not optimizing any
function. Although it needs more investigation to see whether the algorithm suits for SVGD, we can
apply it algorithmically, and it also makes a salient improvement in experiments.

The tools developed here also make it possible to apply other optimization techniques on Riemannian
manifold to benefit PSVIs, e.g. Riemannian BFGS [8, 28, 36] and Riemannian stochastic variance
reduction gradient [37]. We leave these extensions as future work.

Algorithm 1 Wasserstein Nesterov’s Acceleration Gradient method (WNAG)

1: Select acceleration factor α > 3; Initialize {x(j)
0 }Nj=1 with distinct values; let y(j)

0 = x
(j)
0 ;

2: for k = 1, 2, · · · , do
3: Determine bandwidth using either the median or the HE method for {y(j)

k−1}Nj=1;
4: for i = 1, · · · , N , do
5: Find the value ξ(i)

k−1 of the vector field at y(i)
k−1 by SVGD/GFSD/GFSF;

6: x
(i)
k = y

(i)
k−1 + εξ

(i)
k−1;

7: y
(i)
k = x

(i)
k + k−1

k (y
(i)
k−1 − x

(i)
k−1) + k+α−2

k εξ
(i)
k−1.

8: end for
9: end for

5 Experiments6

5.1 Toy Experiments
We first investigate the validity of GFSD and GFSF as well as the benefit of the HE method by
showing 200 samples that they produce for a toy bimodal distribution (following [29]), and compare
with SVGD, and the particle optimization method (PO) [3] as an independent PSVI method. As
shown in Fig. 2, when using the median method for bandwidth, samples of GFSD and GFSF tend to
collapse, since the median method cannot make∇ log q act the same as the Brownian motion, which is
responsible for diversity. With the HE method for bandwidth, GFSD and GFSF produce well-aligned
samples with a reasonable diversity. Amazingly, we can see that the samples are uniformly distributed
along the contour of the target density, indicating that they form a better set of samples to represent
the density. We also note that the PO method does not improve the ultimate sample distribution of
SVGD, while our HE method can also make samples of SVGD and PO align more neatly.

Figure 2: The validity of GFSD/GFSF and the effect of the HE method. Samples are plotted as
grey dots and the common target distribution as blue shade. The columns correspond to SVGD, PO,
GFSD, GFSF methods respectively, and the rows correspond to the median and HE method for kernel
bandwidth. All methods are run for 400 iterations with the same initialization.

5.2 Bayesian Logistic Regression
We conduct the standard Bayesian logistic regression experiment on the Covertype dataset, following
the same settings as [18], except we average the results over 10 random trials. The SVGD-WGD

6Codes and data available at http://ml.cs.tsinghua.edu.cn/~changliu/awgf/
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Figure 3: Acceleration effect of WNAG over WGD with comparison to PO on the Bayesian logistic
regression on the Covertype dataset. Each curve is averaged over 10 runs with random 80%train-
20%test split of the dataset and the mini-batch size is taken as 50, following [18].

method uses AdaGrad with momentum for adjusted step size so that it is identical to the vanilla
SVGD method. Other methods use a shrinking step size scheme in the face of stochastic gradient.
We select parameters for all methods for the fastest convergence with a stable result. Although the
PO method does not strictly count for an acceleration method for PSVIs, we treat it as an empirical
acceleration implementation here.

We first find that both the median method and the HE method for bandwidth selection achieve similar
results in all cases, and we skip showing the comparison. We then show the improvement of iteration
convergence rate by the WNAG acceleration over WGD and the comparison with the PO acceleration
in Fig. 3. It is shown that WNAG gains a salient speed-up over WGD for all of SVGD, GFSD and
GFSF methods, and it outperforms the PO method which does not make a significant improvement
over WGD, as also shown in [3]. We also note that GFSD and GFSF methods achieve a comparable
result as SVGD, indicating their validity.

5.3 Bayesian Neural Network

We test all the methods on the Bayesian neural network, following the settings described in [18],
except we run all methods for the same amount of iterations. For the SVGD-WGD method, we take
either the reported result in [18] or the result we observe, whichever is better. Table 1 presents the
results on one of the datasets, Kin8nm, that Liu et al. [18] use, and Appendix A7 shows more results
on other datasets. We observe that the WNAG acceleration method saliently outperforms the WGD
and PO methods for all of SVGD, GFSD and GFSF on all datasets. The PO method, as an empirical
acceleration method, also improves the performance, but not to the extent of the WNAG method. The
GFSD and GFSF methods also achieve better performance than SVGD in most cases.

Table 1: Results on Bayesian neural network on the Kin8nm dataset. Results are averaged over 20
runs with random 90%train-10%test split and the mini-batch size is taken as 100, following [18].

Method Avg. Test RMSE Avg. Test LL

SVGD GFSD (Ours) GFSF (Ours) SVGD GFSD (Ours) GFSF (Ours)

WGD 0.084±0.002 0.080±0.003 0.083±0.002 1.042±0.016 1.087±0.029 1.044±0.016
PO 0.078±0.002 0.081±0.002 0.080±0.002 1.114±0.022 1.067±0.017 1.073±0.016

WNAG (Ours) 0.070±0.002 0.071±0.001 0.070±0.001 1.167±0.015 1.167±0.017 1.190±0.014

6 Conclusion
We consider doing Bayesian inference by minimizing the KLD on the 2-Wasserstein space P2, whose
Riemannian structure enables us to do develop various methods. We analyze the flexibility of such
particle-simulation-based variational inference methods (PSVIs) of up to a smoothed density or a
smoothed test function family, and develop two PSVIs by simulating the gradient flow on P2 by
smoothing density and test functions, respectively, with a principled kernel selection method HE. We
also propose an acceleration method WNAG for PSVIs by exploring the Riemannian structure of
P2. Experiments show the validity of GFSD/GFSF with the HE method, and the improved iteration
convergence rate of the WNAG method for all PSVIs.
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Appendix

A1: Proof of Proposition 5

Proof. Note that C∞c (RD)
L2(RD)

= L2(RD) (e.g. [14], Thm 2.11), and the map ϕ 7→ ϕ ∗
K,L2(RD)→ L2(RD) is continuous. So we have G = {ϕ ∗K : ϕ ∈ L2(RD)}. On the other hand,
due to Proposition 4.46 and Theorem 4.47 of [30], the map ϕ 7→ ϕ ∗K is an isometric isomorphism
between G andH, the reproducing kernel Hilbert space of K. This completes the proof.

A2: Proof of Proposition 6

Proof. To show that the problem below has no solution,

sup
v∈L2(p;RD),‖v‖=1

N∑
i=1

(
∇ log p(x(i)) · v(x(i)) +∇ · v(x(i))

)
, (4)

we will find a sequence of functions {vn} satisfying conditions in (4) while the objective goes to
infinity.

We assume that there exists r0 > 0 such that p(x) > 0 for any ‖x− x(i)‖∞ < r0, i = 1, 2, . . . , N ,
which is reasonable because it is almost impossible to sample x(i) with p(x) vanishes in every
neighborhood of x(i).

Denoting v(x) = (v1(x), . . . , vD(x))T for any D-dimensional vector function v and ∇f(x) =
(∂1f(x), . . . , ∂Df(x))T for any real-valued function f , the objective can be written as

Lv =

N∑
i=1

(
∇ log p(x(i)) · v(x(i)) +∇ · v(x(i))

)
=

N∑
i=1

( D∑
α=1

∂α[log p(x(i))]vα(x(i)) +

D∑
α=1

∂α[vα(x(i))]
)

=

D∑
α=1

N∑
i=1

(
∂α[log p(x(i))]vα(x(i)) + ∂α[vα(x(i))]

)
.

(5)

For every v ∈ L2(p;RD), ‖v‖ = 1, we can define a function φ = (φ1, . . . , φD)T ∈ L2(RD)

correspondingly, such that φ(x) = p(x)
1
2 v(x), which means φα(x) = p(x)

1
2 vα(x) and

‖φ‖22 =

∫
RD

φ2dx =

∫
RD

D∑
α=1

(φα(x))2dx

=

∫
RD

D∑
α=1

(vα(x))2p(x)dx = ‖v‖2 = 1.

Rewrite (5) in term of φ,

Lφ =

D∑
α=1

N∑
i=1

(
∂α[log p(x(i))]vα(x(i)) + ∂α[vα(x(i))]

)
=

D∑
α=1

N∑
i=1

(
∂α[log p(x(i))]φα(x(i))p(x(i))

− 1
2 + ∂α[φα(x(i))p(x(i))

− 1
2 ]
)

=

D∑
α=1

N∑
i=1

(1

2
p(x(i))−

3
2 ∂α[p(x(i))]φα(x(i)) + p(x(i))−

1
2 ∂α[φα(x(i))]

)
=

D∑
α=1

N∑
i=1

(
A(i)
α φα(x(i)) +B(i)∂α[φα(x(i))]

)
,

(6)
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where A(i)
α = 1

2p(x
(i))−

3
2 ∂α[p(x(i))] and B(i) = p(x(i))−

1
2 > 0. We will now construct a sequence

{φn} to show the problem

inf
φ∈L2(RD),‖φ‖=1

D∑
α=1

N∑
i=1

(
A(i)
α φα(x(i)) +B(i)∂α[φα(x(i))]

)
(7)

has no solution, then induce a sequence {vn} by {φn} for problem (4).

Define a sequence of functions

χn(x) =

{
I
−1/2
n (1− x2)n/2, for x ∈ [−1, 1],

0, otherwise.

We have
∫
R χn(x)2dx = 1 with In =

∫ 1

−1
(1− x2)ndx =

√
π Γ(n+1)

Γ(n+3/2) , where Γ(·) is the Gamma
function. Note that when x = −1/

√
n,

χ′n(x) =−nI−
1
2

n x(1− x2)
n−2
2

=π−
1
4

√
Γ(n+ 3

2 )

Γ(n+ 1)

√
n(1− 1

n
)
n−2
2 (x = − 1√

n
)

>π−
1
4
√
n(1− 1

n
)
n−2
2 , (Γ(n+

3

2
) > Γ(n+ 1))

(8)

therefore,

lim
n→∞

χ′n(− 1√
n

) > lim
n→∞

π−
1
4
√
n(1− 1

n
)
n−2
2 = π−

1
4 e−

1
2 lim
n→∞

√
n = +∞.

Denote x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
D )T ∈ RD, i = 1, . . . , N and

r1 =
1

3
min
i 6=j
‖x(i) − x(j)‖∞ =

1

3
min

α∈{1,...,D},i6=j
|x(i)
α − x(j)

α |.

We extend χn to RD as ξn with support supp(ξn) = [−r, r]D,

ξn(x1, x2, . . . , xD) = r−D/2
D∏
α=1

χn(
xi
r

), (9)

where r = min{r0, r1}. It is easy to show that
∫
RD ξn(x)2dx = 1, and

lim
n→∞

∂αξn(−εn) = +∞, α = 1, 2, . . . , D, (10)

with εn = r√
n

(1, 1, . . . , 1)T .

We choose φα(x) = 1
ND

∑N
i=1 ψ

(i)
α , where ψ(i)

α is defined by

ψ(i)
α (x) =

{
ξn(x− x(i) − εn) if A(i)

α >= 0

−ξn(x− x(i) + εn) if A(i)
α < 0

(11)

With
∫
RD ψ

(i)
α (x)ψ

(j)
α (x)dx = 0,∀i 6= j, we know φn satisfies conditions in (7). Note that ∀i, j,

A
(i)
α ψ

(j)
α (x(i)) ≥ 0, and

∂αψ
(j)
α (x(i)) =

{
+∞,when n→∞, if i = j
0, if i 6= j,

we can see Lφn → +∞ in (6) when n→∞ .

Since supp(φn) ⊂ supp(p), we can induce a sequence of {vn} from {φn} as vn = φn/
√
p(x),

which satisfies restrictions in (4) and the objective Lvn will go to infinity when n→∞. Note that
any element in L2(p;RD), as a function, cannot take infinite value. So the infinite supremum of the
objective in (4) cannot be obtained by any element in L2(p;RD), thus no optimal solution for the
optimization problem.
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A3: Derivation of the vector field of GFSF

The vector field u(x) = −∇ log q(x) in GFSF is identified by the optimization problem (2):

min
u

max
φ∈HD,‖φ‖=1

(∑
j

(
u(j) · φ(x(j))−∇ · φ(x(j))

))2

,

where u(j) := u(x(j)). For φ inHD, by using the reproducing property 〈φα(·),K(x, ·)〉H = φα(x)
and 〈φα(·), ∂xβK(x, ·)〉H = ∂xβφα(x) [38], we can write the objective function as(∑

α

∑
j

(
u(j)
α φα(x(j))− ∂

x
(j)
α
φα(x(j))

))2

=

∑
α

〈∑
j

(
u(j)
α K(x(j), ·)− ∂

x
(j)
α
K(x(j), ·)

)
, φα(·)

〉
H

2

=

〈∑
j

(
u(j)K(x(j), ·)−∇x(j)K(x(j), ·)

)
, φ(·)

〉2

HD

.

We denote ζ :=
∑
j

(
u(j)K(x(j), ·) − ∇x(j)K(x(j), ·)

)
∈ HD. Then the optimal value of the ob-

jective after maximizing out φ is ‖ζ‖2HD =
∑
i,j

(
u(i)u(j)K(x(i), x(j))− 2u(i)∇x(j)K(x(j), x(i)) +

∇x(i)∇x(j)K(x(i), x(j))
)

= tr(ûK̂û>) − 2tr(K̂ ′û>) + const, which should be minimized wrt u.
By further differentiating wrt each component of û, the optimal solution of û should be û = K̂ ′K̂−1.

A4: Scalar-valued test function ϕ ∈ C∞c (X ) for GFSF

For the equality u(x) = −∇ log q(x), or u(x)q(x) +∇q(x) = 0, to hold in the distributional sense
with scalar-valued test function, we mean∫

RD

(
ϕ(x)u(x)−∇ϕ(x)

)
q(x)dx = 0,∀ϕ ∈ C∞c (X ). (12)

Let {x(j)}j be a set of samples of q(x). Then the above requirement on u(x) is∑
j

(
ϕ(x(j))u(j) −∇ϕ(x(j))

)
= 0,∀ϕ ∈ C∞c (X ), (13)

where u(j) = u(x(j)). As analyzed above, for a valid vector field, we have to smooth the function ϕ.

For the above considerations, we restrict ϕ in Eq. (13) to be in the Reproducing Kernel Hilbert Space
(RKHS)H of some kernel K(·, ·), and convert the equation as the following optimization problem:

min
u

max
ϕ∈H,‖ϕ‖H=1

J(u, ϕ) :=
∑
j,α

(
ϕ(x(j))u(j)

α − ∂x(j)
α
ϕ(x(j))

)2

. (14)

By using the reproducing properties of RKHS, we can write J(u, ϕ) as

J(u, ϕ) =
∑
α

〈ϕ(·), ζα(·)〉2H, ζα(·) :=
∑
j

(
u(j)
α K(x(j), ·)− ∂

x
(j)
α
K(x(j), ·)

)
.

By linear algebra operations, we have
max

ϕ∈H,‖ϕ‖H=1
J(u, ϕ) = λ1(A(u)),

where λ1(A(u)) is the largest eigenvalue of matrix A, where A(u)αβ = 〈ζα(·), ζβ(·)〉H, or

A(u) = ûK̂û> − (K̂ ′û> + ûK̂ ′>) + K̂ ′′,

where K̂ ′′αβ :=
∑
i,j ∂x(i)

α
∂
x
(j)
β

K(x(i), x(j)). For distinct samples K̂ is positive-definite, so we can

conduct Cholesky decomposition: K̂ = GG> with G non-singular. Note that A(u) = (ûG −
K̂ ′G−1>)(ûG− K̂ ′G−1>)> + (K̂ ′′ − K̂ ′K̂−1K̂ ′>). So whenever ûG 6= K̂ ′G−1>, the first term
will be positive semidefinite with positive largest eigenvalue, which makes λ1(A(u)) > λ1(K̂ ′′ −
K̂ ′K̂−1K̂ ′>). So to minimize λ1(A(u)), we require ûG = K̂ ′G−1>, i.e. û = K̂ ′(GG>)−1 =

K̂ ′K̂−1, which coincides with the result for vector-valued test function φ ∈ HD.
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A5: Details on the HE method for bandwidth selection

We first note that the bandwidth selection problem cannot be solved using theories of heat kernels,
which aims to find the evolving density under the Brownian motion with known initial distribution,
while in our case the density is unknown and we want to find an update on samples to approximate
the effect of Brownian motion.

For q̃(x; {x(j)}j) = (1/Z)
∑
j c(‖x− x(j)‖2/(2h)), the minimizing objective Eq. (3) becomes

∑
k

(∑
j

[
c′′j (x)‖x− x(j)‖2 +Dhc′j(x) +

(∑
i c
′
ijx

(i)
)
−
(∑

i c
′
ij

)
x(j)(∑

i cij
) · (x− x(j))c′j(x)

])2

= 0,

where c′j(x) = c′(‖x − x(j)‖2/(2h)), c′ij = c′j(x
(i)), cij = c(‖x(i) − x(j)‖2/(2h)). Then for

Gaussian kernel c(r) = (2πh)−
D
2 e−r, denoting g2

k(h) as the summand for k of the l.h.s. of the above
equation, we have

(2π)
D
2 gk(h) =

(∑
j

ekj‖dkj‖2
)
− hD

(∑
j

ekj
)
−
∑
j

(∑
i

eij
)−1

ejkdjk ·
(∑

i

eijdij
)
,

(2π)
D
2 g′k(h) =

1

2h2

(∑
j

ejk‖djk‖4
)
− D

h

(∑
j

ejk‖djk‖2
)

+
(D2

2
−D

)(∑
j

ejk
)

− 1

2h2

∑
j

(∑
i

eij
)−1

ejkdjk ·
(∑

i

eij‖dij‖2dij
)

− 1

2h2

∑
j

(∑
i

eij
)−1

ejk‖djk‖2djk ·
(∑

i

eijdij
)

+
1

2h2

∑
j

(∑
i

eij
)−2(∑

i

eij‖dij‖2
)
ejkdjk ·

(∑
i

eijdij
)

+
D

2h

∑
j

(∑
i

eij
)−1

ejkdjk ·
(∑

i

eijdij
)
,

where dij = x(i) − x(j), eij = e−‖dij‖
2/(2h)−(D/2) log h. Then we can choose h by minimizing∑

k g
2
k(h). Although the evaluation of gk(h) may induce some computation cost, the optimization is

wrt a scalar, where we can use efficient line-search methods and only a few (e.g. five) iterations are
needed in each particle updating step, with initialization using the value of the last step.

A6: Details on the Wasserstein Nesterov’s accelerated gradient method
A6.1: Details on the parallel transport on P2

We follow the Schild’s ladder method to parallel transport a tangent vector at q1, ξ ∈ Tq1P2, to the
tangent space at q2, Tq2P2. Assume q1 and q2 are close in the sense of the 2-Wasserstein distance,
so that the Schild’s ladder finds a good first-order approximation. In the following we consider
transporting εξ for small ε > 0 for the sake of the pairwisely close condition, and the result can be
recovered by noting the linearity of the parallel transport: Γq2q1(εξ) = εΓq2q1(ξ). We adopt the vector

field form of the tangent vector ξ. Let {x(j)
1 }Nj=1 and {x(j)

2 }Nj=1 be the sets of samples of q1 and q2,
respectively, and assume that they are pairwisely close.

The measure Expq1(εξ) can be identified as (id + εξ)#q1 due to the knowledge on the exponential

map on P2 explained in Section 4, thus {x(j)
1 + εξ(x

(j)
1 )}Nj=1 is a set of samples of Expq1(εξ)

(see Lemma 2), and still pairwisely close to {x(j)
2 }j for small enough ε. So we know that the

optimal map T from q2 to Expq1(εξ) satisfies T (x
(j)
2 ) = x

(j)
1 + εξ(x

(j)
1 ), and according to The-

orem 7.2.2 of [1], the geodesic from q2 to Expq1(εξ) is t 7→
(
(1 − t)id + tT

)
#
q2. Thus a

set of samples of qM = 1
2 (id + T )#q2, i.e. the midpoint of the geodesic, can be derived as{

1
2

(
x

(j)
2 + x

(j)
1 + εξ(x

(j)
1 )
)}

j
. Following a similar procedure, a set of samples of qE is found as
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{
(1− t)x(j)

1 + 1
2 t
(
x

(j)
2 + x

(j)
1 + εξ(x

(j)
1 )
)}

j

∣∣∣
t=2

=
{
x

(j)
2 + εξ(x

(j)
1 )
}
j

and is pairwisely close

to {x(j)
2 }j . Thus the approximated transported tangent vector Γ̃q2q1(εξ) = Exp−1

q2 (qE) satisfies(
Γ̃q2q1(εξ)

)
(x

(j)
2 ) = εξ(x

(j)
1 ), thus

(
Γ̃q2q1(ξ)

)
(x

(j)
2 ) = ξ(x

(j)
1 ).

A6.2: Details on deriving the Wasserstein Nesterov’s accelerated gradient method (WNAG)

We adopt Alg. 2 of [20], which accommodates for more general objective functions. Before iteration k,
let qk−1 be the current measure of interest with samples {x(j)

k−1}Nj=1, and rk−1 be the current auxiliary

measure with samples {y(j)
k−1}Nj=1. Assume the two measures are close and the two sets of samples

are pairwisely close, which naturally hold true for k = 1 due to our initialization y(j)
0 = x

(j)
0 ,∀j.

According to Alg. 2 of [20], q is updated by qk = Exprk−1
(εξk−1), where ξk−1 is the (Riemannian)

gradient (in vector field form) of the objective function on P2 at rk−1, and can be estimated by
various methods like SVGD, GFSD and GFSF. As stated in Section 4, Exprk−1

(εξk−1) = (id +

εξk−1)#rk−1, which indicates that {y(j)
k−1 + εξ

(j)
k−1}Nj=1 where ξ(j)

k−1 := ξk−1(y
(j)
k−1) is a set of

samples of the mapped measure (see Lemma 2). Thus we assign x(j)
k = y

(j)
k−1 + εξ

(j)
k−1.

The update of r is a little sophisticated. With the acceleration factor α > 3 and an upper bound
D > 0 on the diameter of P2, rk is determined by the following equality that holds in Trk−1

P2 (see
Eq. (5) of [20]):

Γ
rk−1
rk

(
k

α− 1
Exp−1

rk
(qk) +

Dξk
‖ξk‖rk

)
=
k − 1

α− 1
Exp−1

rk−1
(qk−1) +

Dξk−1

‖ξk−1‖rk−1

− k + α− 2

α− 1
εξk−1.

To simplify the equality, we replace Γ
rk−1
rk (ξk) by ξk−1, which is also done in the original paper [20].

Also note that ‖ξk‖rk = ‖Γrk−1
rk (ξk)‖rk−1

, and
(
Γ
rk−1
rk

)−1
= Γrkrk−1

. Then the equality can be
simplified as

k

α− 1
Exp−1

rk
(qk) = Γrkrk−1

(
k − 1

α− 1
Exp−1

rk−1
(qk−1)− k + α− 2

α− 1
εξk−1

)
.

By further noting that Exp−1
rk

(qk) = −Γrkqk(Exp−1
qk

(rk)) and approximating ΓqkrkΓrkrk−1
by Γqkrk−1

, we
have

rk = Expqk

(
−Γqkrk−1

(ζk−1)
)
, ζk−1 =

k − 1

k
Exp−1

rk−1
(qk−1)− k + α− 2

k
εξk−1.

By assumption, {x(j)
k−1}Nj=1 of qk−1 and {y(j)

k−1}Nj=1 of rk−1 are pairwisely close, so from Section 4

we know that Exp−1
rk−1

(qk−1)(y
(j)
k−1) = x

(j)
k−1 − y

(j)
k−1, thus ζk−1(y

(j)
k−1) = k−1

k (x
(j)
k−1 − y

(j)
k−1) −

k+α−2
k εξ

(j)
k−1. Due to the update rule for qk that we already discovered: x(j)

k = y
(j)
k−1 + εξ

(j)
k−1,

we know that {x(j)
k }Nj=1 of qk and {y(j)

k−1}Nj=1 of rk−1 are pairwisely close, for small enough
step size ε. So from Section 4, we know that the approximation to Γqkrk−1

(ζk−1) by the Schild’s

ladder method, satisfies
(
Γ̃qkrk−1

(ζk−1)
)
(x

(j)
k ) = ζk−1(y

(j)
k−1). Finally, we assign y(j)

k = x
(j)
k −(

Γ̃qkrk−1
(ζk−1)

)
(x

(j)
k ) = x

(j)
k − ζk−1(y

(j)
k−1) = x

(j)
k −

k−1
k (x

(j)
k−1 − y

(j)
k−1) + k+α−2

k εξ
(j)
k−1 as a set

of samples of rk. We note that by assumption {x(j)
k−1}Nj=1 and {y(j)

k−1}Nj=1 are pairwisely close, so

for sufficiently small ε, ζk−1(y
(j)
k−1) is an infinitesimal vector for all j. This, in turn, indicates that

{x(j)
k }Nj=1 of qk and {y(j)

k }Nj=1 of rk are pairwisely close, which provides the assumption for the
next iteration. Now the derivation of our WNAG method, i.e. our Alg. 1, is completed.

A7: More results on the experiment on the Bayesian neural network

The results on other datasets that [18] uses on the Bayesian neural network experiment are shown in
Table 2. Still the settings are identical to the experiments of Liu et al. [18], except we run all methods
for a same amount of iterations on every dataset. We find that the WNAG method achieves a salient
improvement over the WGD method and outperforms the PO methods, and GFSD/GFSF methods
achieve better results than SVGD in most cases.
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Table 2: Results on Bayesian neural network on other datasets. Following the settings of [18],
we average the results over 20 runs with random 90%train-10%test split of every dataset and the
mini-batch size is taken as 100.

(Dataset) Method Avg. Test RMSE Avg. Test LL

SVGD GFSD (Ours) GFSF (Ours) SVGD GFSD (Ours) GFSF (Ours)

(Concrete) WGD 5.324±0.104 5.234±0.114 5.060±0.131 -3.082±0.018 -3.042±0.016 -3.046±0.026
PO 5.138±0.251 4.819±0.243 4.783±0.264 -3.063±0.036 -3.004±0.024 -2.990±0.037

WNAG (Ours) 4.664±0.197 4.238±0.316 4.699±0.272 -2.824±0.023 -2.893±0.033 -2.917±0.033

(Energy) WGD 1.374±0.045 1.079±0.109 1.052±0.105 -1.767±0.024 -1.537±0.048 -1.514±0.099
PO 0.566±0.060 0.535±0.062 0.527±0.069 -0.869±0.099 -0.829±0.070 -0.821±0.097

WNAG (Ours) 0.375±0.041 0.378±0.039 0.388±0.053 -0.540±0.058 -0.573±0.067 -0.557±0.068

(Naval) WGD (4.2±0.2)e-3 (3.9±0.1)e-3 (4.0±0.1)e-3 4.089±0.012 4.105±0.027 4.089±0.026
PO (3.6±0.3)e-3 (2.6±0.1)e-3 (1.9±0.1)e-3 4.181±0.048 4.783±0.028 4.875±0.039

WNAG (Ours) (2.4±0.3)e-3 (1.3±0.1)e-3 (0.9±0.1)e-3 4.714±0.036 5.080±0.017 5.159±0.030

(Combined) WGD 4.033±0.033 3.974±0.035 3.995±0.026 -2.819±0.008 -2.810±0.012 -2.810±0.009
PO 4.090±0.036 4.058±0.031 3.894±0.030 -2.837±0.019 -2.820±0.014 -2.790±0.013

WNAG (Ours) 3.903±0.022 3.905±0.025 3.890±0.028 -2.786±0.012 -2.767±0.009 -2.794±0.011

(Wine) WGD 0.609±0.010 0.601±0.012 0.612±0.013 -0.925±0.014 -0.929±0.018 -0.941±0.012
PO 0.594±0.014 0.602±0.021 0.608±0.014 -0.903±0.021 -0.935±0.020 -0.933±0.021

WNAG (Ours) 0.559±0.023 0.568±0.020 0.576±0.013 -0.849±0.026 -0.865±0.023 -0.876±0.017
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