Céline Montanari

Céline Montanari
KTH Royal Institute of Technology | KTH · Department of Fibre and Polymer Technology

Doctor of Engineering
Transparent wood Biocomposites

About

12
Publications
4,889
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
164
Citations

Publications

Publications (12)
Article
Full-text available
The optical response of hierarchical materials is convoluted, which hinders their direct study and property control. Transparent wood (TW) is an emerging biocomposite in this category, which adds optical function to the structural properties of wood. Nano‐ and microscale inhomogeneities in composition, structure, and at interfaces strongly affect l...
Article
Full-text available
Transparent wood (TW) biocomposites combine high optical transmittance and good mechanical properties and can contribute to sustainable development. The safety against fire is important for building applications. Here, a “green” bleached wood reinforcement is impregnated by water soluble and flame-retardant melamine formaldehyde (MF) in a scalable...
Article
Full-text available
Design of nanocellulose-based composite materials suitable for selective disintegration, recovery and recycling of individual components is of great scientific and technical interest. Cellulose nanofiber/ epoxy (CNF/EP) composites are candidate bio-based substitutes for petroleum-based materials. However, chemical recovery of such intimately mixed...
Preprint
Full-text available
The optical response of hierarchical materials is convoluted, which hinders their direct study and property control. Transparent wood (TW) is an emerging biocomposite in this category, which adds optical function to the structural properties of wood. Nano- and microscale inhomogeneities in composition, structure and at interfaces strongly affect li...
Article
Full-text available
Transparent wood (TW), a biocomposite material demonstrating optical transparency in the visible range, has attracted much interest in recent years due to great potential for ecofriendly applications, for instance, in construction industry and functionalized organic materials. Optical properties of TW, including transparency and haze, depend on a p...
Article
Full-text available
The development of large, multifunctional structures from sustainable wood nanomaterials is challenging. The need to improve mechanical performance, reduce moisture sensitivity, and add new functionalities, provides motivation for nanostructural tailoring. Although existing wood composites are commercially successful, materials development has not...
Article
Full-text available
The sustainable development of engineering biocomposites has been limited due to a lack of bio‐based monomers combining favorable processing with high performance. Here, the authors report a novel and fully bio‐based transparent wood biocomposite based on green synthesis of a new limonene acrylate monomer from renewable resources. The monomer is im...
Article
Full-text available
Thorough characterization and fundamental understanding of cellulose fibers can help us develop new, sustainable material streams and advanced functional materials. As an emerging nanomaterial, cellulose nanofibrils (CNFs) have high specific surface area and good mechanical properties; however, handling and processing challenges have limited their...
Article
Full-text available
Wood templates are promising biobased substrates that can be functionalized for controlled nano-structure, and the development of novel nanotechnologies. A sustainable, selective and versatile chemical functionalization platform for cellulosic wood templates is developed. Bulk wood templates are delignified using peracetic acid, and the nanoporous...
Article
Full-text available
Refractive index (RI) determination for delignified wood templates is vital for transparent wood composite fabrication. Reported RIs in the literature are based on either single plant fibers or wood powder, measured by the immersion liquid method (ILM) combined with mathematical fitting. However, wood structure complexity and the physical backgroun...
Article
Full-text available
Transparent wood (TW) based on delignified birch veneer and thermoplastic poly(methyl methacrylate) (PMMA) is investigated by uniaxial tensile tests and full-field strain analyses based on digital image correlation techniques. TW is considered as a composite of unidirectional fibers (wood veneer) in a matrix (PMMA). Four in-plane elastic constants...
Article
Full-text available
Functional load-bearing materials based on phase-change materials (PCMs) are under rapid development for thermal energy storage (TES) applications. Mesoporous structures are ideal carriers for PCMs and guarantee shape stability during the thermal cycle. In this study, we introduce transparent wood as a thermal energy storage system. A shape-stabili...

Network

Cited By