
Chang-Yu ChangYale University | YU · Department of Ecology and Evolutionary Biology
Chang-Yu Chang
Master of Science
About
10
Publications
1,459
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
95
Citations
Introduction
Education
September 2015 - February 2017
September 2011 - June 2015
Publications
Publications (10)
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to sea...
Artificial selection is a promising approach to manipulate microbial communities. Here, we report the outcome of two artificial selection experiments at the microbial community level. Both used "propagule" selection strategies, whereby the best-performing communities are used as the inocula to form a new generation of communities. Both experiments...
Directed evolution has been used for decades to engineer biological systems at or below the organismal level. Above the organismal level, a small number of studies have attempted to artificially select microbial ecosystems, with uneven and generally modest success. Our theoretical understanding of artificial ecosystem selection is limited, particul...
For microbiome biology to become a more predictive science, we must identify which descriptive features of microbial communities are reproducible and predictable, which are not, and why. We address this question by experimentally studying parallelism and convergence in microbial community assembly in replicate glucose-limited habitats. Here, we sho...
Microbial communities are highly diverse, and understanding the factors that promote and modulate this diversity is a major area of research in microbial ecology. Recent work has proposed a reductionist perspective to microbial coexistence, where pairwise coexistence between strains in isolation is required for their coexistence in a more complex c...
Microbial communities frequently invade one another as a whole, a phenomenon known as community coalescence. Despite its potential importance for the assembly, dynamics, and stability of microbial consortia, as well as its prospective utility for microbiome engineering, our understanding of the processes that govern it is still very limited. Theory...
Directed evolution has been used for decades to engineer biological systems from the top-down. Generally, it has been applied at or below the organismal level, by iteratively sampling the mutational landscape in a guided search for genetic variants of higher function. Above the organismal level, a small number of studies have attempted to artificia...
Artificial selection is a promising approach to manipulate the function of microbial communities. Here, we report the outcome of two artificial selection experiments at the microbial community level. Both experiments used "propagule" strategies, in which a set of the best-performing communities are used as the inocula to form a new generation of co...
To develop a quantitative theory that can predict how microbiomes assemble, and how they respond to perturbations, we must identify which descriptive features of microbial communities are reproducible and predictable, which are unpredictable, and why. The emergent metagenomic structure of communities is often quantitatively convergent in similar ha...
Gene regulatory networks allow single cells to adopt a wide range of different phenotypes in response to changes in environmental conditions. The ecological implications of these cellular computations are poorly understood, and they are largely absent from models of microbial community assembly. Here, we highlight a number of examples where ecologi...