Title: Sleep quality and quantity of international rugby sevens players during preseason

Submission type: Original Research

Authors: Leduc, C. ${ }^{1,2}$, Jones, B ${ }^{1,3,4,5}$. Robineau, J. ${ }^{2}$, Piscione, J. ${ }^{2}$, Lacome, M. ${ }^{2,6}$

Institutions and Affiliations:
${ }^{1}$ Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
${ }^{2}$ Research Department, French Rugby Federation (FFR), Marcoussis, France
${ }^{3}$ Yorkshire Carnegie Rugby Union Football Club, Leeds, UK
${ }^{4}$ Leeds Rhinos Rugby League Club, Leeds, UK
${ }^{5}$ The Rugby Football League, Leeds, UK
${ }^{6}$ Performance Department, Paris Saint-Germain FC, Saint-Germain-en-Laye, France
Abstract count: 212
Text only word account: 3167
Numbers of tables: 4
Numbers of figures: 2

Contact details:

Cédric Leduc
Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University

Church Wood Ave, Leeds LS6 3QS,

UNITED KINGDOM

Email: cedric.leduc1 @ gmail.com
Mobile: +33682636505
This research was conducted at French Rugby Federation (FFR). The authors do not have any conflict of interest.

Corresponding authors:

Cédric Leduc
Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University

Church Wood Ave, Leeds LS6 3QS,

UNITED KINGDOM

Email: c.leduc@leeds.beckett.ac.uk
Mobile: +33682636505
This research was conducted at French Rugby Federation (FFR).
The authors do not have any conflict of interest.

Sleep quality and quantity of international rugby sevens players during preseason

Abstract

The aim of this study was to investigate the influence of training load on objective and subjective sleep measures among elite rugby sevens players during preseason. Nine international male rugby sevens players participated in this study. Actigraphic and subjective sleep assessment were performed on a daily basis to measure sleep parameters. Training load was measured during the entire pre-season period and sleep data from the highest and lowest training load week were used in the analysis via magnitude-based inferences. During the highest training load, likely to possibly small, moderate decreases in time in bed (Effect sizes; $\pm 90 \%$ confidence limits: $-0.42 ; \pm 0.44$ for session rating of perceived exertion [sRPE], -0.69 ; ± 0.71 for total distance covered [TDC]) and total sleep time $(-0.20 ; \pm 0.37$ for sRPE, $-0.23 ; \pm$ 0.35 for TDC) were found. Possibly small ($-0.21 ; \pm 0.35$ for high speed distance [HSD], $0.52 ; \pm 0.73$ for acceleration/deceleration [A/D]) and likely moderate $(-074 ; \pm 0.67$ for TDC $)$ decreases were observed in subjective sleep quality. Possibly small to very likely moderate changes in sleep schedule were observed. Sleep quantity and subjective quality appear to be deteriorated during higher loads of training. This study highlights the necessity to monitor and improve sleep among elite rugby sevens players, especially for intense period of training.

Keywords: team-sport, fatigue, recovery, rugby.

Introduction

Due to its physiological function (14) and potential to facilitate performance, sleep is an emerging area in sport science. Through the sleep deprivation/restriction paradigm, several studies have found negative effects of sleep loss, relating to both physical and cognitive performance (13). However, the current challenge in sport is to understand how sleep influences performance in elite athletes in their natural environment, rather than in a laboratory-based environment which lacks ecological validity.

One sport where limited studies have investigated sleep is rugby sevens. Rugby sevens is a high-intensity, intermittent team sport characterized by a large proportion of accelerations, high-intensity running and sprint but also collision-based actions (26). To the best of our knowledge, only one study has been partially conducted on sleep in rugby sevens (28). Among 41 rugby sevens players (New Zealand male and female national teams), their subjective sleep quality ($7.1 \pm 3.3 \mathrm{AU}$) and quantity (7.3 ± 1.0 hours) assessed by the Pittsburgh sleep quality index was poorer than players from rugby union. However, despite valuable findings, only questionnaires were used during this study.

One potential reason for this reported poorer sleep could be due to an intensified training period (15), which has been recently shown to change sleep activity among other professional rugby codes players during preseason $(4,24,29,30)$. Particular concern of prolonged sleep disruption is the potential that it could lead to an excessive level of accumulated fatigue and a nonfunctional overreaching state (22). Nevertheless, no similar study has been conducted yet among rugby sevens players during preseason.

Due to the intensive physical demands, preseason training periods typically include daily and weekly accumulated total and high intensity activities higher than other rugby codes. For example, during a rugby union preseason, weekly distances covered range from 9774 ± 1404
to $11585 \pm 1810 \mathrm{~m}$ for forwards and backs respectively (6). In contrast, weekly total distance covered by rugby sevens players during preseason is approximately $20000 \pm 8000 \mathrm{~m}$ (unpublished observations). Therefore we expect that sleep among rugby sevens athletes would be deteriorated. Moreover within a preseason training period, training loads are periodized to provide players with a stimulus and period of adaptation (25). In turn, during such periods athletes are likely to be exposed to highly variable training loads, where there may be periods of low and high training loads. However there is limited research to suggest how this altering load affects sleeping patterns. Such information will be worthwhile in order to optimize training periodization.

Therefore, the aim of this study was to investigate the influence of the highest and lowest training load during a preseason period on objective and subjective sleep measures among elite rugby sevens players.

Methods

Experimental Approach to the Problem:

All preseason training took place at the same training center in Marcoussis (France) from $10^{\text {th }}$ October to $25^{\text {th }}$ November. Actigraphic sleep assessment was performed on a daily basis to measure sleep quality and quantity from Sunday night to Friday morning. During this period, players completed two to four training sessions (morning and afternoon) per day from Monday to Friday (Table 1). External load was recorded using global positioning system (GPS). Total distance covered (TDC), high speed distance (HSD) and the total number of acceleration and deceleration (A/D) were used. Internal load was assessed using session rating of perceived exertion multiplied by training duration (sRPE) for all sessions. Each training day was followed by a recovery session composed of stretching (static stretching, foam
rolling), nutrition (snack with 20 g of protein and high glycemic index carbohydrates) and hydrotherapy (cold and/or hot bath). No training camps took place during this period so that players could sleep in their normal home-based environment.

Subjects:

Fourteen male international rugby sevens players from the French national team were initially recruited for the study. All players had at least one full year of experience in the "World Rugby HSBC sevens series". If players had sleep disorders diagnosed by the medical staff, they were removed from the analysis. Four players were excluded from the analysis because they took part in a practice tournament in Singapore which may have affected the results of this study due to potential effects of jet lag and travel fatigue on sleep parameters during the experiment. Nine players (age; 27.9 ± 5.3 years, height; $181.8 \pm 10.9 \mathrm{~cm}$, body mass; $85.4 \pm$ 12.7 kg) were retained for analysis. These data arose from the monitoring process in which player activities were measured daily during the season. Participants provided informed consent prior the beginning of the present study. Ethics approval was granted by the University ethics board and the recommendations of the Declaration of Helsinki were respected.

***Insert Table 1 here ${ }^{* * *}$

Procedures:

Sleep assessment: Athletes were allocated an Actiwatch MotionWatch 8 (Cambridge Neurotechnology Ltd., Cambridge, UK) which was worn on the non-dominant wrist. The Actiwatch uses activity counts to apply published algorithms resulting in a reliable and valid
method for monitoring sleep (27). The threshold used for sleep analysis was the validated threshold recommended by the manufacturer for sleep study. When players went to bed and where ready to sleep (moment where they turned off the light), they pressed on the event button marker on the top of the watch for two seconds. This was considered 'bed time'. The same procedure was repeated when players were ready to get up. This was considered 'get up time'. The sleep variables were calculated as follows by the software MotionWare 1.1.25 (Cambridge Neurotechnology Ltd., Cambridge, UK) and are presented in Table 2. Additionally, players were asked to rate their sleep in a diary on a customized mobile application (typeform®, Bac de Roda 163, Barcelona, Spain). Ratings were recorded in terms of subjective sleep quality using a Likert visual 10- point analog scale, where 1 corresponds to 'very poor' and 10 equals 'excellent'.
*** Insert Table 2 here***

Training load quantification: During every field session players wore a GPS unit capturing data at 16 Hz (SensorEverywhere, Digital Simulation, France). GPS units were positioned in a customized pocket placed in their shirt and located between the scapulae. To limit potential inter-unit variability, each player wore the same unit for the total duration of the preseason. The GPS data were captured and computed with SensorEverywhere software (Digital Simulation, France). Preliminary validity work showed a trivial bias against timing gates for velocity $\left(0.11 \pm 0.04 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$, with a low between-unit typical error of measurement (TEM) over the various constant speed tested $\left(0.01 \pm 0.01\right.$ to $0.04, \pm 0.04 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and $0.5, \pm 0.15$ to 0.6 , $\pm 0.35 \%$ from walk to sprint respectively) and a trivial between-unit TEM for maximal sprint and acceleration (respectively $0.06 \pm 0.03 \%$ and $3.1 \pm 6.4 \%$) (Unpublished observations).

Regarding high speed distance, an individual speed threshold was determined during the second week of the preseason with an incremental aerobic test started at $8 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ for 2 minutes followed by $0.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ increments in velocity each minute (7). The final speed reached was used to determine the high speed distance threshold. An absolute threshold was used for acceleration ($\geq 2.5 \mathrm{~m} \cdot \mathrm{~s}^{-2}$) and deceleration $\left(\leq-2.5 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right.$). RPE on 1-10 scale was used to quantify internal load (10) and was collected and inputted into a mobile application (typeform®, Bac de Roda 163, Barcelona, Spain) within 30 minutes after each session. The RPE gathered was then multiplied by training duration to provide sRPE (10). Changes in training load are presented in Table 3.

Data Analyses: The highest (intensified period) and lowest cumulative weekly training loads (i.e. sum of daily training load) during the observational period for each player and for each variable (i.e. sRPE, TDC, HSD and A/D) were used in the analysis. The lowest cumulative weekly training load was used as the baseline value. This week was used because it was not possible to record values before the beginning of the preseason due to the unavailability of players. During the highest and lowest training load weeks, average sleep parameter variables recorded across a five-night sleep period were calculated (18). Individual standardized change in mean between these weeks was calculated for sleep parameters and training load to calculate correlation.

Statistical Analyses:

All data were \log transformed to reduce bias as a result of non-uniformity error. The descriptive data (mean \pm standard deviation [SD]), presented in Table 4, are the back transformed mean and SD of the log transformation. A magnitude-based inferential (MBI) approach to statistics was used to assess differences between intensified period of training and baseline for training load variables and sleep parameters (16). Effect sizes (ES) and 90\%
confidence limits ($90 \% \mathrm{CL}$) were quantified to indicate the practical meaningfulness of the differences in mean values. The ES magnitude was classified as trivial (<0.2), small (>0.20.6), moderate ($>0.6-1.2$), large ($>1.2-2.0$) and very large ($>2.0-4.0$) (Hopkins, 2009). Quantitative chances of greater or smaller changes in sleep parameters were assessed qualitatively as follows: <1\%, almost certainly not; $1-5 \%$, very unlikely; $5-25 \%$, probably not; 25-75\%, possibly; 75-95\%, likely; 95-99.5\%, very likely; >99.5\%, almost certainly. Pearson correlations and 90% confidence intervals (CI) were calculated between individual standardized change in training load variables and standardized change in sleep variables. If the $90 \% \mathrm{CI}$ over-lapped positive (0.1) and negative (-0.1) trivial values, the magnitude was deemed unclear. Clear correlations were interpreted as follows: trivial (0.0-0.1), small ($>0.1-$ 0.3), moderate ($>0.3-0.5$), large ($>0.5-0.7$), very large ($>0.7-0.9$) and nearly perfect ($>0.9-0.1$) (Hopkins, 2009).

Results

Descriptive sleep data are summarized in Table 4 and comparison between intensified period and baseline are shown in Figure 1. Results are presented as ES; $\pm 90 \%$ CL. There was a likely small decrease in sleep onset time $(-0.32 ; \pm 0.48)$, wake up time $(-0.40 ; \pm 0.40)$ and get up time $(-0.47 ; \pm 0.39)$, a possibly small decrease in total sleep time $(-0.20 ; \pm 0.37)$ and fragmentation index $(-0.24 ; \pm 0.59)$ between the highest and lowest sRPE training load week. There was a likely moderate decrease in bed time $(-0.69 ; \pm 0.71)$ and sleep onset time $(0.71 ; \pm$ $0.60)$ and subjective sleep quality $(-074 ; \pm 0.67)$, a likely small decrease in wake up time ($0.49 ; \pm 0.36)$ and get up time $(-0.49 ; \pm 0.36)$ and a possibly small decrease in time in bed ($0.26 ; \pm 0.37)$ and total sleep time $(-0.23 ; \pm 0.35)$ between the highest and lowest TDC load week. For HSD, possibly small decreases were found in wake up time $(-0.21 ; \pm 0.34)$, get up time $(-0.20 ; \pm 0.33)$ and subjective sleep quality $(-0.21 ; \pm 0.35)$ between the highest and lowest training load weeks. A/D highlighted a very likely moderate decrease for bed time
$(0.80 ; \pm 0.49)$ and sleep onset time $(-0.79 ; \pm 0.45)$, a likely small decrease in subjective sleep quality $(-0.52 ; \pm 0.73)$ and a possibly small decrease in wake time $(-0.30 ; \pm 0.38)$ and get up time $(-0.30 ; \pm 0.38)$ between the highest and lowest training load weeks. Other results were deemed unclear.

***Insert Table 3, 4 and figure 1 about here ${ }^{* * *}$

Correlations are presented with 90% CI When considering standardized changes in sRPE, a clear and large negative relationship was found with fragmentation index $(r=-0.53[-0.85-$ $0.09]$). All other relationships with change in sRPE were unclear. A clear and large positive relationship ($r=0.63$ [0.07-0.89]) existed between change in TDC and in subjective sleep quality. Other correlations were deemed unclear. Clear and large positive relationship ($r=0.65$ [0.10-0.89]) was observed between change in HSD and fragmentation index. Other relationships for this variable remained unclear. No clear relationship was found for the A / D and sleep parameters.

Insert figure 2 about here

Discussion

The aim of this study was to investigate the influence of the highest and lowest training load weeks on sleep parameters during an international rugby sevens preseason. This is the first study to objectively assess sleep among elite rugby sevens players. Results suggest that sleep
quantity and subjective quality deteriorated during the week of highest training volume. This novel ecological descriptive study in international athletes sheds light on the notion that sleep patterns change during an elite rugby sevens preseason, and suggest that monitoring and improving sleep is necessary in an elite sport set up.

The findings of this study suggest that when international rugby sevens players have high training loads, especially with regards to TDC, HSD, A/D and sRPE, a change in sleep schedules occurs. Such findings are similar to those from previous studies conducted during training camps in rugby league where players went to bed and woke up earlier when training load increased $(29,30)$.

The trend of going to bed and falling asleep earlier found in our study could be explained by the increased recovery needs induce by the frequent exposure to high volume and intensity training load and in turn increase the overall requirements for sleep (19). Additionally, these changes could be explained by feedback provided to player regarding their sleep during preseason which could potentially increase their awareness of good sleep practices. As such, coaches could take in account this result in order to schedule the first session later in the day in order to respect sleep/wake patterns (12) of their athletes and undertake sleep education workshops which may enhance the athletes ability to recover.

The observed changes in sleep schedule may induce decreases in sleep quantity. A possibly to likely small decrease of time in bed and total sleep time for high SRPE and HSD week may further reduce an athletes ability to recover from training (e.g. higher training load and less sleep). However, this decrease remained small and it is not known if it impacts a player's level of fatigue. Anecdotally, coaches reported that the last training day of the week was often adjusted due to player fatigue. Such adjustments could have been avoided if the training schedule allowed players more time to sleep in order to recover. However, no indicators of
subjective and/or objective fatigue were measured and other contextual factors may affect performance during preseason. Further studies are warranted to investigate if small chronic sleep restriction during this period may influence or not the level of fatigue. As a strategy, to compensate for the lack of sleep, implementing short nap sessions (20-30 minutes) when athletes have two or three trainings per day, may be beneficial to reach a suitable sleep quantity (30).

We did not observe any meaningful changes in objective sleep quality indicators (i.e. fragmentation index, sleep efficiency, sleep onset latency) for external load during period of high training load. Sleep quality has been suggested to have positive effects on recovery and the adaptive training response during periods where physiological adaptations are crucial to performance (24). However, sleep quality indicators derived from actigraphy monitors differ to sleep quality assessed via polysomnography or self-reported measures and as such have to be interpreted carefully $(5,15)$. Indeed, in our study, small to moderate decreases were found for subjective sleep quality for all external load variables. In contrast, results regarding sleep efficiency or fragmentation index remained unclear. Subjective sleep quality is defined as a broad of sleep complaint encompass problem to fall asleep, fragmented sleep or impaired daytime functioning (5). One possible explanation is that sleep quality declines due to muscle damage caused by running activities (15). Further studies are necessary to know if this decrease in subjective sleep quality is associated with changes in sleep structure (e.g. sleep stages) assessed through polysomnography and levels of muscle damage during intensified periods of training.

Our data confirm poorer sleep quantity and quality among rugby sevens players than recommended value $(9,31)$, which should be acknowledged given the importance of sleep for athletic performance (13). Poor sleep quantity could increase the risk of sustaining musculoskeletal injury $(20,23)$. However sleep quantity remained consistent with other
studies in a similar population and context of preseason $(4,24,30)$. As such these results highlighted the necessity to improve sleep among elite rugby sevens players.

Efficiency of several strategies has been proved in the literature such as sleep extension (21), sleep hygiene (11), nutrition (17), light therapy or post exercise recovery (32). More than the strategy itself, practitioners should consider the context and how they delivered such strategies within their recovery routines (1). Despite differences observed in sleep parameters, we found only three clear relationships between standardized change in training load and standardized change in sleep parameters. This lack of other correlations could be explained by the large inter individual variability of sleep responses during intensified training, which highlights a challenge of undertaking sleep studies. In turn, these results highlight the necessity to monitor and improve sleep on an individual and night basis during intense periods of training in order to decrease sleep curtailment and its potential negative effects (e.g. injury, poor performance and recovery).

While this study is the first to provide information on sleep in international rugby sevens players, it is not without its limitations. Despite the low value of training load used as the respective control in comparison to the highest training loads, it would be better to appreciate baseline values for athletes following a period of rest, and no training. Indeed, this week occurred during the fifth week of preseason and in turn sleep was possibly deteriorated.

Secondarily we did not record sleep during the weekend which is a limitation of our study due to the potential changes in sleep patterns (e.g. difference between week and weekend). The staff responsible for the international players did not want the research team to record sleep during the weekend in order to allow players time off professional duties. Moreover, due to the nature of the rugby sevens, the sample size was small which is a limitation considering the high interindividual variability surrounding sleep (3). As such a bigger sample size seems
appropriate for future studies in this population. Furthermore, no daily fatigue measures were recorded. As such we do not know how these sleep changes affect the level of subjective and/or objective level of fatigue. Further studies should include a range of potential fatigue measures (muscle damage, wellbeing, and performance tests) to appreciate the complexity of sleep changes among athletes during intensified periods of training. Finally the lack of an association between acceleration and deceleration and sleep parameters may have been missed as the GPS units have a poor ability to detect these movement patterns (2).

This study showed elite rugby sevens players fall asleep and wake up earlier during the highest training load week of preseason. Additionally, sleep quantity and subjective quality deteriorated during this period. To avoid excessive fatigue due to restricted sleep, adaptation in the training schedule is needed during high weekly training loads to promote sleep extension which might be beneficial for training efficiency and recovery. Further studies are warranted to explore the influence of this poor sleep on objective fatigue markers.

Practical Applications

The main practical applications of this research include the finding that increases in training load may deteriorate sleep parameters without any change in sleep environment. As such practitioners should educate athletes about the effects of good sleep habits particularly during periods of intensified training. Furthermore, due to high between-players variability in sleep patterns, individual sleep monitoring is suggested.

Acknowledgments

The authors do not have any conflict of interest. The authors would like to thank all the French rugby sevens players and staff members for taking part in this study.

References

1. Bonnar D, Bartel K, Kakoschke N, and Lang C. Sleep Interventions Designed to Improve Athletic Performance and Recovery: A Systematic Review of Current Approaches. Sport Med 48: 683-703, 2018.
2. Buchheit M and Simpson BM. Player-Tracking Technology: Half-Full or Half-Empty Glass? Int J Sport Physiol Perform 12: S2-35-S2-41, 2017.
3. Caia J, Halson SL, Scott TJ, and Kelly VG. Intra-individual variability in the sleep of senior and junior rugby league athletes during the competitive season. Chronobiol Int 34: 1239-1247, 2017.
4. Caia J, Scott TJ, Halson SL, and Kelly VG. Do players and staff sleep more during the pre- or competitive season of elite rugby league? Eur J Sport Sci 17: 964-972, 2017.
5. Caia J, Thornton HR, Kelly VG, Scott TJ, Halson SL, Cupples B, et al. Does selfperceived sleep reflect sleep estimated via activity monitors in professional rugby league athletes? J Sports Sci 1-5, 2017.
6. Campbell PG, Peake JM, and Minett GM. The Specificity of Rugby Union Training Sessions in Preparation for Match Demands. Int J Sports Physiol Perform 1-23, 2017.
7. Cazorla G. Test de terrain pour évaluer la capacité aérobie et la vitesse maximale. Actes du colloque international de la guadeloupe: 151-173, 1990.
8. Delaney JA, Cummins CJ, Thornton H R and Duthie GM. Importance, reliability and usefulness of acceleration measures in team sports. J Strength Cond Res: ahead of print 2018.
9. Edinger JD, Bonnet MH, Bootzin RR, Doghramji K, Dorsey CM, Espie CA, et al.

Derivation of research diagnostic criteria for insomnia: report of an American Academy of Sleep Medicine Work Group. Sleep 27: 1567-1596, 2004.
10. Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, et al. A new approach to monitoring exercise training. J Strength Cond Res 15: 109-115, 2001.
11. Fullagar H, Skorski S, Duffield R, and Meyer T. The effect of an acute sleep hygiene strategy following a late-night soccer match on recovery of players. Chronobiol Int 33: 490-505, 2016.
12. Fullagar H and Bartlett JD. Time to wake up: individualising the approach to sleep promotion interventions. Br J Sports Med 50: 143-144, 2016.
13. Fullagar H, Skorski S, Duffield R, Hammes D, Coutts AJ, and Meyer T. Sleep and Athletic Performance: The Effects of Sleep Loss on Exercise Performance, and Physiological and Cognitive Responses to Exercise. Sport Med 45: 161-186, 2015.
14. Halson SL and Juliff LE. Sleep, sport, and the brain. Prog Brain Res 234: 13-31, 2017.
15. Hausswirth C, Louis J, Aubry A, Bonnet G, Duffield R, and Le Meur Y. Evidence of disturbed sleep and increased illness in overreached endurance athletes. Med Sci Sports Exerc 46: 1036-1045, 2014.
16. Hopkins WG, Marshall SW, Batterham AM, and Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41: 3-13, 2009.
17. Howatson G, Bell PG, Tallent J, Middleton B, McHugh MP, and Ellis J. Effect of tart cherry juice (Prunus cerasus) on melatonin levels and enhanced sleep quality. Eur J Nutr 51: 909-916, 2012.
18. Killer SC, Svendsen IS, Jeukendrup AE, and Gleeson M. Evidence of disturbed sleep
and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention. J Sports Sci 35: 1402-1410, 2017.
19. Lastella M, Roach GD, Halson SL, and Sargent C. Sleep/wake behaviours of elite athletes from individual and team sports. Eur J Sport Sci 15: 94-100, 2015.
20. Luke A, Lazaro RM, Bergeron MF, Keyser L, Benjamin H, Brenner J, et al. Sportsrelated injuries in youth athletes: is overscheduling a risk factor? Clin J Sport Med Off J Can Acad Sport Med 21: 307-314, 2011.
21. Mah CD, Mah KE, Kezirian EJ, and Dement WC. The Effects of Sleep Extension on the Athletic Performance of Collegiate Basketball Players. Sleep 34: 943-950, 2011.
22. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the european college of sport science and the American College of Sports Medicine. Med Sci Sports Exerc 45: 186-205, 2013.
23. Milewski MD, Skaggs DL, Bishop GA, Pace JL, Ibrahim DA, Wren TAL, et al. Chronic lack of sleep is associated with increased sports injuries in adolescent athletes. J Pediatr Orthop 34: 129-133, 2014.
24. Pitchford NW, Robertson SJ, Sargent C, Cordy J, Bishop DJ, and Bartlett JD. Sleep quality but not quantity altered with a change in training environment in elite Australian rules football players. Int J Sports Physiol Perform 12: 75-80, 2017.
25. Roe GAB, Darrall-Jones JD, Till K, and Jones B. Preseason changes in markers of lower body fatigue and performance in young professional rugby union players. Eur J Sport Sci 16: 981-988, 2016.
26. Ross A, Gill N, and Cronin J. Match analysis and player characteristics in rugby sevens. Sport Med 44: 357-367, 2014.
27. Sadeh A. The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev 15: 259-267, 2011.
28. Swinbourne R, Gill N, Vaile J, and Smart D. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur J Sport Sci 16: 850-858, 2016.
29. Thornton HR, Delaney JA, Duthie GM, and Dascombe BJ. Effects of Pre-Season Training on the Sleep Characteristics of Professional Rugby League Players. Int J Sports Physiol Perform 1-23, 2017.
30. Thornton HR, Duthie GM, Pitchford NW, Delaney JA, Benton DT, and Dascombe BJ. Effects of a 2-Week High-Intensity Training Camp on Sleep Activity of Professional Rugby League Athletes. Int J Sports Physiol Perform 12: 928-933, 2017.
31. Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 38: 843844, 2015.
32. Zhao J, Tian Y, Nie J, Xu J, and Liu D. Red light and the sleep quality and endurance performance of chinese female basketball players. J Athl Train 47: 673-678, 2012.

Figure and table legends

 session, 烃斯: recovery session, $\xrightarrow{\text { rest period. }}$

Table 2. Definitions of each sleep variable.

Table 3. Changes in training load between intensified period of training and baseline. ${ }^{* * *}$: very likely change/difference between training period. SRPE: session rating of perceived exertion, TDC: total distance covered, HSD: high speed distance, A/D: number of acceleration and deceleration, (AU): Arbitrary Unit, (m): meter, (n): number.

Table 4: Changes in sleep parameters between intensified period of training and baseline. *: possibly, ${ }^{* *}$: likely and ${ }^{* * *}$: very likely change/difference between intensified period of training and baseline. SRPE: session rating of perceived exertion, TDC: total distance covered, HSD: high speed distance, A/D: number of acceleration and deceleration.

Figure 1. Difference in sleep parameters between highest and lowest training load weeks. *: possible, ${ }^{* *}$: likely and ${ }^{* * *}$: very likely change/difference between intensified period of training and baseline. Gray zone stands for trivial.

Figure 2. Correlation between standardized change in training load variables and sleep parameters. SRPE: session rating of perceived exertion, TDC: total distance covered, HSD: high speed distance, A/D: number of acceleration and deceleration.

Table1. Typical training schedule during the period of the study.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
0830-0900				Pre warm up			
0900-1000			(2)		Injury prevention		
1000-1100							
1100-1200							
1300-1400				$1 " \bigcirc$			
1500-1600							
1600-1700							
1700-1800							

450

451

452

453

454

455

456

Table 2. Definitions of each sleep variable.

Sleep variables (units)

Bed time (hh:mm)
Sleep onset (hh:mm)
Wake time (hh:mm)

Get up time (hh:mm)
Time in Bed (min)
Sleep onset latency (min)
Total sleep time (min)
Sleep efficiency (\%)
Fragmentation index (\%)

Definition

Estimated clock at which the player attempt to sleep (press the button marker)
Estimated clock time at which the player fell asleep
Estimated clock time at which the player woke up
Estimated clock time at which the player stop sleeping (press the button marker)
Time between bed time and get up time
Time between bed time and sleep onset
Time spent asleep determined from sleep onset to wake up time, minus any wake time
Total sleep time divided by the time in bed
Sum of the mobile time (\%) and the immobile bouts $\leq 1 \mathrm{~min}$

457

458

459

460

461

462

463

464

465

466

467

468

Table 3. Mean \pm SD for the training load parameters and standardized change in mean during intensified period of training and baseline.

	sRPE (AU)		TDC (m)		HSD (m)		A/D (n)	
	Low	High	Low	High	Low	High	Low	High
Descriptive values	$\begin{gathered} 1984 \\ \pm \\ 711 \end{gathered}$	$\begin{gathered} 5216 \\ \pm \\ 674 \end{gathered}$	$\begin{gathered} 8994 \\ \pm \\ 2164 \end{gathered}$	$\begin{gathered} 29207 \pm \\ 3793 \end{gathered}$	$\begin{gathered} 988 \\ \pm \\ 562 \end{gathered}$	$\begin{gathered} 3874 \\ \pm \\ 440 \end{gathered}$	$\begin{gathered} 112 \\ \pm \\ 24 \end{gathered}$	$\begin{gathered} 353.0 \\ \pm \\ 53 \\ \hline \end{gathered}$
Standardized change in mean	1.68	59***	5.05	.54***	2,83	8***	5.00	0.65***

