
Approaches to functional, structural

and security SOA testing

Cesare Bartolini

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale delle

Ricerche, Pisa, Italy

Antonia Bertolino

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale delle

Ricerche, Pisa, Italy

Francesca Lonetti

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale delle

Ricerche, Pisa, Italy

Eda Marchetti

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale delle

Ricerche, Pisa, Italy

ABSTRACT
In this chapter, we provide an overview of recently proposed approaches and tools for functional and

structural testing of SOA services. Typically, these two classes of approaches have been considered

separately. However, since they focus on different perspectives, they are generally non-conflicting and

could be used in a complementary way. Accordingly, we make an attempt at such a combination, briefly

showing the approach and some preliminary results of the experimentation. The combined approach

provides encouraging results from the point of view of the achievements and the degree of automation

obtained. A very important concern in designing and developing web services is security. In the chapter

we also discuss the security testing challenges and the currently proposed solutions.

INTRODUCTION
Traditional testing approaches are divided into two major classes: functional and structural. Functional

approaches provide the ability to verify the proper behaviour of services in order to assess and validate

their functionality. They treat the applications under test as black boxes, focusing on the externally visible

behaviour but ignoring the internal structure. Structural approaches, also known as white-box testing, on

the other hand, are a well-known valuable complement to functional ones. Coverage information can

provide an indication of the thoroughness of the executed test cases, and can help identify additional test

cases to functional ones which exercise unexecuted paths and hence might help detect further faults.

The same division is still valid considering SOA: functional approaches are applied in SOA testing either

to show the conformance to a user-provided specification, or according to their fault detection ability,

assessed on fault models. In this chapter, we overview some of the existing proposals that derive

functional test cases using formal specification, contracts or WSDL language.

Concerning structural testing of SOA, two different points of view can be identified: coverage measured

at the level of a service composition (orchestration or choreography) and coverage of a single service .

Generally, validation of service orchestrations is based on the Business Process Execution Language

description considered as an extended control flow diagram. Classical techniques of structural coverage

(e.g., control flow or dataflow) can be used to guide test generation or to assess test coverage so as to take

into consideration the peculiarities of the Business Process Execution Language. Other proposals are

instead based on formal specification of the workflows, e.g., Petri Nets and Finite State Processes used for

verifying specific service properties.

Considering a service choreography, existing research focuses, among others, on service modeling,

process flow modeling, violation detection of properties such as atomicity and resource constraints, and

XML-based test derivation.

If, on the one side, there are several approaches for structural testing of service compositions, there are

few proposals for deriving structural coverage measures of the invoked services. The reason for this is

that independent web services usually provide just an interface, enough to invoke them and develop some

general (black-box) tests, but insufficient for a tester to develop an adequate understanding of the

integration quality between the application and independent web services. We describe an approach that

addresses this deficit by “whitening” services testing through the addition of an intermediate coverage

service.

In this chapter, we first provide a survey of some proposed approaches and tools for supporting SOA

functional and structural testing. Then, we propose an example of application of a selected black-box

approach and a selected white-box approach to a case study for comparative purposes.

In SOA services, another important aspect that must be carefully checked is security, since functional and

structural testing, albeit successfully executed, do not prevent security weaknesses.

Different testing strategies, usually divided into passive and active mechanisms, can be used to provide

evidence in security-related issues, i.e., that an application meets its requirements in presence of hostile

and malicious inputs. We will survey the most commonly-adopted methodologies and techniques such as

fuzz testing, injection, and web services security extensions.

An important facet of security information management in web applications is the control of accesses. We

will hence include testing methodologies exploiting the specification of access control policies by means

of policy languages, such as the eXtensible Access Control Markup Language (XACML) or the Role-

Based Access Control (RBAC). We will overview current proposals for access control policy testing

dealing with the classification of the possible policy faults and the development of the corresponding fault

model, the application of standard or ad hoc conceived test coverage criteria to measure the adequacy of a

test suite, and the automated generation of test cases using (for example), change-impact analysis, random

heuristics or model-based approaches.

FUNCTIONAL TESTING
The functional testing of Web Services is a critical issue both in research and in the IT industry.

Nowadays business and social welfare are more and more depending on the proper functioning of

services delivered over the Net. Therefore, WSs need to be thoroughly tested before deployment. In this

section we will provide an overview of the recent proposals and tools for the functional testing of Web

Services.

As a common guideline this kind of testing relies on the functionality provided by the Web Services.

Commonly the use of the (formal) specification or the XML Schema datatype available allows the

generation of test cases for boundary-value analysis, equivalence class testing or random testing. The

derived test suite could have different purposes, such as to prove the conformance to a user-provided

specification, to show the fault detection ability assessed on fault models, or to verify the interoperability

by exploiting the invocation syntax defined in an associated WSDL (WS Description Language)

document (WSDL, 2007).

In this last case the formalized WSDL description of service operations and of their input and output

parameters can be taken as a reference for black box testing at the service interface.

Considering conformance testing, some of the current proposals include the Coyote framework, proposed

by (Tsai, Paul, Song, & Cao, 2002), which requires the user to build test cases as Message Sequence

Charts (Harel, & Thiagarajan, 2004). A contract specification of the services under test is also

necessary. In (Jiang, Hou, Shan, Zhang, & Xie, 2005) the authors focused on the fault detection ability

of the test data, which is assessed using mutation on contracts.

A simpler approach is proposed in (Siblini, & Mansour, 2005), where mutations are defined on the

WSDL language. However the mutation operations adopted in both approaches do not correspond to any

widely accepted fault-model.

Another approach about testing the conformance of a WS instance to an access protocol described by a

UML2.0 Protocol State Machine (PSM) is presented in (Bertolino, Frantzen, Polini, & Tretmans, 2006)

and (Bertolino, & Polini 2005). This protocol defines how the service provided by a component can be

accessed by a client through its ports and interfaces. The PSM is translated into a Symbolic Transition

System (STS), on which existing formal testing theory and tools can be applied for conformance

evaluation. For instance, in (Frantzen, & Tretmans, 2006), STSs are used to specify the behavior of

communicating WS ports and test data are generated to check the conformity of the effective

implementation to such a specification. The advantage of this approach is that it uses a standard notation

(UML 2.0 PSM) for the protocol specification.

Based on the use of WSDL and XML Schema datatype information, the WSTD-Gen tool, developed by

(Li, Zhu, Zhang, & Mitsumori, 2009), generates the test cases by exploiting the information extracted

from the WSDL specifications and user knowledge. The tool implements also the possibility of

customizing the data types and the selection of the test generation rules. The peculiarity of this approach

is that it is focused on proving the non-existence of known errors in the system according to a fault model

used, so erroneous test data are generated intentionally.

WSDL-based test data generation is considered in other proposed approaches such as (Ma, Du, Zhang,

Hu, & Cai, 2008; Sneed, & Huang, 2006; Bai, Dong, Tsai, & Chen, 2005; Heckel, & Mariani, 2005),

which mainly focus on the definition of test cases for testing a single web service operation.

Some commercial tools for testing WSDL descriptions of Web services are also available such as soapUI

(Eviware, n.d.), TestMaker (PushToTest, n.d.), and Parasoft (Parasoft, n.d.). In particular, soapUI is

acclaimed on its distribution site as the most used tool for WSs testing. It can automatically produce a

skeleton of a WS test case and provide support for its execution and result analysis.

The tester's job is certainly greatly released by the usage of this or similar tools; however the produced

test cases are incomplete and lack the input parameter values and the expected outputs. Moreover, soapUI

can also measure the coverage of WS operations, but again the generation of diverse test messages for

adequately exercising operations and data combinations is left to the human testers.

From our study of the literature, we find it somehow surprising that WS test automation is not pushed

further as of today. Indeed, the use of XML-based syntax of WSDL documents could support fully

automated WS test generation by means of traditional syntax-based testing approaches. In this direction,

we have recently proposed an approach (Bartolini, Bertolino, Marchetti, & Polini, 2009) which is a sort of

“turn-key” generation of WS test suites.

This approach relies on a practical yet powerful tool for fully automated generation of WSs test inputs.

The key idea is to combine the coverage of WS operations (as provided by soapUI) with well-established

strategies for data-driven test input generation. The tool, called WS-TAXI, is obtained by integrating two

existing softwares: soapUI, presented above, and TAXI (Bertolino, Gao, Marchetti, & Polini, 2007),

which is an application for the automated derivation of XML instances from an XML schema (the

interested reader can refer to (Bertolino, Gao, Marchetti, & Polini, 2007) for details on TAXI

implementation). The integrated tool is named WS-TAXI.

The original notion at the basis of WS-TAXI, in comparison with soapUI and other existing WS test

tools, is the inclusion of a systematic strategy for test generation based on basic well-established

principles of the testing discipline, such as equivalence partitioning, boundary analysis and combinatorial

testing.

The test cases generated by the approaches or tools surveyed so far are scoped for testing a single

operation per time and the possible dependencies among the test cases are not considered. The

combination of different test cases according to the behavioral dependencies is considered in (Bai, Dong,

Tsai, & Chen, 2005). In particular the use of specifications containing behavioural information is typical

of the semantic web service testing or the ontology-based test data generation. The use of semantic

models such as OWL-S for test data generation is proposed for instance in (Bai, Lee, Tsai, & Chen, 2008)

while ontology-based test data generation is proposed in (Wang, Bai, Li, & Huang, 2007).

STRUCTURAL TESTING
As we discussed in the Introduction, most often structural testing of SOA applications is devoted to the

validation of Web Service Compositions (WSC). Validation of WSCs has been addressed by some

authors suggesting to perform structural coverage testing of a WSC specification. In several approaches, it

is assumed that the WSC is provided in BPEL (OASIS WSBPEL, 2007), the Business Process Execution

Language, a standard for programming WSCs.

In (Yuan, Li, & Sun, 2006), the BPEL description is abstracted as an extended control flow diagram;

paths over this diagram can be used to guide test generation or to assess test coverage. A major issue in

this approach comes from the parallelism in BPEL which results in a much more complex control flow

and a very high number of paths.

To cope with this problem, some proposals make several simplifying assumptions on BPEL and consider

only a subset of the language. In (García-Fanjul, Tuya, & de la Riva, 2006) a transformation is proposed

from BPEL to Promela (similarly to (Cao, Ying, & Du, 2006)). The resulting abstract model is used to

generate tests guided by structural coverage criteria (e.g. transition coverage). Similar complexity

explosion problems may be encountered in such methods, since the amount of states and transitions of the

target model can be very high.

Different approaches for conformance testing that exploit model-checking techniques are available. All

these works usually focus on the generation of test cases from counterexamples given by the model

checker. Considering in particular the usage of SPIN, the work of (García-Fanjul et al. 2006) generates

test cases specification for compositions given in BPEL by systematically applying the transition

coverage criterion. (Zheng, Zhou, & Krause, 2007) transforms each BPEL activity into automata which

are successively transformed into Promela, the input format of the SPIN model checker. Similarly also

(Fu, Bultan, & Su, 2004) uses the SPIN model checker to verify BPEL but without passing through

Promela as in (García-Fanjul, Tuya, & de la Riva, 2006). In this case in fact the BPEL is translated to

guard conditions which are transformed into Promela.

When a formal model of the WSC and of the required properties is provided, a formal proof can be

carried out. For instance, Petri Nets can be built from workflows (Narayanan, & McIlraith, 2003) or from

BPEL processes (Yang, Tan, Yong, Liu, & Yu, 2006) or from other approaches (Pistore, Marconi,

Bertoli, & Traverso, 2005), to verify properties such as reachability. In (Foster, Uchitel, Magee, &

Kremer, 2003), the workflow is specified in BPEL and an additional functional specification is provided

as a set of Message Sequence Charts (MSC) (Harel & Thiagarajan, 2004). These specifications are

translated in the Finite State Processes (FSP) notation. Model-checking is performed to detect execution

scenarios allowed in the MSC description and not executable in the workflow, and vice versa. The

complexity of the involved models and model-checking algorithms is the main concern that in practice

makes these approaches hardly applicable to real-world WSCs.

The above investigations use models of the composition behavior and of properties or scenarios

expressing the user expectations (MSCs or state-based properties such as the absence of deadlock): faults

manifest themselves as discrepancies between the system behavior and these expectations. An interesting

characterization is proposed in (Weiss, Esfandiari, & Luo, 2007) where failures of WSCs are considered

as interactions between WSs, similarly to feature interactions in telecommunications services. Interactions

are classified for instance as goal conflict or as resource contention.

Orthogonal approaches are based on the transformation of BPEL into the Intermediate Format Language

(IF), as presented for instance in (Lallali, Zaidi, & Cavalli, 2008). In these approaches the test cases are

generated using the TestGen-IF tool (Cavalli, Montes De Oca, Mallouli, & Lallali, 2008).

More recently, the WSOFT (Web Service composition, Online Testing Framework) (Cao, Felix, &

Castane, 2010) consists of a framework which combines together test execution and debug of test cases

focused on unit testing. Specifically the WSOFT approach focuses on the testing of a composition in

which all partners are simulated by the WSOFT. Timing constraints and synchronous time delays are also

considered. In particular, timing constraints are expressed by the TEFSM (Timed Extended Finite State

Machines) formal specification. The same authors present in (Cao, Felix, Castane, & Berrada, 2010) a

similar framework that automatically generates and executes tests “online” for conformance testing of a

composition of Web services described in BPEL. The framework considers unit testing and is based on a

timed modeling of BPEL specification.

Considering specifically the verification of the data transformations involved in the WSC execution, few

proposals are available. From the modeling point of view, this lack has been outlined in (Marconi,

Pistore, & Traverso, 2006) where a model representing the data transformations performed during the

execution of a WSC is proposed. This model can be used together with behavioral specifications to

automate the WSC process.

In (Bartolini, Bertolino, Marchetti, & Parissis, 2008) the authors focus on testing based on data-related

models and schematically settle future research issues on the perspectives opened by dataflow-based

validation of WSs. In particular the authors discuss two possible approaches based on dataflow modeling

and analysis for the validation of WSCs. Precisely, a methodology for using a dataflow model derived

from the requirements specification and a technique focused on a dataflow model extracted from the

BPEL description of the composition.

However, in the contest of Service Oriented Architectures (SOAs) where independent web services can

be composed with other services to provide richer functionality, interoperability testing becomes a major

challenge. Independent web services usually provide just an interface, enough to invoke them and develop

some general functional (black-box) tests, but insufficient for a tester to develop an adequate

understanding of the integration quality between the application and the independent web services. To

address this lack, in (Bartolini, Bertolino, Elbaum, & Marchetti, 2009) the authors proposed a

“whitening” approach to make web services more transparent through the addition of an intermediate

coverage service. The approach, named Service Oriented Coverage Testing (SOCT), provides a tester

with feedback about how a whitened service, called a Testable Service, is exercised.

COMBINING FUNCTIONAL AND STRUCTURAL APPROACHES
In this section, we aim at applying some of the approaches presented in the paper, to try and evaluate a

combined methodology against a sample web service. Since several approaches cover different steps of

the testing process, it is possible to use them in a non-contrasting merged approach, getting the benefits of

each of them. Specifically, the experiment proposed here explores the coverage analysis of a web service

after choosing a functional technique for generating the test suite.

Applied approaches
In this section we provide some additional details about the applied testing technique. In particular, we

consider the already introduced WS-TAXI (Bartolini, Bertolino, Marchetti, & Polini, 2009) and SOCT

(Bartolini, Bertolino, Elbaum, & Marchetti, 2009) approaches, and apply them to a common case study.

As said, the purpose of SOCT is to mitigate the limitation associated with the on-line testing activity by

enabling the application of traditional white-box testing techniques to SOA applications.

The envisioned testing scenario for SOCT is depicted in Figure 1. The traditional actors in SOA testing

(Canfora, & Di Penta, 2009) are the service provider, who can test their service before deployment, and

the service integrator, who has to test the orchestrated services. The TCov (Bartolini, Bertolino, Elbaum,

& Marchetti 2009) service sits between the service developer and the service provider. The TCov

provider can be assumed as a trusted provider of services that delivers coverage information to service

providers as it is tested by the service developer.

 Figure 1. Overview of the SOCT paradigm.

To realize the SOCT scenario, the provided services must be instrumented (callout 1 in Figure 1) to

enable the collection of coverage data, not differently from how instrumentation is normally performed

for traditional white-box testing. As the developer invokes the services during on-line testing (callout 2),

coverage measures are collected from services and sent (callout 3) to TCov, which will then be

responsible to process the information and make it available to the developer as a service (callout 4).

It is obvious that any means to reveal more of the structure of a service will increase testability. However,

SOCT is designed not to reveal anything that would damage an industrial asset of the provider of the

instrumented services, because the granularity of the coverage information is a provider's choice.

For generating the test suite, the experiments were carried out with the aid of WS-TAXI, based on the

TAXI tool.

TAXI can generate conforming XML instances from an XML Schema. To generate the instances, it uses

a modified version of the Category Partition (CP) algorithm (Offutt, & Xu, 2004) to find all possible

structures for the elements by adopting a systematic black-box criterion. CP splits the functional

specifications of the service into categories and further into choices. Categories represent the parameters

and conditions which are relevant to the algorithm for testing purposes, while choices are the possible

values (either valid or invalid) which can be assigned to each category. CP also includes constraints to

avoid having redundant tests in the test suite.

In particular, TAXI processes the schema by applying the following rules:

 choice elements are processed by generating instances with every possible child. Multiple choice

elements produce a combinatorial number of instances. This ensures that the set of sub-schemas

represents all possible structures derivable from choice;

 Element occurrences are analyzed, and the constraints are determined, from the XML Schema

definition. Boundary values for minOccurs and maxOccurs are defined;

 all elements result in a random sequence of the all children elements for generating the instance.

This new sequence is then used during the values assignment to each element.

Exploiting the information collected so far and the structure of the (sub)schema, TAXI derives a set of

intermediate instances by combining the occurrence values assigned to each element. The final instances

are derived from the intermediate ones by assigning values to the various elements. Two approaches can

be adopted: values can either be picked randomly from those stored in an associated database, or

generated randomly (e.g., a random sequence of characters for a string element) if the database contains

no value for an element. Since the number of instances with different structures could be huge, in the

current implementation TAXI only selects one value per element for each instance.

Testbed
The testbed selected for this experimentation was a modified version of WorldTravel (WorldTravel,

2008)
i
. WorldTravel is a web service developed at the Georgia Institute of Technology, specifically to be

used as a testbed for research on web services. From a functional point of view, WorldTravel provides

research facilities for flights within the United Stated and Canada. The software is written in Java and

runs on an Apache Geronimo application server with the Tomcat servlet container.

Although it is designed to run both on Windows and Linux operating systems, only the Linux setup was

used for these tests. To retrieve flight information, WorldTravel relies on a MySQL database, which in

the current experimentation was running on the same computer as the Geronimo server. The database

contains much more data than those actually used by the service.

As previously mentioned, the WorldTravel software was slightly modified. First off, some bugs had to be

fixed. Secondly, some improvements were performed with respect to the original version. Changes made

included some additional checks on the input data, resulting in error messages if wrong input is provided.

Last, the code was instrumented for applying SOCT. Probes were introduced for two different types of

coverage analysis, block coverage and branch coverage.

An additional software used for this experimentation is TCov. Technically, it is a simple web service

developed in PHP running on an Apache web server and a MySQL database, which collects coverage

data for the instrumented web service and allows the user to retrieve those data in summarized reports. In

the setup used for this work, TCov resides on a different server from the one running WorldTravel.

Since the point of view of this experimentation is that of the service integrator, i.e., a developer who

creates a service composition, another service was created that uses WorldTravel as a backend. This

service, which will be referred to as SO (standing for Service Orchestration) from now on, simulates the

behavior of a travel agency, with the purpose of allowing customers to check flights availability,

according to the trip, the dates, and the desired fare class and/or carrier.

The experiments have been run against this service, which uses WorldTravel and is set to take advantage

of the TCov instrumentation to evaluate the coverage reached.

Test suite generation
The first step consisted in developing the set of test cases to run on the web service. To do this, the web

service tester can normally rely on two types of information provided by the web service provider: the

functional specification and the WSDL interface. The former contains detailed information on what the

web service expects as input data and how these data should be combined. The latter is a machine-

readable specification which, among other things, contains the exact structure of the input and output

SOAP messages. Although the two pieces of information are quite similar, there are important differences

in that the functional specification can be expressed at various degrees of detail, but usually is defined at a

higher level, while the WSDL interface contains structural details (ranges, patterns and so on) which are

normally not highlighted in the specification.

This difference is reflected in the two different types of functional testing approach which can be applied

for test suite generation: one based on the specification, and the other based on the WSDL interface. This

led to two different test suites generated for SO, one created through the Category Partition (CP)

algorithm, the other using the WS-TAXI tool on the WSDL interface. In the following, the two test suites

will be referred to as TS1 and TS2, respectively.

SO receives queries with specific attributes (one-way or round trip, dates, acceptable fare classes, and

desired airlines), and finds the best fares among the flights meeting the search criteria. SO has a single

operation, FareResponse bestFare(FareRequest), which takes the following input data as part of the

FareRequest object:

 the originating airport (string)

 the destination airport (string)

 the date of the flight to the destination (dateTime)

 [0..1] the date for the return flight (dateTime), if needed for a round-trip flight

 [0..3] the requested fare classes (enum: First, Business, Economy)

 [0..*] the requested airlines

The data returned in the FareResponse object contains zero or one flight that include:

 [1..2] trips, each containing the flight name, date, origin and destination

 the fare class (string)

 the cost of the flight (int)

The generation of TS1, as mentioned, is based on the aforementioned Category Partition algorithm. For

each component of the FareRequest object, the following situations be considered: all possible valid

structures, missing element, null element, structural error, syntactic error. For example, for the date of the

return flight, the following cases were taken into considerations: zero elements, one element with a

correct date, one empty element, one element with a date in the wrong format, one element with a date

prior to the onward flight. The test suite was generated by making a combinatorial composition of all

valid inputs, and by adding single test cases for non-valid inputs. TS1 consists of a total of 31 tests.

TS2, on the other hand, has been generated using WS-TAXI. WS-TAXI is a set of tools which produce

and execute a test suite using only the WSDL as an input. The process is the following:

1. the aforementioned soapUI tool is used to generate SOAP envelopes for the invocations of all

operations in the WSDL. The non-commercial version of soapUI was used, but only to generate stubs

of SOAP calls for the operations declared in a WSDL file. soapUI fills the contents of the envelope

with placeholders for data, without assigning significant values. For example, string values are filled

with random Latin words, while occurrences are managed simply by introducing a comment in the

envelope notifying the minimum and maximum number of elements allowed at that spot, leaving to

the user the endeavor to select a specific number of occurrences. Since the purpose of TS2 is to

exploit all possible structures for the SOAP calls, this is clearly insufficient, so the envelopes

generated by soapUI are completely stripped of their contents, which will be replaced in the following

steps. A different software capable of generating SOAP envelopes from WSDL files could be used in

alternative, such as Altova XMLSpy (Altova, n.d.);

2. a simple script is used to extract from the WSDL interface all informations related to the data

structure of the messages used in the operations. A WSDL generally has a section which contains or

refers an XML Schema, and the WSDL messages (rectius their parts) contain elements which are

described therein. This step produces a separate XSD file named as the WSDL (but obviously with a

different extension);

3. the XSD file generated in step 2 is fed as an input to the TAXI tool. For these experiments, the

database described previously was populated with the allowed origin and destination airports and the

possible carriers; dates were generated randomly, while the fare classes (first, business, and economy)

were stored in an enumeration in the schema (TAXI manages enumerations by assigning random

values among those allowed). A total of 200 possible instances were generated for the FareRequest

element;

4. a simple script takes all the XML instances and fills the envelopes created with soapUI with each

of them, producing an equal number of SOAP input messages;

5. last, each of the SOAP messages generated in the previous step is sent to the web service, and the

response (if it is received and does not time out) is compared against an oracle for correctness.

This process generates a test suite which normally is bigger than the one created with the CP algorithm,

but the benefit is that most of the process is automated (except for step 1, since to our best knowledge

there is no way to run soapUI from a command line, which would allow to insert it into a batch

execution), and requires much less handiwork from the tester. Additionally, there is a greater variability in

the values with respect to TS1, and that might be relevant in situations where the behavior of the service

is data-dependent.

Test suites comparison
The two methodologies for building TS1 and TS2 differ a lot under several aspects:

 the effort required to build them: TS1 requires more work on the tester's side, while TS2 is mostly

automatic;

 the number of instances generated: TS1 is strictly dependent on the CP algorithm and the

granularity of the functional specification (the more detailed and close to the implementation

details the specification is, the bigger the number of tests will be), whereas TS2 can produce an

arbitrary number of instances (generally a lot more than TS1). At its limit, if the specification is

extremely detailed, the two test suites would be made up of the same tests;

 the data variability: TS2 is limited only by the size of the database used by TAXI, while the

building of TS1 is not data-driven;

 the structure of the invocations: TS1 also contains non-allowed data structures, which is normally

not possible using WS-TAXI;

 the time required for executing the test suite: since TS2 can be much larger, it can take much

longer to run all tests on the service.

Obviously, the question that arises is: which one is to be preferred? The answer is not easy, because some

of the previous points favor TS1 while others would suggest TS2. The approach chosen to compare the

two test suites was to execute each of them in turn and measure the coverage using TCov. Specifically,

the incremental coverage was tested, meaning that a single testing session for each test suite was run, and

the coverage reached was measured after each test. This is in line with the way TCov is supposed to be

used, where a tester would execute tests which used all the features that he needed from the service and

then measure how much of the service these features would use.

The results are shown in Figures 2 and 3. The figures display the results both of block and branch

coverage. The former shows the coverage measures for TS1, while the latter for TS2.

Figure 2. Coverage measures for TS1.

 Figure 3. Coverage measures for TS2.

The results highlight some important considerations. First off, it can be noted that both test suites

eventually reach similar results. This is not unexpected, because both test suites in the end are built using

some version of the CP algorithm, plus the behavior of the service is not data-dependent.

TS1 reaches its maximum coverage at the 31
st
 test, measuring 78.125% block coverage and 68.235%

branch coverage. TS2, instead, reaches its maximum at the 65
th
 test, with a 78.125% block coverage and

69.412% branch coverage. As expected, TS2 contains a lot more tests which do not exercise new parts of

the web service, so many tests are redundant. However, this is not a problem as the test suite is built

automatically.

An issue which was not expected at first was that TS2 reached a higher branch coverage than TS1 (albeit

slightly). This was considered worthy of closer examination. After some analysis on the detailed coverage

results, and comparing those with the source code of WorldTravel, it was discovered that there was a set

of input values which TS1 did not exercise whereas TS2 did. This was due to the degree of detail of the

functional specification (which didn't produce that specific test in TS1), along with the higher variability

in the values offered by TS2. This occurs because of the way the test suites are built, specifically based

on the lack of an information in the functional specifications, and additional runs of each test suite would

produce exactly the same coverage. However, the difference is very minor, resulting only in a single

probe exercised by TS2 and not by TS1.

SECURITY TESTING
Security aspects are highly critical in designing and developing web services. It is possible to distinguish

at least two kinds of strategies for addressing protective measures of the communication among web

services: security at the transport level and security at the message level.

Enforcing the security at the transport level means that the authenticity, integrity, and confidentiality of

the message (e.g., the SOAP message) are completely delegated to the lower-level protocols that transport

the message itself (e.g., HTTP + TLS/SSL) from the sender to the receiver. Such protocols use public key

techniques to authenticate both the end points and agree to a symmetric key, which is then used to encrypt

packets over the (transport) connection.

Since SOAP messages may carry vital business information, their integrity and confidentiality need to be

preserved, and exchanging SOAP messages in a meaningful and secured manner remains a challenging

part of system integration. Unfortunately, those messages are prone to attacks based on an on-the-fly

modification of SOAP messages (XML rewriting attacks or XML injection) that can lead to several

consequences such as unauthorized access, disclosure of information, or identity theft. Message-level

security within SOAP and web services is addressed in many standards such as WS-Security (OASIS

Standard Specification Web Services Security, 2006), which provides mechanisms to ensure end-to-end

security and allows to protect some sensitive parts of a SOAP message by means of XML Encryption

(Imamura, Dillaway, & Simon, 2002) and XML Signature (Bartel, Boyer, Fox, LaMacchia, & Simon,

2008).

The activity of fault detection is an important aspect of (web) service security. Indeed, most breaches are

caused when a system component is used in an unexpected manner. Improperly tested code, executed in a

way that the developer did not intend, is often the primary culprit for security vulnerability.

Robustness and other related attributes of web services can be assessed through the testing phase and are

designed first off by analyzing WSDL document to know what faults could affect the robustness quality

attribute of web services, and secondly by using the fault-based testing techniques to detect such faults

(Hanna, & Munro, 2008).

Focusing in particular on testing aspects, the different strategies and approaches that have been developed

over the years can be divided into passive or active mechanisms.

Passive mechanisms consist of observing and analyzing messages that the component under test

exchanges with its environment (Benharref, Dssouli, Serhani, & Glitho, 2009). In this approach, which

has been specially used for fault management in networks (Lee, Netravali, Sabnani, Sugla, & John, 1997)

the observer can be either on-line or off-line: an on-line observer collects and checks the exchanged

input/output in real time, while an off-line observer uses the log files generated by the component itself.

Recently, passive testing has been proposed as a good approach for checking whether a system respects

its security policy, as in (Mallouli, Bessayah, Cavalli, & Benameur, 2008; Bhargavan, Fournet, &

Gordon, 2008). In this case, formal languages have been used in order to give a verdict about the system

conformity with its security requirements.

Active testing is based on the generation and the application of specific test cases in order to detect faults.

All the techniques have the purpose of providing evidence in security aspects, i.e., that an application

faces its requirements in the presence of hostile and malicious inputs. Like functional testing, security

testing relies on what is assumed to be a correct behaviour of the system, and on non-functional

requirements. However, the complexity of (web) security testing is bigger than functional testing, and the

variety of different aspects that should be taken into consideration during a testing phase implies the use

of a variety of techniques and tools.

An important role in software security is played by negative testing (Lyndsay, 2003), i.e., test executions

attempting to show that the application does something that it is not supposed to do (Nyman, 2008).

Negative tests can discover significant failures, produce strategic information about the model adopted for

test case derivation, and provide overall confidence in the quality and security level of the system.

Other common adopted methodologies and techniques include (Wong, & Grzelak, 2006):

 fuzz testing;

 injection;

 policy-based testing.

We will briefly describe validation based on them in the following subsections.

Fuzz testing
The word fuzzing is conventionally used to refer to a black-box software testing method for identifying

vulnerabilities in data handling. It involves generating semivalid data and submitting them in defined

input fields or parameters (files, network protocols, API calls, and other targets) in an attempt to break the

program and find bugs. Usually the term “fuzz” means feeding a set of inputs taken from random data to a

program, and then systematically identifying the failures that arise (Sutton, Greene, & Amini, 2007).

Semivalid data are correct enough to keep parsers from immediately dismissing them, but still invalid

enough to cause problems. Fuzzing is useful in identifying the presence of common vulnerabilities in data

handling, and the results of fuzzing can be exploited by an attacker to crash or hijack the program using a

vulnerable data field. Yet, fuzzing covers a significant portion of negative test cases without forcing the

tester to deal with each specific test case for a given boundary condition. Sutton et al. (2007) present a

survey of fuzzing techniques and tools.

In particular fuzzing approaches can be divided into: data generation; environment variable and argument

fuzzing; web application and server fuzzing; file format fuzzing (Kim, Choi, Lee, & Lee, 2008); network

protocol fuzzing, web browser fuzzing; in-memory fuzzing. In the specific area of web service security,

fuzzing inputs can often be generated by programmatically analyzing the WSDL or sample SOAP

requests and making modifications to the structure and content of valid requests.

File fuzzing strategy is also used for detecting XML data vulnerability. In particular, two main testing

methods, generation and mutation, are adopted (Oehlert, 2005). XML-based fuzzing techniques using the

first approach parse the XML schema and the XML documents to generate the semivalid data.

The second way to get malformed data is to start with a known set of good data and mutate it in specific

places. The authors of (Choi, Kim, & Lee, 2007), propose a methodology and an automated tool

performing efficient fuzz testing for text files, such as XML or HTML files, by considering types of

values in tags. This tool named TAFT (Tag-Aware text file Fuzz testing Tool) generates text files,

extracts tags and analyzes them, makes semivalid data from random data returned by different functions

according to types of values and inserts them into values of tags, then automatically executes a target

software system using fault-inserted files and observes fault states.

Injection
In general, web services can interact with a variety of systems and for this reason they must be resistant to

injection attacks when external systems are accessed or invoked. The most prevalent injection

vulnerabilities include SQL injection, command injection, LDAP injection, XPath injection, and code

injection. There are undoubtedly many other forms of injection and the tester should be aware of these for

testing different subsystems. Most injection vulnerabilities can be easily and quickly identified by the

process of fuzzing due to the presence of meta-characters in various language syntaxes. Recently, SQL

Injection Attack has become a major threat to web applications. SQL injection occurs when a database is

queried with an SQL statement which contains some user-influenced inputs that are outside the intended

parameters range. If this occurs, an attacker may be able to gain control of the database and execute

malicious SQL or scripts.

In the following, we will review some solutions to mitigate the risk posed by SQL injection

vulnerabilities. The authors of (Huang, Yu, Hang, Tsai, Lee, & Kuo, 2004) secure potential vulnerabilities

by combining static analysis with runtime monitoring. Their solution, WebSSARI, statically analyzes

source code, finds potential vulnerabilities, and inserts runtime guards into the source code. The authors

of (Fu, Lu, Peltsverger, Chen, Qian, & Tao, 2007) present a static analysis framework (called SAFELI)

for discovering SQL injection vulnerabilities at compile time. SAFELI analyzes bytecode and relies on

string analysis. It employs a new string analysis technique able to handle hybrid constraints that involve

boolean, integer, and string variables. Most popular string operations can be handled. The authors of

(Halfond, & Orso 2005) secure vulnerable SQL statements by combining static analysis with statement

generation and runtime monitoring. Their solution, AMNESIA, uses a model-based approach to detect

illegal queries before they are executed on the database. It analyzes a vulnerable SQL statement,

generates a generalized statement structure model for the statement, and allows or denies each statement

based on a runtime check against the statically-built model.

Policy-based testing
An important aspect in the security of modern information management systems is the control of

accesses. Data and resources must be protected against unauthorized, malicious or improper usage or

modification. For this purpose, several standards have been introduced that guarantee authentication and

authorization. Among them, the most popular are Security Assertion Markup Language (SAML) (OASIS

Assertions and Protocols for the OASIS Security Assertion Markup Language, 2005) and

eXtensible Access Control Markup Language (XACML) (OASIS eXtensible Access Control Markup

Language, 2005).

Access control mechanisms verify which users or processes have access to which resources in a system.

To facilitate managing and maintaining access control, access control policies are increasingly written in

specification languages such as XACML (OASIS eXtensible Access Control Markup Language, 2005), a

platform-independent XML-based policy specification language, or RBAC (Role-Based Access Control)

(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001). Whenever a user requests access to a

resource, that request is passed to a software component called Policy Decision Point (PDP). A PDP

evaluates the request against the specified access control policies and permits or denies the request

accordingly.

Policy-based testing is the testing process to ensure the correctness of policy specifications and

implementations. By observing the execution of a policy implementation with a test input (i.e., access

request), the testers may identify faults in policy specifications or implementations, and validate whether

the corresponding output (i.e., access decision) is as intended. Although policy testing mechanisms vary

because there is no single standard way to specify or implement access control policies, in general, the

main goals to conduct policy testing are to ensure the correctness of the policy specifications, and the

conformance between the policy specifications and implementations.

The authors of (Hu, Martin, Hwang,, & Xie, 2007) classify recent approaches on XACML policy

specification testing in the following main categories:

 Fault Models and Mutation Testing: there exist various basic fault models for different types of

policies. Martin and Xie (Martin, & Xie, 2007a) propose a fault model to describe simple faults

in XACML policies. They categorize faults broadly as syntactic and semantic faults. Syntactic

faults are the result of simple typos. For example, in XACML, an XML schema definition (XSD)

can be used to check for obvious syntactic flaws. Semantic faults are involved with the logical

constructs of the policy language. Based on the fault model, mutation operators are described in

(Martin, & Xie, 2007a) to emulate syntactic and semantic faults in policies. The authors of (Le

Traon, Mouelhi, & Baudry, 2007) design mutation operators on a given Organization Based

Access Control (OrBAC) model. They consider similar semantic and syntactic mutation operators

as the preceding ones in addition to other mutation operators including rule deletion, rule

addition, and role change based on a role hierarchy.

 Testing criteria: testing criteria are used to determine whether sufficient testing has been

conducted and it can be stopped, and measure the degree of adequacy or sufficiency of a test

suite. Among testing criteria for policy testing, there are structural coverage criteria and fault

coverage criteria (Martin, Xie, & Yu, 2006). The former are defined based on observing whether

each individual policy element has been evaluated when a test suite (set of requests) is evaluated

by a PDP. The latter are defined based on observing whether each (seeded) potential fault is

detected by the test suite.

 Test generation: to test access control policies, policy testers can manually generate test inputs

(i.e., requests) to achieve high structural policy coverage and fault coverage (i.e., fault-detection

capability). To reduce manual effort, automated test generation approaches can be used. These

approaches for test case generation starting by XACML policies deal with random heuristics and

test suite reduction (Martin, Xie, & Yu, 2006), policy values based approaches (Martin, & Xie,

2006) and change impact analysis (Martin, & Xie, 2007b). In particular, the Targen tool proposed

in (Martin, & Xie, 2006) derives the set of requests satisfying all the possible combinations of

truth values of the attribute id-value pairs found in specific sections of a XACML policy. The

Cirg tool proposed in (Martin, & Xie, 2007b) is able to exploit change impact analysis for test

cases generation starting from policies specification. In particular, it integrates the Margrave tool

(Fisler, Krishnamurthi, Meyerovich, & Tschantz, 2005) which performs change impact analysis

so as to reach high policy structural coverage. Test generation for model-based policies derives

abstract test cases directly from models such as FSMs that specify model-based policies. The

authors of (Le Traon, Mouelhi, & Baudry, 2007) propose test generation techniques to cover rules

specified in policies based on the OrBAC (Kalam, Baida, Balbiani, Benferhat, Cuppens,

Deswarte, Miège, Saurel, & Trouessin, 2003) model. The same authors in (Mouelhi, Le Traon, &

Baudry, 2009) present a new automated approach for selecting and adapting existing functional

test cases for security policy testing. The method includes a three-step technique based on

mutation applied to security policies and Aspect-Oriented Programming (AOP) for transforming

automatically functional test cases into security policy test cases. All the existing solutions for

XACML test case derivation are based on the policy specification. Policies, or more general

meta-models of security policies, provide a model that specifies the access scheme for the various

actors accessing the resources of the system. This has proven effective; however for the purpose

of test case generation a second important model composes the access control mechanism: the

standard format representing all the possible compliant requests. An approach fully exploiting the

potential of this second model has been implemented in the X-CREATE framework (Bertolino,

Lonetti, & Marchetti, 2010). Differently from existing solutions that are based only on the policy

specification, this framework exploits the special characteristics of XACML access control

systems of having a unique and once-for-all specified structure of the input requests: the XACML

Context Schema, which establishes the rules to which access requests should conform. This

schema is used in the X-CREATE framework for deriving a universally valid conforming test

suite that is then customizable to any specific policy.

Finally, we also address some works dealing with policy implementation testing. In particular, the authors

of (Li, Hwang, & Xie, 2008) propose an approach to detect defects in XACML implementations by

observing the behaviours of different XACML implementations (policy evaluation engine or PDP) for the

same test inputs, whereas (Liu, Chen, Hwang, & Xie, 2008) concerns the performance of XACML

request processing and presents a scheme for efficient XACML policy implementation.

CONCLUSION AND FUTURE RESEARCH ISSUES
In this chapter we overviewed the recent approaches for functional and structural testing of web services

and web service compositions. We provided also an example of a combined testing strategy. In particular,

we have integrated within an automated environment the execution of a test plan based on a functional

strategy with the evaluation of its coverage measure. To the best of our knowledge, it is the first attempt

of combining functional and structural strategies in a SOA environment. The results obtained showed that

it is possible to achieve a coverage measure even starting from a specification-based test plan. As

expected, high coverage can be achieved both by generating the test suite by hand and automatically, but

the latter requires less time and effort and is more exhaustive. This first attempt paves the way to a new

field of research about the integration of different testing strategies.

Finally, we also surveyed approaches to security-based validation. Due to the pervasiveness of web

services in business and social life, they should guarantee to preserve privacy and confidentiality of

carried-out information.

Thus in the world of Web 2.0, where the distribution of on-line services and applications has reached a

high granularity, functional, structural approaches and security testing constitute a third complementary

and essential facet of SOA validation. In particular, since most of services involve money transactions,

relevant personal information and other critical contexts, they need to be tested thoroughly, and possibly

fast for quick deployment.

For this an essential research issue for future research is the creation of an automated testing process, both

on the side of test suite generation and steps that the tester must perform to execute the tests. This is

especially true in service compositions where, being a high number of applications involved, a single

point of failure could make the whole system collapse.

Considering specifically the functional approaches, most of them are still strongly constrained by the need

of a formal specification model to be provided along with the service. In many circumstances, companies

do not provide such detail and testers are often required to derive it from their own experience. In this

situation, looser approaches based on interfaces (e.g., WSDL) are more suited, yet less effective. A

possible field for future research could be the development of strategies located halfway between the two

extremes. This way, the specification-based part of the approach would drive test case generation,

whereas the interface-based part would drive test case execution.

In particular, a special case of the combined vision could be to use the access control policies as a

refinement of the functional specification. This would produce test cases that, before been executed, must

be compliant with the specified access policy constraints.

The approach presented in this chapter of combining different methodologies is also an example of a

direction where research should progress in the future. Combined methodologies not only help speed up

the testing process by allowing simultaneous analysis from multiple perspectives, but can also bring an

extra added value by taking the best of the individual approaches.

In this chapter we presented a combination of functional and structural testing, but clearly it is not the

only possibility. We plan to investigate different combination strategies, in particular considering the

benefits of combining security testing with the other ones.

ACKNOWLEDGEMENTS
This chapter provides an overview of work that has been partially supported by the European

Project FP7 IP 216287: TAS
3
 and by the Italian MIUR PRIN 2007 Project D-ASAP.

REFERENCES

Altova. XML Spy. Retrieved from http://www.altova.com/products/xmlspy/xml_editor.html

Bai, X., Dong, W., Tsai, W.T., & Chen, Y. (2005). WSDL-Based Automatic Test Case Generation for

Web Services Testing, Proceding of the IEEE International Workshop on Service-Oriented

System Engineering (SOSE), Beijing, 207-212.

Bai, X., Lee, S., Tsai, W.T., & Chen, Y. (2008) Ontology-based test modeling and partition testing of web

services. Proceedings of the 2008 IEEE International Conference on Web Services. IEEE

Computer Society. September, Beijing, China, 465–472.

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., & Simon, E. (2008). W3C Recommendation XML

Signature Syntax and Processing. Retrieved from http://www.w3.org/TR/xmldsig-core/.

Bartolini, C., Bertolino, A., Elbaum, S.C, & Marchetti, E. (2009). Whitening SOA testing. Proceedings

of the 7th joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT InternationalSymposium on Foundations of Software Engineering. Amsterdam, The

Netherlands, August 24-28, 161-170.

Bartolini, C., Bertolino, A., Marchetti, E., & Parissis, I. (2008) Data Flow-based Validation of Web

Services Compositions: Perspectives and Examples, in V, R. de Lemos, F. Di Giandomenico, H.

Muccini, C. Gacek, M. Vieira (Eds.). Architecting Dependable Systems, Springer 2008.

LNCS5135, 298-325.

Bartolini, C., Bertolino, A., Marchetti, E., & Polini, A. (2009) WS-TAXI: a WSDL-based testing tool for

Web Services. Proceeding of 2nd International Conference on Software Testing, Verification, and

Validation ICST 2009. Denver, Colorado USA, 2009, April 1- 4.

Benharref, A., Dssouli, R., Serhani, M., & Glitho, R. (2009). Efficient traces´collection mechanisms for

passive testing of Web Services. Information and Software Technology, 51(23), 362-374 .

Bertolino, A., & Polini, A. (2005). The audition framework for testing web services interoperability. 31st

EUROMICRO International Conference on Software Engineering and Advanced Applications,

134-142.

http://www.altova.com/products/xmlspy/xml_editor.html
http://www.w3.org/TR/xmldsig-core/

Bertolino, A., Frantzen, L., Polini, A., & Tretmans, J. (2006). Audition of Web Services for Testing

Conformance to Open Specified Protocols. In R. Reussner and J. Stafford and C. Szyperski (Ed).

Architecting Systems with Trustworthy Components. (pp. 1-25). LNCS 3938. Springer-Verlag.

Bertolino, A., Gao, J., Marchetti, E., & Polini, A. (2007). Automatic Test Data Generation for XML

Schema-based Partition Testing. Proceedings of the Second international Workshop on

Automation of Software Test International Conference on Software Engineering. IEEE

Computer Society. May 20 - 26, 2007. Washington.

Bertolino, A., Lonetti, F., & Marchetti, E. (2010). Systematic XACML request generation for testing

purposes. Accepted for publication to the 36th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA). 1-3 September 2010. Lille, France.

Bhargavan, K., Fournet, C., & Gordon, A. (2008). Verifying policy-based web services security In Proc.

of the 11th ACM conference on Computer and communications security, 268-277.

Canfora, G., & Di Penta, M. (2009). Service-oriented architectures testing: A survey. Software

Engineering Journal, 78-105.

Cao, H., Ying, S., & Du, D. (2006). Towards Model-based Verification of BPEL with Model Checking.

In Proceeding of Sixth International Conference on Computer and Information Technology (CIT

2006). 20-22 September 2006, Seoul, Korea, 190-194.

Cao, T.D., Felix, P., & Castane, R. (2010). WSOTF: An Automatic Testing Tool for Web Services

Composition. Proceeding of the Fifth International Conference on Internet and eb Applications

and Services, 7-12.

Cao, T.D., Felix, P., Castane, R. & Berrada, I.. (2010). Online Testing Framework for Web Services,

Proceeding of the Third International Conference on Software Testing, Verification and

Validation, 363-372.

Cavalli, A., Montes De Oca, E. , Mallouli, W., & Lallali, M. (2008). Two Complementary Tools for the

Formal Testing of Distributed Systems with Time Constraints. Proceeding of 12th IEEE

International Symposium on Distributed Simulation and Real TimeApplications, Canada, Oct 27

– 29.

Choi, Y., Kim, H., & Lee, D. (2007). Tag-aware text file fuzz testing for security of a software System. In

Proc. of the International Conference on Convergence Information Technology, 2254-259.

Eviware (n.d.) SoapUI. Retrieved from soapUI. http://www.soapui.org/.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., & Chandramouli, R. (2001). Proposed NIST standard for

rolebased access control. ACM Transactions on Information and System Security, 4(3), 224-274.

Fisler, K., Krishnamurthi, S., Meyerovich, L.A., & Tschantz, M.C.(2005) Verification and change-impact

analysis of access-control policies. In Proc. of ICSE 2005, 196-205.

Foster, H., Uchitel, S., Magee, J., & Kremer, J. (2003) Proceeding of Model-based verification of web

service compositions. In ASE. IEEE Computer Society, 152-163.

Frantzen, L., & Tretmans, J.(2006). Towards Model-Based Testing of Web Services. International

Workshop on Web Services - Modeling and Testing (WS-MaTe2006. Palermo. Italy. June 9
th
, 67-

82.

Fu, X., Bultan, T., & Su, J. (2004). Analysis of Interacting BPEL Web Services. Proceeding of

International Conference on World Wide Web. May, New York, USA, 17 – 22.

Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., & Tao, L. (2007). A static analysis framework for

detecting SQL injection vulnerabilities. In Proc. of COMPSAC, 87-96.

http://www.soapui.org/

García-Fanjul, J. Tuya, J., & de la Riva, C. (2006). Generating Test Cases Specifications for BPEL

Compositions of Web Services Using SPIN. Proceeding of International Workshop on Web

Services Modeling and Testing (WS-MaTe2006).

Halfond, W. & Orso, A. (2005). AMNESIA: analysis and monitoring for neutralizing sql injection

Attacks. In Proc. of 20th IEEE/ACM International Conference on Automated Software

Engineering, 174-183.

Hanna, S., & Munro, M. (2008). Fault-Based Web Services Testing. In Proc. of Fifth International

Conference on Information Technology: New Generations 471-476.

Harel, D. & Thiagarajan, P. (2004). Message sequence charts. UML for Real, Springer, 77-105.

Heckel, R. & Mariani, L. (2005). Automatic conformance testing of web services. Fundamental

Approaches to Software Engineering. LNCS 3442, 2 - 10 April, 2005, 34-48.

Hu, V. C., Martin, E., Hwang, J., & Xie, T. (2007). Conformance checking of access control policies

specified in XACML. In Proc. of the 31st Annual International Conference on Computer

Software and Applications, 275-280.

Huang, Y., Yu, F., Hang, C., Tsai, C., Lee, D. & Kuo, S. (2004). Securing web application code by static

analysis and runtime protection. In Proc. of 13th International Conference on World Wide Web,

40-52.

Imamura, T., Dillaway, B., & Simon, E. (2002). W3C Recommendation XML Encryption Syntax and

Processing. Retrieved from http://www.w3.org/TR/xmlenc-core/.

Jiang, Y., Hou, S.S., Shan J. H., Zhang, L., & Xie, B. (Ed.) (2005). Contract-Based Mutation for Testing

Components. IEEE International Conference on Software Maintenance.

Kalam, A. A. EI., Baida, R., Balbiani, P. , Benferhat, S. , Cuppens, F., Deswarte, Y. , Miège, A. Saurel,

C. , & Trouessin, G. (2003). Organization based access control. In Proc. of the 4th IEEE

International Workshop on Policies for Distributed Systems and Networks, 120-131.

Kim, H., Choi, Y., Lee, D., & Lee, D. (2008). Practical Security Testing using File Fuzzing. In Proc. of

10th International Conference on Advanced Communication Technology, 2, 1304-1307.

Lallali, M., Zaidi, F., & Cavalli, A. (2008). Transforming BPEL into Intermediate Format Language for

Web Services Composition Testing. Proceeding of 4th IEEE International Conference on Next

Generation Web Services Practices, October.

Le Traon, Y., Mouelhi, T., & Baudry, B. (2007). Testing security policies: Going beyond functional

testing. In Proc. of the 18th IEEE International Symposium on Software Reliability, 93-102.

Lee, D., Netravali, A., Sabnani, K., Sugla, B., & John, A. (1997). Passive testing and applications to

network management. In Proc. of. International Conference on Network Protocols, 113-122.

Li, N., Hwang, J., & Xie, T. (2008). Multiple-implementation testing for XACML implementations. In

Proc. of Workshop on Testing, Analysis and Verification of Web Software, 27-33.

Li, Z.J., Zhu, J., Zhang, L.J., & Mitsumori, N. (2009).Towards a Practical and Effective Method for Web

Services Test Case Generation. Proceeding of ICSE Workshop on Automation of Software Test

AST. May, 106-114.

Liu, A. X., Chen, F., Hwang, J., & Xie, T. (2008). Xengine: A fast and scalable XACML policy

evaluation engine. In Proc. of International Conference on Measurement and Modeling of

Computer Systems, 265-276.

Lyndsay, J. (2003). A positive view of negative testing. Retrieved from http://www.workroom-

productions.com/papers.html

http://www.w3.org/TR/xmlenc-core/
http://www.workroom-productions.com/papers.html
http://www.workroom-productions.com/papers.html

Ma, C., Du, C., Zhang, T., Hu, F., & Cai, X. (2008). WSDL-based automated test data generation for

web service. 2008 International Conference on Computer Science and Software Engineering.

Wuhan, China, 731-737.

Mallouli, W., Bessayah, F., Cavalli, A., & Benameur, A. (2008). Security Rules Specification and

Analysis Based on Passive Testing. In Proc. of IEEE Global Telecommunications Conference, 1-

6.

Marconi, A., Pistore, M., & Traverso, P. (2006). Specifying data-flow requirements for the automated

composition of web services. Proceeding of the Fourth IEEE International Conferfeence on

Software Engineering and Formal Methods (SEFM 2006), 11-15 September 2006, Pune, India,

147-156 .

Martin, E., & Xie, T.(2006). Automated test generation for access control policies. In Supplemental Proc.

of ISSRE

Martin, E., & Xie, T.(2007a). A fault model and mutation testing of access control policies. In Proc. of the

16th International Conference on World Wide Web, 667-676.

Martin, E., & Xie, T.(2007b). Automated test generation for access control policies via change-impact

analysis. In Proc. of SESS 2007, 5-11.

Martin, E., Xie, T., & Yu, T. (2006). Defining and measuring policy coverage in testing access control

policies. In Proc. of ICICS, 139-158.

Mouelhi, T., Le Traon, Y., & Baudry, B. (2009). Transforming and selecting functional test cases for

security policy testing. In Proc. of International Conference on Software Testing Verification and

Validation, 171-180.

Narayanan, S., & McIlraith, S. (2003). Analysis and Simulation of Web Services. Journal of Computer

Networks. 42 (5), 675-693.

Nyman, J. (2008). Positive and Negative Testing GlobalTester, TechQA, 15(5). Retrieved from

http://www.sqatester.com/methodology/PositiveandNegativeTesting.htm

OASIS Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0.

(2005) Retrieved from http://docs.oasis-open.org/security/saml/v2.0/

OASIS eXtensible Access Control Markup Language (XACML) version 2.0. (2005).Retrieved from

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

OASIS Standard Specification Web Services Security. (2006). SOAP Message Security 1.1, (WS-

Security 2004), Retrieved from http://www.oasis-open.org/committees/download.php/16790/wss-

v1.1-spec-os-SOAPMessageSecurity.pdf

OASIS WSBPEL (2007) Web Services Business Process Execution Language Version 2.0. Retrieved

from http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

Oehlert, P. (2005). Violating assumptions with fuzzing. IEEE Security and Privacy, 3(2), 58-62.

Offutt, J. & Xu, W. (2004). Generating test cases for web services using data perturbation. SIGSOFT

Softw. Eng. Notes, 29(5), 1-10.

Parasoft (n.d.). Retrieved from http://www.parasoft.com/jsp/home.jsp.

Pistore, M., Marconi, A., Bertoli, P., & Traverso, P. (2005). Automated Composition of Web Services by

Planning at the Knowledge Level. Proceeding of Intenational Joint Conference on Artificial

Intelligence (IJCAI). Pp. 1252-1259.

PushToTest (n.d.). TestMaker. Retrieved from http://www.pushtotest.com/.

http://www.sqatester.com/methodology/PositiveandNegativeTesting.htm
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://portal.acm.org/author_page.cfm?id=81100103236&coll=GUIDE&dl=GUIDE&trk=0&CFID=95388396&CFTOKEN=29711301
http://www.parasoft.com/jsp/home.jsp

Sneed, H.M., & Huang, S. (2006). WSDLTest-a tool for testing web services. Proceeding of the IEEE Int.

Symposium on Web Site Evolution. Philadelphia , PA, Usa IEEE Computer Society, pp. 12-21.

Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute Force Vulnerability Discovery.Addison-

Wesley

Tsai, W. T., Bai, X., Paul, R., Feng, K., & Yu, L (2002). Scenario-Based Modeling and Its Applications.

IEEE WORDS

Tsai, W. T., Paul, R., Song, W., & Cao, Z. (2002). Coyote: an XML-based Framework for Web Services

Testing. 7th IEEE International Symp. High Assurance Systems Eng. (HASE 2002).

Wang, Y., Bai, X., Li, J. & Huang, R. (2007). Ontology-based test case generation for testing web

services. Proceedings of the Eighth International Symposium on Autonomous Decentralized

Systems. Sedona, AZ, USA, Mar. 2007, IEEE Computer Society. 43–50.

Weiss, M, Esfandiari, B., & Luo, Y. (2007). Towards a classification of web service feature interactions.

Computer Networks 51(2), 359-381.

Wong, C., & Grzelak, D. (2006). A Web Services Security Testing Framework. SIFT: Information

Security Services. Retrieved from http://www.sift.com.au/assets/downloads/SIFT-Web-Services-

Security-Testing-Framework-v1-00.pdf.

WorldTravel. (2008). Retrieved from http://www.cc.gatech.edu/systems/projects/WorldTravel

WSDL (2007).Web Services Description Language (WSDL) Version 2.0. Retrieved from

http://www.w3.org/TR/wsdl20/.

Yan, J., Li, Z., Yuan, Y., Sun, W. & Zhang, J. (2006). BPEL4WS Unit Testing: Test Case Generation

Using a Concurrent Path Analysis Approach. Ptoceeding of 17th International Symposium on

Software Reliability Engineering (ISSRE 2006), 7-10 November, Raleigh, North Carolina, USA.

75-84.

Yang, Y, Tan, Q.P., Yong, X., Liu, F., & Yu, J. (2006). Transform BPEL Workflow into Hierarchical CP-

Nets to Make Tool Support for Verification. Proceeding of Frontiers of WWW Research and

Development - APWeb 2006, 8th Asia-Pacific Web Conference. (pp. 275-284). Harbin, China,

January 16-18, 2006.

Yuan, Y., Li, Z., & Sun. (2006). A Graph-Search Based Approach to BPEL4WS Test Generation. In

Proceedings of the International Conference on Software Engineering Advances (ICSEA 2006),

October 28 – November 2, Papeete, Tahiti, French Polynesia.

Zheng, Y., Zhou, J., & Krause, P. (2007). An Automatic Test Case Generation Framework for Web

Services”, Journal of Software. Vol 2, No. 3, September

KEY TERMS & DEFINITIONS
Functional Testing, Structural Testing, Security Testing, XACML, SOA Services.

SOA Testing: The set of testing approaches and methodologies focused on the verification and validation

of SOA specific aspects.

Structural Testing: Also called white-box testing, requires complete access to the object’s structure and

internal data, which means the visibility of the source code.

Functional Testing: Also called black-box testing, relies on the input/output behaviour of the system.

http://www.sift.com.au/assets/downloads/SIFT-Web-Services-Security-Testing-Framework-v1-00.pdf
http://www.sift.com.au/assets/downloads/SIFT-Web-Services-Security-Testing-Framework-v1-00.pdf
http://www.cc.gatech.edu/systems/projects/WorldTravel

Security Testing: Verification of security-related aspects of the application.

i
 The modified version of WorldTravel can be requested to the authors with an email to cesare.bartolini@isti.cnr.it.

