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Abstract 

Invasive animals can alter the community composition of native ecosystems by 

means of competition and predation. In this study I investigated the factors that may 

facilitate coexistence between endemic ants and invasive wasps. Previous research has 

shown that entire communities can be impacted by invasions. Endemic species subject to 

pressure from invasive species may undergo a niche shift to enable coexistence and 

minimise the impact of this pressure. The invertebrate community composition of 

Nothofagus forests in the South Island of New Zealand has been altered by predation from 

Invasive Vespula wasps. Ants and wasps in this ecosystem coexist on the same trophic 

level; they simultaneously fill multiple trophic roles as primary predators, secondary 

predators, and primary consumers. The outcome of competition between species such as 

ants and wasps is not easy to predict, and may vary in different communities and with 

different densities of competitors. 

In this dissertation I aimed to determine the extent to which competition occurs 

between native ants and invasive Vespula wasps, and to investigate the impacts of invasion 

on the native invertebrate community. I quantified the invertebrate community 

composition of Nothofagus forests and then experimentally reduced wasp numbers to 

investigate any changes as a result of a reduction in predation or competition.  

The observed changes in community composition were as a result of differing 

abundances of taxonomic groups within my study sites. In order to more robustly 

determine the community effects of wasp removal it may be necessary to reduce wasp 

numbers by up to 90% for many years. Even under these conditions, species that are 

particularly vulnerable to wasp predation or competition may have already been 

permanently excluded from this system.  
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I then investigated temporal niche shifts by native ants when faced with reduced 

competition for food resources from invasive wasps. There was an increase in the numbers 

of ants foraging on honeydew when I experimentally reduced wasp numbers. This increase 

may be due to increases in both the quantity and quality of the available honeydew. When 

densities of wasps were substantially reduced there was a difference in the foraging 

abundances of ants and wasps; however, there was no change in the overall temporal 

foraging pattern of ants.   

Isotope ratios and consequently trophic levels of native competitors may change in 

response to the removal of an invasive species. To test this I examined changes in isotope 

ratios as a result of removal of wasps. The observed changes in the trophic levels of both 

ants and wasps appear to be a result of natural seasonal variation in consumption related to 

the nutritional requirements of the colony.  

Finally, I examined behavioral interactions between native ants and invasive wasps 

during foraging. This study has indicated that wasps may find and access resources more 

readily when ants are present. Native ants may facilitate foraging by wasps, as 

demonstrated by the increase in wasp numbers when foraging in the presence of ants. 

Additionally, the impact of competition between wasps and ants is likely to be density 

dependant.  

Co-occurrence between endemic and invasive competitors is possible through two 

important mechanisms, niche separation and behavioural adaptations. Native ants in this 

system are able to forage in different temporal niches than invasive wasps, and their 

dominant behaviour serves to diminish competitive interactions. These findings have 

implications for the ecology of these forests in understanding the considerable impact that 

invasive species may have on native ecosystems and particularly those species which have 

similar resource requirements. 
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1  Chapter One  

General Introduction 

 

In many ecological systems, introduced or invasive animals alter the community 

composition of native ecosystems by means of competition and predation (Human and 

Gordon 1999, Snyder and Evans 2006, Rowles and O'Dowd 2007, Bøhn et al. 2008).  

Invasive species may have superior abilities to exploit resources in their new environment, 

compared to local species, enabling them to expand rapidly into the new environment and 

outcompete native species (Sakai et al. 2001, Amarasekare 2002, Tillman 2004). Native 

species impacted by invasive organisms may continue to persist by altering the way in 

which they use shared resources. It is possible that behavioural adaptations by native 

species to dominant invaders may enable species co-occurrence in the face of competition 

for resources (Mooney and Cleland 2001). 
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When species exploit common resources the species that can maintain positive growth at 

the lowest resource level will drive other species extinct 

Competition is one of the central concepts in ecology and is defined by Welden and 

Slauson (1986) as “the induction of strain in one organism as a direct result of the use of 

resource items by another organism”. Strain in this context refers to a suboptimal 

physiological state. The impact of competition on an organism is proportional to the degree 

to which it decreases growth rate, fecundity, survival or fitness below the organism‟s 

optimal condition (Welden and Slauson 1986). In natural environments there are two 

conditions necessary for interspecific competition; 1) resource use by the competing 

species must overlap and 2) the resource availability to one species must be reduced by 

either interference or exploitation (Bonesi et al. 2004). When organisms are negatively 

impacted by competition, individual level effects such as decreased growth, decreased 

reproduction or increased mortality, and consequently population level effects, may also be 

negatively impacted. If physiological strain results in lower individual fitness within 

populations, selection pressure acting towards new optimal states can be expected resulting 

in long term evolutionary change (Welden and Slauson 1986).  

Competition between species for a food resource can be a driving force structuring 

ecosystems (Brown and Davidson 1977, Chase et al. 2002). The intensity of this 

competition is a function of the degree to which two organisms require the same resources 

and may be measured by the amount of decrease in growth rate, fecundity, size or fitness 

of an individual, or population, independent of the decrease caused by other factors 

(Abrams 1980, Welden and Slauson 1986). Species diversity in an ecosystem may be 

maintained by interspecific trade-offs in colonisation, competition, fecundity and dispersal, 

thereby reducing the impacts of interspecific competition (Palmer et al. 2003). 
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Furthermore, the availability of resources and consequently the outcome of competition 

may be influenced by environmental variation over space and time (Apps et al. 2006). 

Competitive exclusion of inferior competitors has the potential to reduce species 

richness in an environment. By mechanisms including resource partitioning coexistence 

and diversity may be maintained. Thus the effects of competition depend on the initial 

degree of niche overlap and the competitive abilities of each species (Munday et al. 2001, 

Schmitt and Holbrook 2003). Environmental variability may also increase the potential for 

co-occurrence of two competing species. Both spatial and temporal variability can enable 

competing species to partition resources, avoiding resource competition and maintaining 

populations that in a homogeneous environment would lead to the competitive exclusion of 

one of the species (Connell 1980, Bonesi and Macdonald 2004).  

 

Coexistence requires species to be different in the way they affect, and are affected by, 

resources 

There is an assumption that competition by two species for a single resource in a 

stable environment will result in competitive exclusion of the weaker competitor. 

However, competition for resources associated with space, such as food or nest sites, is 

influenced by the spatial structure of the environment. Both resources and individuals 

within a population may be either aggregated or diffuse. This variation serves to enable 

competing species to coexist in a spatially heterogeneous or patchy resource environment 

(Abrams and Wilson 2004). In addition to spatial heterogeneity, temporal heterogeneity 

may also contribute to niche partitioning. Tradeoffs along these two environmental axes 

allow species to coexist with each species utilising different points along each axis (Palmer 

et al. 2003).   
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The fundamental niche of a species relates to the range of environmental variables 

and ecological factors which would enable the species to persist indefinitely. However, the 

concept of the fundamental niche also requires information on species interactions as no 

species exists in isolation. In any environment several co-occurring species are likely to 

require similar environmental and ecological conditions. The dynamics of competition can 

serve to reduce the fundamental niche to a set of conditions which is a subset of the 

species‟ optimal niche space, termed the realised niche (Hutchinson 1957, Hubbell 2005).  

Niche overlap between species is a measure of similarity in resource requirements and 

refers to the types of resources needed rather than the resources themselves. Therefore, two 

organisms may have identical niches but not compete if they obtain the resources 

differently either spatially or temporally, or if the resource is in sufficient abundance to be 

used by both organisms at the same time. Niche overlap provides a measure of the intensity 

of competition and may also be an indication of past competition (Welden and Slauson 

1986).  

Niche shifts can result from competitive pressure and the ecological differences 

that result from niche partitioning can occur in three different ways. First, different species 

may specialise on different resources. This is the classical definition of resource 

partitioning (MacArthur and Levins 1967). Second, organisms may partition resources 

temporally. These species may be limited by the same resource but differ in terms of when 

they exploit this resource. And finally, species may differ in terms of where they 

experience limiting resources, which can lead to spatial niche partitioning (Amarasekare 

2003). 
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Coexistence requires some form of niche partitioning 

Understanding resource partitioning is fundamental to understanding strategies of 

resource use, effects of competition and mechanisms of coexistence (Abrams 1980). 

Resource partitioning can arise through competitive interactions with most resources 

commonly partitioned spatially. This occurs at a range of scales and is correlated with the 

size and abundance of competitors (Apps et al. 2006). Resources are not often partitioned 

temporally as this leads to an overall reduction in the resource (Schoener 1974). However 

resources may be partitioned temporally on a seasonal basis as nutritional requirements 

may vary with different life stages. For example, social Hymenoptera typically feed larvae 

a protein rich diet and therefore require a larger supply of protein during times of larval 

development (Beggs 2001).  

Patterns of biodiversity may be shaped by the mechanisms that promote 

coexistence. Spatial variation in resources and differing strategies of resource use enable 

species to coexist in the presence of limiting resources (Schmitt and Holbrook 2003, Chase 

2005). In the presence of ongoing competition and population interactions species evolve 

strategies that promote specialisation and partition niche space (Ricklefs 2004).  

 

The differences between species that allow coexistence are thought of as species’ niches 

If two species exist in a homogeneous resource environment one species may 

become locally extinct if there is no mechanism for coexistence. Coexistence is only 

possible when species use this resource in different manners; this is the fundamental 

principle of niche differentiation (Hutchinson 1957). Two organisms may occupy the same 

niche but not compete if the required resources are abundant or able to be obtained from 

different locations. Resource partitioning may result in differential rates of use; this may 

allow competing species to coexist, or if they are unable to partition the resource it will 
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lead to competitive exclusion with one species dominating the resource to the detriment of 

the other.   

Competitive exclusion may occur in a system where a new species has invaded and 

there has not been sufficient time for niche differentiation to occur (Gurnell et al. 2004). 

For example, Sanders et al. (2003) found that invasion by the Argentine ant, Linepithema 

humile, caused changes in the organisation of native ant communities and a loss of native 

species through the mechanisms of superior resource exploitation and interference 

competition by the Argentine ant. Niche divergence, competitive exclusion and habitat 

shifts serve to reduce or eliminate the detrimental effects of competition. In these cases the 

process of competition is often inferred by its absence (Welden and Slauson 1986). 

Species‟ traits are meaningful only in an environmental context and therefore diversity 

patterns in a spatial context are reflections of niche differences exhibited as trade-offs 

among species (Kneitel and Chase 2004). 

Competition operates on more than one timescale and the effects vary depending on 

the scale of interest. The shortest timescale encompasses the lifespan of the individual, and 

its interactions with competitors and the environment and are reflected in behavioural and 

developmental responses. The intermediate timescale spans a few generations and is seen 

in spatial patterns such as territory sizes, species composition of communities and 

distribution of species on environmental gradients. It can be reflected in reduced fitness 

and the resulting selection pressures. The longest timescale affects the evolutionary 

processes that underlie competition such as niche separation, habitat shift and territorial 

behaviour (Welden and Slauson 1986). 

Species that compete are subject to both evolutionary and ecological pressure that 

can result in niche differentiation. This differentiation can underlie the mechanisms that 

maintain ecological differences between species and promote coexistence. Niche 
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differentiation can also significantly contribute to community assembly (Tillman 1994). 

Coexistence is possible through niche differentiation. However when an invasive species 

enters an ecosystem there may not be sufficient evolutionary time for differentiation, so 

competitive exclusion of the weaker species may occur instead (Gurnell et al. 2004). There 

has been an abundance of theory over the past 50 years to explain competitive coexistence; 

however, there is far less empirical evidence. Competition for the abundant honeydew and 

protein resources in the Nothofagus forests of the Nelson region of New Zealand provides 

an ideal opportunity to investigate mechanisms of coexistence between an invasive wasp 

and resident endemic ants. 

 

Mechanisms of coexistence are important in determining the fate of a species under 

pressure from an invasive species 

The overall goal of this dissertation is to investigate the factors which may promote 

coexistence between an endemic and an invasive species.  When faced with predation or 

competition pressure from an invasive species many resident species are forced to alter the 

ways in which they use resources. If species are unable to partition resources effectively 

then the resident population will decline in number, which may lead to localised 

extinctions. Resources are not uniform and vary in abundance and quality both temporally 

and spatially. An endemic species subject to pressure from an invasive species may 

undergo a niche shift to enable coexistence and minimise the impact of this pressure. 
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1.1 Study system 

 

Nothofagus (southern beech) forests have a wide distribution in New Zealand, from 

the central North Island to the southern South Island; they are the predominant forest type 

in the northwest of the South Island of New Zealand (Stewart and Rose 1990, Wardle 

1970). Nothofagus have a wide tolerance to conditions of low rainfall and soil fertility, 

high altitude and poor soil drainage (Leathwick 1998, Wardle 1970).  Nothofagus forests in 

much of the South Island are infested with the sooty beech scale insect (Ultracoelostoma 

spp) which produces copious amounts of honeydew as a waste product (Morales et al. 

1988). The vegetation of Nothofagus forests is simple in structure with the canopy 

dominated by mature beech trees. The understory consists primarily of shrubs and small 

trees including Pseudopanax spp., Coprosma spp., Cyathodes juniperina, Leucopogon 

fasciculatus, Griselinia littoralis and juvenile Nothofagus. Moss commonly grows on 

fallen trees, and ferns are often present in the understory. 

Honeydew is an important resource driving ecological interactions in Nothofagus 

forests (Morales et al. 1988). The sooty beech scale insect infests the trunks and branches 

of black beech (Nothofagus solandri var. solandri), mountain beech (N. solandri var. 

cliffortioides), hard beech (N. truncata), and red beech (N. fusca) but rarely silver beech 

(N. menziesii) (Beggs 2001). It feeds on the sap and excretes excess carbohydrate from its 

waxy anal filament in the form of honeydew. Sooty beech scale is found in Nothofagus 

forests throughout New Zealand with the highest densities occurring in the northern half of 

the South Island (Morales et al. 1988).  

Honeydew is an important food source for birds, lizards and invertebrates, along 

with the black sooty mould also characteristic of these Nothofagus forests, which in turn is 

a food source for invertebrates (Morales et al. 1988, Markwell et al. 1993, Ewers 2002). 
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Honeydew production varies spatially and temporally within the forest in response to 

altitude, sunlight, tree age and species (Ewers 2002). The production of honeydew declines 

from late spring to summer relating to both fluctuations in the populations of scale insects 

and the increase in common wasp numbers. When common wasps harvest honeydew they 

nibble the end of the anal tube, gradually shortening it and sometimes removing it 

altogether, contributing to a decline in honeydew production over the summer months 

(Moller and Tilley 1989).  

In other systems with honeydew producing insects, invertebrates are known to 

consume the honeydew, with ants forming the dominant group of consumers (Carroll and 

Janzen 1973, Stadler and Dixon 1999, Mailleux et al. 2003). Many ants have coevolved 

with these specific food sources and may be highly territorial of the host plant. Almost all 

groups of ants harvest honeydew to some degree (Carroll and Janzen 1973, Buckley 1987). 

There are limited published studies of invertebrates feeding on honeydew in New Zealand 

Nothofagus forests. While ants have been observed feeding on the honeydew, particularly 

honeydew spilled on the bark (Moller and Tilley 1989), this resource utilisation by ants has 

never been studied.  

Prolasius advenus (Linnaeus), commonly referred to as the New Zealand bush ant, 

is the predominant ant species in New Zealand Nothofagus forests (McColl 1975). Despite 

its abundance very little is known about this species. In the Nothofagus forests of the 

Nelson area the bush ant is a generalist forager and has been observed feeding on 

honeydew produced by the sooty beech scale insect. Additionally, bush ants prey on small 

invertebrates and forage for larger, already dead, invertebrates (C. Duthie Pers. obs.). 

Huberia brounii Forel is a second endemic ant species that inhabits native forests and is 

common in leaf litter. Like the bush ant, the biology of this species is not well known (Don 

2007). Huberia is a genus endemic to New Zealand while bush ants belong to a genus with 
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all other representatives in Australia (Shuttack 2000). In addition to bush ants and H. 

brounii there are other ant species associated with Nothofagus forests; these include 

Huberia striata and Discothyrea antarctica (Don 2007).   

The German wasp (Vespula germanica) established in New Zealand in the 1940s. 

The common wasp (V. vulgaris) became established in the 1980s and has largely replaced 

the German wasp in dominating the Nothofagus forests (Harris 1991). Introduced Vespula 

wasps have successfully established in Nothofagus forests and by collecting the 

carbohydrate rich honeydew resource have reached extremely high densities (Beggs et al. 

1998, Beggs 2001). Left unchecked the common wasp biomass may exceed the total 

biomass of all birds plus introduced mammals (Thomas et al. 1990). Common wasps 

forage for protein in the form of animal prey to feed their developing larvae and they use 

carbohydrates, such as honeydew, for their own energy requirements (Harris 1991). For 

five months of the year common wasps reduce the standing crop of honeydew by more 

than 92 % impacting honey-eating native birds such as kaka, tui and bellbirds, forcing a 

switch to an alternative food source or provoking a reduction in reproductive output 

(Beggs et al. 1998). Native insects are subject to predation by common wasps, which in 

turn may affect numbers of insectivorous birds. The prey biomass consumed by common 

wasps has been estimated to be similar to the prey biomass consumed by the entire bird 

fauna (Harris 1991). Studies have also shown that native ants make up around 30 % of the 

diet of both common and German wasps (Moller and Tilley 1989, Harris 1991).  
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1.2 Study Locations 

 

This study encompasses three locations in the Nelson area in the northern South 

Island of New Zealand (41°18‟S, 173°16‟E) (Fig 1.1). One pair of experimental sites was 

established in each location. Each pair of sites consisted of a control site (wasps-

maintained) in which common wasps remained at natural levels and a treatment site 

(wasps-controlled) where common wasps were poisoned. At each location the vegetation 

was similar with the canopy dominated by the mature beech trees Nothofagus solandri and 

N. menziesii. The understory consisted primarily of Pseudopanax spp., Coprosma spp., 

Cyathodes juniperina, Leucopogon fasciculatus, Griselinia littoralis and juvenile 

Nothofagus. 

The Rotoiti Nature Recovery Project funded by the Department of Conservation 

(DOC) was established as a „mainland island‟ in 1995 with a core management area of 825 

ha. Introduced animal pests are being intensively controlled by the use of poisoning and 

trapping grids established throughout the area. The goal statement of DOC in the Rotoiti 

area is “Restoration of a beech forest community with emphasis on the honeydew cycle” 

(DOC 2000). Both common wasp numbers and honeydew levels are monitored in order to 

gauge progress in relation to this goal. Common wasps have been successfully controlled 

in Rotoiti for the first time in such a large area. Ecological responses to pest control have 

included successful fledging of kaka where previously few were surviving (Saunders and 

Norton 2001). Two areas adjacent to the mainland island have been designated as „control‟ 

areas. No trapping or poisoning has taken place in these areas and regular monitoring gives 

an indication as to the levels of introduced pests in the absence of common wasp poisoning 

and predator trapping (DOC 2000).  
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A further two locations with both common wasp poison and control sites were 

established in December 2007 to provide replicates for this study. These locations were 

owned by the Tasman District Council and both were catchment areas supplying water to 

the Nelson region. The Maitai Valley is located east of Nelson City and is a 10,000 ha 

reserve dominated by Nothofagus forest. The Roding Waterworks Reserve is located 

south-east of Nelson City and is also dominated by Nothofagus. There is currently no 

ongoing common wasp treatment in these areas and they both have significant common 

wasp populations which have been monitored by LandCare Research. 

 

Figure 1.1 Location of the three study sites in the Nelson region in the northern South Island of New 

Zealand 
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1.3 Dissertation overview 

 

Little is currently known about the ecology and life history of Prolasius advenus 

and Huberia brounii in Nothofagus forests, or their potential for competitive interactions 

with Vespula vulgaris. In this dissertation I aimed to determine the extent to which 

competition occurs between these native ants and invasive common wasps, and to 

investigate the impacts of wasp invasion on the native invertebrate community. Because 

mechanisms of coexistence are fundamentally important in determining the fate of a 

community under pressure from an invasive species I aimed to investigate how coexistence 

is achieved in the face of competition through changes in resource use. 

Chapters two, three, four and five are intended for publication and therefore I use 

the term „we‟ to acknowledge the role of my supervisor during the research process. This 

in no way detracts from the fact that this thesis is the outcome of my own original work. 

All those who helped and advised me are listed in the acknowledgements sections in each 

chapter. 

 

1.3.1 Chapter Two – Invertebrate community composition of Nothofagus forests is 

impacted by the presence of the invasive wasp Vespula vulgaris 

In chapter two I investigated community level effects of common wasp removal. 

Because of the documented effects of common wasp predation I predicted that a reduction 

in common wasp numbers would result in a change in the overall diversity and community 

composition and an increase in the number of native invertebrate species. Native ant 

species may be particularly impacted so I assessed the effect of common wasp removal on 

two native ant species Prolasius advenus and Huberia brounii.  As variation in the 
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honeydew resource and composition of the vegetation community may affect the 

community composition of invertebrates I assessed the honeydew abundance and 

community composition of vegetation for variation between sites.  

 

1.3.2 Chapter Three – Temporal patterns of honeydew foraging by an endemic ant and 

a competing invasive wasp 

In chapter three I investigated possible temporal niche shifts by bush ants in 

response to the presence of common wasps. In the face of a dominant invasive species the 

native ants in Nothofagus forests may have adjusted their pattern of resource use to avoid 

interspecific aggression or exclusion from resources. Because both bush ants and common 

wasps compete for similar food resources I predicted that I would see fewer bush ants 

foraging in areas of higher common wasp abundance. Additionally, it is possible that bush 

ants and common wasps may have partitioned the honeydew resource temporally to avoid 

direct competition. As bush ants have been observed foraging nocturnally, I expected to 

see proportionally more bush ants foraging at night in areas of higher common wasp 

abundance. In order to better understand patterns of resource use I experimentally reduced 

common wasp numbers. I predicted that this removal of a dominant competitor may allow 

an increase in the number of bush ants foraging during the day, and reduce any difference 

between the numbers of bush ants foraging both diurnally and nocturnally. 

 

1.3.3 Chapter Four – The trophic level of native ants changes in response to the 

removal of an invasive competitor 

In chapter four I examined the effect of an invasive species on the trophic level of 

native competitors, using the native ants Prolasius advenus and the invasive wasps 
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Vespula vulgaris. I asked if the isotope ratios and trophic level of native competitors 

change in response to the removal of this invasive species. Additionally, as heavy 

predation and competition pressure from an invasive species may impact populations of 

other predators I asked if the trophic positions and isotope ratios of these other predators 

change in response to the removal of an invasive species. 

 

1.3.4 Chapter Five – Density-dependent behavioural plasticity in competitive 

interactions between native ants and invasive wasps. 

In chapter five I examined interactions between the native ants Prolasius advenus 

and Huberia brounii and invasive common wasps during foraging. My specific goal was to 

determine whether the presence of exotic common wasps influenced the foraging success 

of native ants. I aimed to determine if the amount of food taken by native ants and common 

wasps differed when each species foraged individually or together. I tested if aggressive 

behaviour of common wasps or native ants was density-dependent. Additionally I assessed 

whether numerical dominance corresponds to behavioural dominance at food resources.  

 

1.3.5 Chapter Six – General discussion 

Chapter six summarises the findings of the previous four data chapters and presents 

an overall conclusion. I discuss the results obtained in relation to my overall thesis 

questions. I also discuss the relevance of my research in the context of invasion ecology. I 

conclude by discussing considerations for further research. 
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2.1 Abstract 

 

Invasive animals can alter the community composition of native ecosystems by 

means of competition and predation. Vespula vulgaris (common wasps) are significant 

predators of invertebrates in the Nothofagus forests of the South Island of New Zealand. 

Previous work has shown that common wasp numbers peak between January and May and 

consequently numbers of other invertebrates decline. We predicted that a reduction in 

common wasp numbers would result in an increase in the number, overall diversity and 

community composition of native invertebrate species, in particular native ants. Three 

pairs of experimental sites were established in different locations in the Nelson region. 

Each pair of sites consisted of a control site (wasps-maintained) in which common wasps 

remained at natural levels and a treatment site (wasps-controlled) where common wasps 

were poisoned. Invertebrate communities as all sites were sampled by pitfall and Malaise 

trapping both before and after the application of poison. Results indicated a significant 

difference in community composition caught in pitfall traps between sampling periods and 

between sites, and a significant effect of common wasp control. The community 

composition of invertebrates caught in Malaise traps was significantly different between 

sampling periods however; there was no difference between treatments or locations. 

Regardless, native ants are abundant in this forest system and seem to be unaffected by 

common wasp densities. Species that are vulnerable to common wasp predation may have 

already become scarce in areas with high common wasp abundance such as these 

Nothofagus forests, and are not recovering after such a short duration of common wasp 

reduction. There are several other hypotheses to explain our findings; however, the most 

parsimonious explanation for our results is that we may not have reduced common wasp 

numbers sufficiently to see a recovery in the community. 
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2.2 Introduction 

 

In many ecological systems introduced or invasive animals alter the community 

composition of native ecosystems by means of competition and predation (Human and 

Gordon 1999, Snyder and Evans 2006, Rowles and O'Dowd 2007, Bøhn et al. 2008).  For 

example, Human and Gordon (1999) showed that due to a superior ability at interference 

competition introduced Argentine ants are able to displace native ants at resources, leading 

to a reduction in diversity of native species. Predation can also influence the community 

composition of an invaded ecosystem. For example, an increase in the abundance of an 

invasive mantid species in the South-Eastern United States has reduced the abundance of 

other generalist predators and as a result of this decline the abundance of Hemiptera has 

increased (Fagan et al. 2002). Communities may also be structured through more complex 

mechanisms such as apparent competition. This may occur when the presence of one 

species indirectly decreases the fitness of another through the presence of a shared enemy 

(Holt 1977, van Veen et al. 2006).  

Honeydew is an important resource driving ecological interactions in many of the 

Nothofagus forests of New Zealand (Morales et al. 1988). The sooty beech scale insect 

(Ultracoelostoma spp.) infests the trunks and branches of Nothofagus trees; it feeds on the 

sap and excretes excess carbohydrate from its waxy anal filament in the form of honeydew. 

Sooty beech scale is found in Nothofagus forests throughout New Zealand with the highest 

densities occurring in the Northern half of the South Island (Morales et al. 1988). In other 

systems with honeydew producing insects, invertebrates are known to consume the 

honeydew, with ants forming the dominant group of consumers (Carroll and Janzen 1973, 

Buckley 1987, Stadler and Dixon 1999, Mailleux et al. 2003). Introduced common wasps 

(Vespula spp.) have successfully established in these Nothofagus forests and by collecting 
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the carbohydrate rich honeydew resource have reached extremely high densities (Beggs et 

al. 1998, Beggs 2001). The common wasp (Vespula vulgaris) (Linnaeus) became 

established in New Zealand in the 1980s and is now a dominant species in Nothofagus 

forests (Harris 1991, Beggs 2001). The abundant carbohydrate resource in the form of 

honeydew is the primary source of energy for common wasps enabling them to forage for 

protein in the form of animal prey to feed their developing larvae (Harris 1991). Access to 

persistent honeydew resources is also thought to be essential for behavioural and 

ecological dominance within hymenopteran communities (Way 1963, Room 1975). 

Common wasps are major predators of invertebrates in many of the Nothofagus 

forests of the South Island of New Zealand. Common wasp numbers peak between January 

and May and consequently numbers of other invertebrates decline as a result of strong 

competitive interactions and predation pressure (Moller and Tilley 1989, Beggs et al. 1998, 

Beggs 2001). The prey biomass consumed by common wasps has been estimated to be 

similar to the prey biomass consumed by the entire bird fauna, with spiders, lepidopteran 

larvae and Diptera making up the majority of the common wasp diet in the early summer 

months (Harris 1991). The probability of orb-wed spiders (Eriophora pustulosa) surviving 

the summer in areas where common wasps are abundant has been estimated to be almost 

nil (5.08 × 10
-18

) (Toft and Rees 1998). Similarly the chance of caterpillars (Kowhai moth, 

Urisephita polygonalis maorialis) surviving in areas of high common wasp abundance was 

estimated at only 10% (Beggs and Rees 1999). 

The relative biomass of common wasps has been estimated to be greater than that 

of any other predator, introduced or native, in the Nothofagus forests (Thomas et al. 1990). 

The abundance of common wasps appears likely to have the potential to restructure both 

predator and prey communities. Common wasps not only impact communities through 

predation pressure but also have the potential to restructure communities through the 
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mechanisms of competition (Beggs 2001, Beggs and Wardle 2006). Common wasps 

compete for honeydew with feral honey bees (Apis mellifera), and consume so much of the 

honeydew it becomes uneconomical for bees to forage at times of high common wasp 

abundance (Moller and Tilley 1989).  In Patagonia invasive Vespula wasps compete with 

native ants for protein (Masciocchi et al. 2009); however, there have been no similar 

published studies to determine the impact of competition on other Hymenoptera in New 

Zealand Nothofagus forests. 

Because of the documented effects of common wasps consuming native 

invertebrates (Harris 1991) we predicted that a reduction in common wasp numbers would 

result in an increase in the number, overall diversity and community composition of native 

invertebrate species. Due to similar diet and foraging patterns (Don 2007), some native ant 

species may be particularly impacted by common wasp predation and competition, hence 

we assessed the impact of common wasp removal on two common native ant species, the 

New Zealand bush ant (Prolasius advenus) and Huberia brounii.  As variation in the 

composition of the vegetation community may affect the community composition of 

invertebrates, we assessed the community composition of vegetation for variation between 

sites. Variation in the honeydew resource also has the potential to affect the numbers of 

common wasps so we compared the abundance of honeydew between sites.  
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2.3 Methods 

 

2.3.1 Study sites  

One pair of experimental sites was set up in each of three different locations in the 

Nelson region of the South Island of New Zealand. The locations were in the Nature 

Recovery Area of Nelson Lakes National Park (41°48′ S, 172° 50′ E at 630 m and 41°49′ 

S, 172° 50′ E at 630 m), Maitai Valley east of Nelson city (41°17′ S, 173° 21′ E at 160 m 

and 41°18′ S, 173° 22′ E at 265 m) and the Roding Valley south-east of Nelson city 

(42°21′ S, 173° 16′ E at 220 m and 41°21′ S, 173° 17′ E at 270 m). At each location the 

vegetation was simple in structure with the canopy dominated by the mature beech trees 

Nothofagus solandri and N. menziesii. The understory consisted primarily of Pseudopanax 

spp., Coprosma spp., Cyathodes juniperina, Leucopogon fasciculatus, Griselinia littoralis 

and juvenile Nothofagus. Each pair of sites consisted of a control site (wasps-maintained) 

in which common wasps remained at natural levels and a treatment site (wasps-controlled) 

where common wasps were poisoned. Each site in the pair was separated by no less than 

1.5 km. During February of 2008 and 2009 common wasps were poisoned at the three 

wasps-controlled sites. This was achieved by the placement of bait stations containing 

Xstinguish™ bait (active ingredient fipronil at 0.1 g/kg). Bait stations were attached to 

trees in a 50 × 200 m grid pattern covering 1 km
2 
surrounding each study site. Except for 

Nelson Lakes National Park where due to an existing pest control programme over the last 

10 years, an 8.25 km
2
 area was poisoned. Any uneaten bait was removed from bait stations 

after 48 hours. The effect of poisoning was monitored by Malaise trapping (detailed 

below). The mean numbers of common wasps caught in traps in both wasps-controlled and 

wasps-maintained sites were compared between the pre- and post-poisoning periods. 
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2.3.2 Pitfall and Malaise trapping 

All six sites were sampled in December of 2007 and 2008 and January, February 

and March of 2008 and 2009. This trapping regime encompassed two Southern 

Hemisphere summers. Two 20 x 20 m quadrats were established in each experimental site. 

Malaise traps were used to intercept flying insects. These traps consisted of a mesh tent-

like structure with a collection jar at the apex, and are useful for collecting a large number 

of specimens. One Malaise trap was placed in the centre of each quadrat. The collection jar 

in each Malaise trap was ⅓ filled with water with the addition of a drop of detergent to 

break the surface tension. Pitfall traps are designed to opportunistically collect ground 

dwelling invertebrates. These traps are dug into the ground with the trap entrance flush 

with the soil surface. In this study pitfall traps were plastic cups with a diameter of 70 mm 

and volume of 250 ml; they were ⅓ filled with water with the addition of a drop of 

detergent to break the surface tension. Twenty pitfall traps were placed haphazardly within 

each quadrat no closer than two metres to any other pitfall trap. The three locations were 

trapped concurrently each month. Traps remained in place for four days at each site. At the 

end of each trapping period all traps were collected and sieved into 70 % ethanol to 

preserve the samples. Samples were taken back to the laboratory and individuals were 

identified to family where possible, except for all common wasps and ants which were 

identified to species.  

Differences in the numbers of common wasps caught in Malaise traps in both 

wasps-maintained and wasps-controlled sites both pre- and post-poisoning was analysed 

using ANOVA with number of common wasps as the dependant variable and time (pre- or 

post-poisoning), treatment (wasps-maintained or wasps-controlled) and location (Maitai, 

Roding or Rotoiti) as fixed factors. Differences in the numbers of Huberia brounii and 

bush ants caught in pitfall traps in wasps-maintained and wasps-controlled sites both pre- 
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and post-poisoning were analysed using ANOVA with number of individuals as the 

dependant variable and time (pre- or post-poisoning), treatment (wasps-maintained or 

wasps-controlled) and location (Maitai, Roding or Rotoiti) as fixed factors. Data for this 

analysis were log10 transformed and met assumptions of normality and homoscedacity. A 

post-hoc LSD test was used to determine individual differences between sites. All 

ANOVA and T-test analyses in this chapter were performed in SPSS 16.0 (2008). 

 

2.3.3 Data analysis of invertebrate community composition 

Patterns of change in community structure before and after poisoning and between 

sites were assessed using species abundances collected from pitfall and Malaise traps from 

each site. Data were analysed in PRIMER v6 (Clarke and Gorley 2006). Abundances 

contained many zero counts making parametric analysis (which assumes statistical 

normality) unsuitable. Therefore, we used PERMANOVA (Permutational Multivariate 

Analysis of Variance) to test for differences between pre- and post-sampling periods before 

and after common wasp poisoning. PERMANOVA uses permutation procedures to obtain 

P-values thus avoiding the usual normality assumptions of ANOVA. Data were fourth root 

transformed to reduce dominance by more abundant species. The Bray-Curtis measure of 

similarity was used to perform a non-metric multidimensional scaling ordination (MDS) 

(Anderson 2005). Tests for significant differences in Malaise trap data between sampling 

periods were assessed using Analysis of Similarity (ANOSIM). The samples used for 

analyses were the numbers of individuals from each family in each site. The similarities 

percentages procedure (SIMPER) was used to calculate those families that contributed the 

most to dissimilarities between sites and sampling times.  

Differences in the total numbers of both individuals and families caught in pitfall 

and Malaise traps between wasps-controlled and wasps-maintained sites in pre- and post-



Chapter Two – Community Composition  

 

29 
 

poisoning periods was analysed, as were the differences in the numbers of both individuals 

and taxonomic groups between locations (Maitai, Roding and Rotoiti) and any interaction 

between time and treatment using ANOVA with the number of individuals or families as 

the dependant variable. Levene‟s test confirmed that ANOVA data conformed to 

assumptions of normality and homoscedacity. A post-hoc LSD test was used to determine 

individual differences between sites. 

 

2.3.4 Vegetation sampling and honeydew abundance 

To assess the similarity of the plant community between all sampling sites 

vegetation surveys were conducted. At each site all plants with a stem greater than 5 cm 

diameter were recorded along 20 line transects each 5 m in length, placed haphazardly at 

each study site within 10 m of each experimental quadrat. Each plant was recorded to 

species and abundance was tallied for each transect in each site. Abundances were fourth 

root transformed to reduce dominance by more abundant species. The Bray-Curtis measure 

of similarity was used to perform a non-metric multidimensional scaling ordination. 

PERMANOVA was then used to test for differences in the plant community between sites. 

At each site during the first sampling period in December 2007 ten Nothofagus 

trees with honeydew present on trunks were haphazardly selected. All selected trees had a 

d.b.h. measurement between 20 and 40 cm. All scale insect anal tubes with honeydew 

droplets were counted within a 30 cm band 1.5 m from the ground around each tree. Data 

were analysed using paired samples T-Test to test for differences between wasps-

controlled and wasps-maintained sites. Differences between the numbers of honeydew 

producing trees (N. fusca and N. solandri) within and between locations was calculated 

using ANOVA with number of trees as the dependant variable and site (wasps-maintained 

or wasps-controlled) and location (Maitai, Roding or Rotoiti) as fixed factors.  
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2.4 Results 

 

2.4.1 Honeydew abundance and vegetation community composition 

There was no significant difference in the number of honeydew droplets per tree 

between wasps-removed and wasps-maintained sites (T29 = -0.323, p = 0.749) (Fig. 2.1). 

We observed an average of 29.8 (± 1.99) anal filaments with honeydew per tree.  

 

Figure 2.1 Honeydew abundance across all 6 sites  

Mean ± 1 SE. All scale insect anal tubes with honeydew droplets were counted within a 30 cm band 1.5 m 

from the ground around 10 trees haphazardly selected at each site. 

 
 
 There was a significant difference in the number of honeydew producing 

Nothofagus trees between locations (F2,112 = 3.159, p = 0.046) (Fig. 2.2) and a significant 

interaction between location and site (F1,112 = 6.575, p = 0.012). There were fewer 

honeydew producing Nothofagus trees (N. fusca and N. solandri) in the wasps controlled 

sites in both Maitai and Roding. 
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Figure 2.2 Honeydew producing Nothofagus abundance across all 6 sites  

Number of honeydew producing Nothofagus per 10 m
2
  (mean ± 1 SE). At each site the number of 

Nothofagus fusca and N. solandri was recorded along 20 5 m line transects placed haphazardly within the 

study site. 

 
 

Vegetation community composition did not vary between locations or sites (Fig 2.3, 

Table 2.1).  The canopy was dominated by the mature beech trees Nothofagus solandri and 

N. menziesii. The understory consisted primarily of Pseudopanax spp., Coprosma spp., 

Cyathodes juniperina, Leucopogon fasciculatus, Griselinia littoralis and juvenile 

Nothofagus. 
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Table 2.1 PERMANOVA table of results for plant communities 

In this analysis location is Maitai, Rotoiti and Roding and site refers to the six individual sites within the 

three locations. At each site vegetation was recorded along 20 5 m line transects placed haphazardly within 

the study site. All plants were identified to species.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.3 MDS plot of vegetation community composition across all six sites.  

At each site vegetation was recorded along 20 5 m line transects placed haphazardly within the study site. All 

plants were identified to species. Each point represents pooled data from one sampling site 

 
 
 
 
 

Analysis Pseudo-F d.f. P 

    
Vegetation    

     Location 0.664 2,2 0.581 

     Site 1.532 1,2 0.312 
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2.4.2 Wasp abundance 

 

The effect of poisoning was monitored by Malaise trapping in both wasps-controlled 

and wasps-maintained sites in pre- and post-poisoning periods and was determined to 

reduce common wasp densities in the wasps-controlled sites by an average of 69.2% (± 

16.5) post-poisoning (Table 2.2, Fig. 2.4). This single poisoning event significantly 

reduced common wasp numbers for the remainder of the season. There was a significant 

interaction between location and time, due to fewer common wasps overall at Rotoiti post-

poisoning, independent of the poisoning treatment. The post-hoc analysis revealed that 

Rotoiti was significantly different (p = 0.003), this is due to the high numbers of common 

wasps at Rotoiti in both the wasps-maintained and wasps-controlled sites in the pre-

poisoning period. 

 

Table 2.2 ANOVA results for wasp abundance 

Location is Maitai, Roding or Rotoiti. Treatment is wasps-maintained or wasps-controlled and time is pre- or 

post-poisoning 

 

Analysis F d.f. P 

    

Location 2.73 2,28   0.08 

Treatment 10.19 1,28 < 0.01 

Time 12.61 1,28  < 0.001 

Treatment x Time 4.19 1,28 < 0.05 
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Figure 2.4 Numbers of common wasps caught in Malaise traps  

Mean number of common wasps (± 1 SE) in wasps-maintained and wasp-controlled sites both pre- and post-

poisoning. 

 

2.4.3 Invertebrate community composition 

There were a total of 11,319 individuals from 44 taxonomic groups present in 

Malaise traps over the two trapping seasons (Fig 2.5). PERMANOVA revealed that the 

community composition of invertebrate communities caught in Malaise traps was 

significantly different between sampling periods (Table 2.3, Fig. 2.6). There was no 

difference between treatments or between locations. Additionally there was no interaction 

between treatment and time indicating that the observed differences are due to seasonal 

differences in community composition. 
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Figure 2.5 Mean number of individuals and taxonomic groups collected in Malaise traps 

Numbers of individuals (fig. 2.5a) and taxonomic groups (fig. 2.5b) in both wasps-controlled and wasps-

maintained treatments, before and after wasp poisoning in all locations 

 

 

Figure 2.6 MDS plot for Malaise traps  

Samples were taken before and after common wasp poisoning in wasps-controlled and wasps-maintained 

sites. Wasps-controlled sites had wasp poison placed and wasp density was reduced by an average of 69.2% 

(± 16.5). Wasps-maintained sites were not poisoned and common wasps remained at natural levels. Data 

were collected over two years. Each point represents pooled data from one sampling site 
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Table 2.3 PERMANOVA table of results for invertebrate community composition 

In this analysis time is pre- or post-poisoning, treatment is wasps-maintained or wasps-controlled, location is 

Maitai, Rotoiti and Roding. 

 

Analysis Pseudo-F d.f.     P 

    

Malaise    

     Time 9.148 1,8 < 0.01 

     Treatment 0.586 1,8    0.825 

     Location 0.811 2,9    0.568 

     Time x Treatment 0.893 1,8    0.57 

    

Pitfalls    

     Time 3.302 1,8 < 0.01 

     Treatment 0.707 1,8    0.715 

     Location 2.106 2,9 < 0.05 

     Time x Treatment 0.323 1,8    0.956 

    

 

 

SIMPER analysis determined that plots were 32 % dissimilar between sampling 

periods. Of this variation 40 % was explained by seven taxonomic groups; Trichoptera, 

Pompilidae, Mordellidae, Colydiidae, miscellaneous Diptera, Hemiptera and Empididae. 

Trichoptera were three times more abundant in the pre-poisoning period and Pompilidae 

were twice as abundant before poisoning. The ANOSIM results indicate that overall 

differences were driven by different relative abundances in different sampling periods 

rather than overall differences in species composition (Table 2.4). 
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Table 2.4 ANOSIM table of results for pitfall and Malaise traps 

In this analysis time is pre- or post-poisoning, treatment is wasps-maintained or wasps-controlled, location is 

Maitai, Rotoiti and Roding. 

 

Analysis Global R    P 

   

Malaise   

     Time 0.963 < 0.01 

     Treatment -0.13    0.75 

     Location -0.049    0.56 

   

Pitfalls   

     Time 0.296    0.06 

     Treatment -0.241    0.87 

     Location 0.278 < 0.05 

   

 

When comparing the total number of individuals caught in Malaise traps (Fig. 2.5a) 

between sampling periods there was a significant difference (F1,30 = 7.55 p < 0.01). More 

individuals were caught in Malaise traps in the pre-poisoning period. There was no 

difference in  the numbers of individuals caught in Malaise traps between wasps- 

controlled and wasps-maintained treatments (F1,30 = 3.13 p = 0.08). There was no 

significant difference in the number of individuals caught in Malaise traps between 

locations (F2,30 = 0.453 p = 0.64) and there was no interaction between treatment and time 

(F1,30 = 0.589 p = 0.45). 

There was a significant difference in the number of taxonomic groups caught in 

Malaise traps between sampling periods (Fig. 2.5b) (F1,30 = 30.58 p < 0.001). There were 

significantly more taxonomic groups caught in Malaise traps in the pre-poisoning period. 

There was no difference in the number of taxonomic groups caught in Malaise traps 

between wasps-controlled and wasps-maintained treatments (F1,30 = 0.03 p = 0.87). There 

was also no significant difference in the number of taxonomic groups caught in Malaise 
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traps between locations (F2,30 = 3.19 p = 0.06) additionally there was no interaction 

between treatment and time (F1,30 = 0.49 p = 0.48). 

There were a total of 30,688 individuals from 42 taxonomic groups caught in pitfall 

traps over the two trapping years (Fig. 2.7). The PERMANOVA test indicated a significant 

difference in community composition caught in pitfall traps between sampling periods and 

a significant difference between locations (Table 2.3, Fig 2.8). There was no difference 

between treatments and no interaction between treatment and time indicating that the 

observed differences are due to seasonal differences in composition. The observed 

difference between locations is attributable to the large number of ants at one of the Maitai 

sites. 

 

Figure 2.7 Mean number of individuals and taxonomic groups collected in pitfall traps 

Numbers of individuals (fig. 2.7a) and taxonomic groups (fig. 2.7b) in both wasps-controlled and wasps-

maintained treatments, before and after wasp poisoning in all locations. 

 

SIMPER analysis determined that plots were 29 % dissimilar between sampling 

periods. Of this variation 30 % was explained by seven taxonomic groups; Histeridae, 

Staphylinidae, Scarabidae, Collembola, Calliphoridae, Lygaeidae and Psychodidae. 

Locations were 65 % dissimilar in their invertebrate community composition as 

determined by SIMPER analysis. 16 % of this variation was due to the large number of 
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ants present in one Maitai site, a further 20 % of the variation was as a result of differing 

abundances of spiders and Staphylinidae. The ANOSIM results indicate that overall 

differences were driven by different relative abundances in locations rather than overall 

differences in species composition (Table 2.4). There were some differences in different 

sampling periods however this was above the 5 % level of significance. 

 

 

Figure 2.8 MDS plot for pitfall traps  

Samples were taken before and after common wasp poisoning in wasps-controlled and wasps-maintained 

sites. Wasps-controlled sites had wasp poison applied and wasp density was reduced by an average of 69.2% 

(± 16.5). Wasps-maintained sites were not poisoned and common wasps remained at natural levels. Data 

were collected over two years. Each point represents pooled data from one sampling site 

 
 

ANOVA revealed a significant difference in the total number of individuals caught 

in pitfall traps between the pre-poisoning and post-poisoning period (Fig. 2.7a) (F1,30 = 

32.13 p < 0.001). There were a greater number of individuals caught in pitfall traps in the 

pre-poisoning period. There was a significant difference in the numbers of individuals 

caught in  pitfall traps between wasps-controlled and wasps-maintained treatments (F1,30 = 
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11.92 p < 0.01) there were more individuals in the wasps-maintained treatments; however, 

this result is skewed by the large number of ants in one maitai site. There was also a 

significant difference in the number of individuals caught in pitfall traps between locations 

(F2,30 = 4.68 p < 0.05). The post-hoc LSD test revealed that Maitai had significantly more 

individuals than both Roding and Rotoiti (p < 0.01 for each) due to greater numbers of ants 

at this site. There was, however, no interaction between treatment and time (F1,30 = 0.873 p 

< 0.36).   

There was a significant difference in the number of taxonomic groups caught in 

pitfall traps between sampling periods (Fig. 2.7b) (F1,30 = 35.95 p < 0.001), with more 

taxonomic groups in the pre-poisoning period. There was a significant difference in the 

number of taxonomic groups between wasps-controlled and wasps-maintained treatments 

(F1,30 = 5.56 p < 0.05), wasps-maintained treatments had a greater number than wasps-

controlled treatments. There was a significant difference in the number of taxonomic 

groups caught in pitfall traps between locations (F2,30 = 5.09 p < 0.05). The post-hoc 

analysis revealed that Rotoiti had more taxonomic groups and was significantly different 

from Roding (p < 0.01). However, there was no interaction between treatment and time 

(F1,30 = 0.83 p < 0.37). 

There were significant difference in the numbers of H. brounii between sampling 

times (Fig 2.9a) (F1,30 = 4.93 p < 0.05).  However, there was no effect of location or 

treatment on numbers of Huberia brounii, there was also no significant interaction between 

treatment and time.  

Numbers of bush ants decreased significantly over time in wasps-maintained and 

wasp-controlled sites (Fig. 2.9b) (F1,30 = 27.34 p < 0.00). There was also a significant 

difference in the numbers of bush ants across locations (F2,30 = 5.85 p < 0.01) the post-hoc 

analysis revealed that the Maitai location had significantly more bush ants than either 
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Roding or Rotoiti (p < 0.001 for both). There was a significant difference in the numbers of 

bush ants between the wasps-maintained and the wasps-controlled treatments (F1,30 = 18.48 

p < 0.001) there were more bush ants in the wasps-maintained treatments. Data were 

skewed necessitating log10 transformation due to extraordinarily large numbers of bush 

ants in one Maitai site in one sampling month. This may be attributable to some pitfall 

traps inadvertently being placed near bush ant nests. Two traps at this site contained more 

than 3000 ants whereas for the remainder of traps counts ranged from 0 to 300. 

 

 

Figure 2.9  Number of ants caught in pitfall traps 

Mean numbers of Huberia brounii (2.9a) and bush ants (2.9b) caught in pitfall traps (± 1 SE) in wasps-

maintained and wasp-controlled treatments both pre- and post-poisoning over all locations.  
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2.5 Discussion 

 

2.5.1 The influence of forest structure and honeydew abundance on community 

composition 

The presence of an abundant carbohydrate resource in Nothofagus forests has been 

suggested to have the potential to structure invertebrate communities (Beggs et al. 1998, 

Beggs 2001). Honeydew abundance did not vary significantly between trees in different 

sampling sites however there were fewer honeydew producing trees in two of the wasps-

controlled sites which may have had an impact on overall honeydew availability in these 

locations. Overall the vegetation community also did not vary significantly between sites 

or locations. The differences in the the numbers of individual invertebrates between sites 

was driven primarily by the high numbers of bush ants in one of the wasps-maintained 

sites at the Maitai Valley, and appears not to be related to the vegetation community or 

honeydew abundance. 

 

2.5.2 Changes in community composition following wasp poisoning 

Previous work has shown that common wasps reduce both the abundance and the 

diversity of the invertebrate community (Harris 1991, Moller et al. 1991, Beggs et al. 1998, 

Beggs 2001). It has been suggested that total prey abundance may not be impacted by 

common wasps as they are generalist predators (Beggs 2001). When one prey species 

declines, common wasps may switch to another thereby reducing or maintaining diversity 

and altering community composition, but not reducing overall abundance. In this study our 

results showed a change in the community composition in the species caught in Malaise 

traps as a result of sampling period, but no change in composition as a result of the 
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poisoning treatment. We found a change in the composition of invertebrates caught in 

pitfall traps as a result of both sampling period and location. The observed changes in 

community composition were as a result of differing abundances of taxonomic groups. 

Some taxonomic groups that were abundant early in the summer declined in number by the 

end of summer. Trichoptera caught in Malaise traps were three times more abundant at the 

start of the summer than at the end and Pompilidae were twice as abundant in the first 

sampling period. In particular the decline in ant numbers contributed most to the observed 

change in community structure; however, this pattern may be confounded by the fact that 

there was an unusually high abundance of ants at one Maitai site early in the summer.  

There are several hypotheses to explain our findings. 1) There may be no effect of 

common wasps on the invertebrate community; 2) communities take much longer to 

recover from invasion than we were able to detect in the short period of our study; 3) we 

may not have reduced common wasp numbers sufficiently to see an effect; 4) we may have 

conducted the poisoning treatment too late in the season; 5) we may have missed variation 

by only identifying samples to the family level, and finally; 6) our results may be due to 

natural seasonal variation in the invertebrate community. We will address each of these 

potential explanations in turn. 

Common wasps may have no effect on the community composition of invertebrates 

in this system. We did not find any differences in the community composition of 

invertebrates that we could directly attribute to the reduction in the numbers of common 

wasp. However, this explanation seems unlikely in the light of numerous other studies that 

document an impact of common wasps on native invertebrates in New Zealand Nothofagus 

forests (Harris 1991, Toft and Beggs 1995, Toft and Rees 1998, Beggs and Rees 1999, 

Beggs 2001). 
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Natural communities take a long time to recover from invasions. Common wasps 

have had a significant impact on the Nothofagus community for the past 20 years. Species 

that are particularly vulnerable to common wasp predation may have already become 

scarce in areas with high common wasp abundance such as these Nothofagus forests, and 

the limited period of our experiment (only two years) may not be of a sufficiently long 

timeframe to see any recovery in the natural community. Those invertebrates most likely to 

be impacted by common wasp predation may have disappeared from the community after 

the initial invasion of common wasps nearly 20 years ago. It may be too late to save the 

most vulnerable species which have already been subject to invasion by the wasp Vespula 

germanica in the 1940‟s, and common wasps in the 1980‟s, constituting 40 years of 

predation by Vespula wasps (Toft and Rees 1998). For the community to be able to recover 

from invasion by Vespula spp. it may take considerably longer than two years to see any 

change in community structure as a result of wasp poisoning, and additionally recovery 

relies on vulnerable species being able to disperse back into this environment. 

We may not have reduced common wasp numbers sufficiently to see a recovery in 

the community. It is possible that only those species less impacted by common wasps 

remain in these communities. To be able to detect any recovery in vulnerable species, 

common wasp numbers may need to be reduced to a greater extent. Even if the poisoning 

effort were to continue long term, as is the case at Rotoiti where there is an existing 

predator control programme where common wasps have been poisoned for the last ten 

years, the reduction in common wasp numbers by only 70% may not be enough to have a 

significant impact on the abundance and diversity of prey species. It has been estimated 

that to conserve species vulnerable to common wasp predation, common wasp numbers 

need to be reduced by 80 – 90% (Beggs et al. 1998, Toft and Rees 1998, Beggs and Rees 

1999). Additionally, there was significant variation in common wasp abundance between 
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sites in the pre-poisoning period. Even though there was a reduction in common wasp 

numbers in the post-poisoning period in all wasps-controlled sites, there was also a 

reduction in common wasp numbers in two out of three wasps-maintained sites. This 

variation in abundance may have confounded our results. 

We may have conducted the poisoning treatment too late in each season to see an 

impact of a reduction in common wasp numbers on the invertebrate community. Poisoning 

took place at the point of highest common wasp abundance, the end of February. This 

method was employed as studies have shown that poisoning before this time is ineffective 

as there is often such an abundance of other prey species that common wasps are not 

attracted to protein bait (Beggs et al. 1998, Beggs 2001). This method does serve to have 

the greatest impact on common wasp numbers, however; the impact of high common wasp 

numbers prior to poisoning may have reduced the numbers of prey for the remainder of the 

summer.  

Additionally, our method of identifying invertebrates only to family may have 

missed variation in the community as a result of common wasp removal. If we had 

identified our catch to species, or even genus, we may have picked up changes based on 

preferential predation from common wasps. However, given the time and logistical 

constraints of species identification it was decided a priori that the family level of 

classification would be sufficient. 

Finally, the observed differences may be as a result of natural seasonal variation in 

community composition. Our results indicate that the community diversity of both flying 

insects and ground dwelling insects (as indicated by Malaise and pitfall trap catches 

respectively) varies through time but were not impacted by a reduction in common wasp 

numbers. Additionally, it appears that common wasp numbers also decrease seasonally 

independent of the poisoning treatment. Invertebrate communities may be significantly 
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restructured due to predation from common wasps. Species especially vulnerable to 

common wasp predation may be detectable only during those months when common wasps 

are at low numbers or absent (Beggs and Rees 1999). Our sampling encompassed the 

entire southern hemisphere summer months from December to February and therefore the 

observed variation in community composition may be a reflection of natural seasonal 

variation in population numbers. The Trichoptera caught in Malaise traps were three times 

more abundant at the start of the summer than at the end. This variation is a natural 

phenomenon, as peak summer emergence for Trichoptera is between December and 

January (Collier and Smith 1998). Similarly Pompilidae are active primarily during the 

summer months (Roberts 1977), which may account for the observation that Pompilidae 

were twice as abundant in the first sampling period.  

 

2.5.3 Changes in ant abundance following common wasp poisoning 

The decline in numbers of bush ants was the major factor contributing to the 

observed change in invertebrate community composition. The numbers of bush ants 

declined in pitfall traps between the pre- and post-poisoning period. This decline was not 

related to an increase in competition from common wasps as numbers of this ant also 

declined by similar amounts in the wasps-controlled sites. Ants in other systems are known 

to exhibit seasonal variation in numbers and changes in foraging activity (Levings 1983). 

This variation may be related to moisture levels, with numbers declining as the 

environment becomes drier. Numbers of H. brounii caught in pitfall traps were very low. 

There was a mean of 0.013 (± 0.002) ants per trap in the pre-poisoning period and a mean 

of 0.12 (± 0.008) in the post poisoning period across all sites. This compares with average 

abundances of bush ants in the pre- and post-poisoning periods of 48.18 (± 13.11) and 5.01 

(± 1.15) respectively. Observations during this and other field studies (detailed in chapters 
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three and four) confirm that numbers of H. brounii foragers increase later in the summer. 

These seasonal changes in ant abundance are clearly not related to our poisoning treatment. 

The mechanism for this is unknown as very little literature exists on these ants and no 

papers have yet been published on their ecology and life history. Native ants are abundant 

in this forest system and seem to be unaffected by common wasp densities. Therefore, it 

may be important to understand how native ants, with similar foraging habits and life 

history strategies as invasive common wasps, manage to maintain robust populations when 

it could be expected that they would be most impacted by the detrimental effects of 

competition. Future chapters in this thesis will investigate behavioural changes and 

changes in isotope ratios as a result of competitive interactions between native ants and 

invasive common wasps. 

  

2.6 Conclusion 

 

We predicted that a reduction in common wasp numbers would result in an increase 

in the number, overall diversity and community composition of native invertebrate species. 

The observed changes in community composition after a reduction in common wasp 

numbers were as a result of differing abundances of taxonomic groups rather than a 

difference in overall community composition. There was an overall decline in the numbers 

of many taxonomic groups over the summer period. Under pressure from invasive 

omnivorous species, such as Vespula wasps, the abundance of prey species decline as a 

result of increased predation. We then see a consequent decline in the number of other 

predacious species. There are several potential hypotheses to explain our observed results. 

There may be no effect of common wasps on the invertebrate community; communities 
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take much longer than the period of our study to recover from the impacts of invasion; we 

may have conducted the poisoning treatment too late in the season; we may have missed 

variation by only identifying samples to the family level; and finally, our results may be 

due to natural seasonal variation in the invertebrate community. However the most 

parsimonious explanation may be that we did not reduce common wasp numbers 

sufficiently to see a corresponding change in the invertebrate community. In order to more 

robustly determine the community effects of common wasp removal it may be necessary to 

reduce common wasp numbers by up to 90 % for many years. Even under these conditions 

species that are particularly vulnerable to common wasp predation or competition may 

have already been permanently excluded from this system. 
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3.1 Abstract 

 

Invasive species may have superior abilities to exploit resources in their new 

environment. Native species affected by competition with invasive species may continue to 

persist by altering the way in which they use shared resources. Previous research has 

shown that the invasive common wasp (Vespula vulgaris) now dominates the supply of 

honeydew in Nothofagus forests of the South Island of New Zealand to the detriment of 

native birds and insects. In the face of this invasive species the native bush ants (Prolasius 

advenus) may have adjusted their pattern of resource use to avoid interspecific aggression 

or exclusion from resources. We studied temporal patterns of honeydew foraging on 

Nothofagus trees in two different sites, one of which had a long-term programme of 

common wasp reduction by poisoning. Because bush ants and common wasps compete for 

the same food resources we predicted that we would see spatial and temporal partitioning 

of resource use; specifically, fewer bush ants foraging in areas of higher common wasp 

abundance and more bush ants foraging at night when common wasps do not forage. Our 

results suggest a reduction in common wasp numbers may provoke an increase in the 

numbers of bush ants foraging on trees. However, there were more bush ants foraging 

overall in the wasps-maintained site regardless of sampling period, therefore there may 

have been inherent differences in our sampling sites. Common wasps were absent from 

trees during the night whereas bush ants continued to forage in consistent numbers. 

However, similar numbers of bush ants foraged both during the day and at night in both 

wasp-controlled and wasp-maintained sites, there was no evidence of a difference in 

diurnal and nocturnal use of the honeydew resource by bush ants and this observed pattern 

of foraging was not affected by the reduction of common wasp numbers. Any variation in 

foraging behaviour may be regulated by abiotic factors and colony resource requirements. 
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3.2 Introduction 

 
 
 

If two species co-occur in a homogenous environment and utilise the same 

resources one will inevitably become locally extinct. Coexistence is only possible when 

species use their environment or resources in different manners; this is the principle of 

niche differentiation (Hutchinson 1957, Hubbell 2005). Understanding resource 

partitioning is fundamental to understanding strategies of resource use, the effects of 

competition, and the mechanisms of coexistence (Abrams 1980). Subdivision of resources 

and different strategies of resource use may control species dynamics and enable two 

competing species to coexist regionally (Tillman 1994, Schmitt and Holbrook 2003, 

Kneitel and Chase 2004, Chase 2005).  

In the presence of ongoing competition and population interactions species may 

evolve strategies that promote specialisation and partition niche spaces (Ricklefs 2004). 

Two organisms may have identical niches but not compete if they obtain resources 

differently, either spatially or temporally, or if the resource is sufficiently abundant to be 

used by both organisms at the same time (Welden and Slauson 1986). Resource 

partitioning can arise through competitive interactions, with most resources partitioned 

spatially. This occurs at a range of scales and is correlated with the abundance of 

competitors (Apps et al. 2006). Organisms may also partition resources temporally, 

occurring when different species differ in terms of when they exploit this resource 

(Amarasekare 2003, Palmer et al. 2003).  

Resources are not commonly partitioned temporally over short periods of time as 

this may lead to an overall reduction in the resource (Schoener 1974); so the most 

commonly observed form of temporal resource partitioning is on a seasonal basis, as 

nutritional requirements may vary with different life stages (Carroll and Janzen 1973). 



Chapter Three – Temporal Foraging Patterns  

 

56 
 

However, temporal niche partitioning occurs in ant communities (Vepsäläinen and 

Savolainen 1990, Cerdá et al. 1997, Lessard et al. 2009) with different daily and seasonal 

foraging times, driven by different thermal tolerances, enabling coexistence of competing 

species (Andersen 2008). Retana and Cerdá (2000) have demonstrated that within forest 

ant communities the influence of temperature fluctuations favour dominant species; 

therefore, competition is the primary mechanism structuring these communities. Similarly, 

Raimundo et al. (2009) found that in ant communities weaker competitors temporally 

segregated foraging to avoid interspecific aggression at food sources. 

Invasive species, when compared to local species, may have superior abilities to 

exploit resources in their new environment enabling them to expand rapidly and 

outcompete native species (Sakai et al. 2001, Amarasekare 2002, Tillman 2004). For 

example, within Vespula spp. the ability to regulate colony size and longevity in a new 

environment, combined with an omnivorous diet, appears to have enabled them to affect 

multiple trophic levels of an invaded food web through the mechanism of predation and the 

superior ability to exploit other food resources (Moller 1996, Wilson et al. 2009).  

Native species impacted by invasive organisms may continue to persist by altering 

the way in which they use shared resources. Additionally spatial heterogeneity may 

provide opportunities for resource partitioning and lead to coexistence (Shurin et al. 2004). 

Honeydew is an important resource driving common wasp abundance and ecological 

interactions in the Nothofagus forests of much of New Zealand (Morales et al. 1988). The 

sooty beech scale insect (Ultracoelostoma spp.) infests the trunks and branches of 

Nothofagus trees; it feeds on the sap and excretes excess carbohydrate from its waxy anal 

filament in the form of honeydew. Sooty beech scale is found in many Nothofagus forests 

throughout New Zealand with the highest densities occurring in the northern half of the 

South Island (Morales et al. 1988). In other systems with honeydew producing insects, 
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invertebrates are known to consume the honeydew, with ants forming the dominant group 

of consumers (Carroll and Janzen 1973, Buckley 1987, Stadler and Dixon 1999, Mailleux 

et al. 2003).  

The invasive common wasp Vespula vulgaris (L.) (hereafter referred to as 

„common wasp‟), a native of Europe, established in the 1980s in the Nothofagus forests of 

the South Island of New Zealand and now dominates these forests (Clapperton et al. 1994)  

to the detriment of native birds and insects (Harris 1991).  The abundant carbohydrate 

resource in Nothofagus forests is the primary source of energy for common wasps, 

enabling them to forage for protein in the form of animal prey to feed their developing 

larvae (Harris 1991). The predominant ant species in these forests is Prolasius advenus (Fr. 

Smith) commonly known as the New Zealand bush ant (McColl 1975). The bush ant is a 

generalist forager and has been observed feeding on honeydew consuming small 

invertebrates and scavenging for larger invertebrates (Don 2007). Thus the diet of these 

ants closely resembles that of the introduced common wasps. 

In the face of a dominant invasive species the native bush ants in Nothofagus 

forests may have adjusted their pattern of resource use to avoid interspecific aggression or 

exclusion from resources. Because both bush ants and common wasps compete for similar 

food resources we predicted that fewer bush ants would be observed foraging in areas of 

higher common wasp abundance either as a result of a reduction in overall ant numbers 

due to competitive exclusion or as a result of a niche shift. Additionally, bush ants and 

common wasps may partition the honeydew resource temporally to avoid direct 

competition. As bush ants have been observed foraging nocturnally we expected to see 

more bush ants foraging at night in areas of higher common wasp abundance. In order to 

better understand patterns of resource use we worked in the only New Zealand site that has 

experienced a long-term reduction in common wasp densities and in a nearby adjacent site 
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with high common wasp abundances. We predicted that this reduction in numbers of a 

dominant competitor may provoke an increase in the number of bush ants foraging during 

the day and reduce any difference between the numbers of bush ants foraging both 

diurnally and nocturnally. 

 

3.3 Methods 

 

3.3.1 Study site and species 

This study was conducted in two sites during January and April 2007 in the Rotoiti 

Nature Recovery Project area in Nelson Lakes National Park, a 5000 hectare reserve within 

a national park in the South Island of New Zealand (41°49′ S, 172° 50′ E at 615m 

elevation). There is an ongoing predator control program in this reserve in which common 

wasp numbers have been seasonally reduced by poisoning for the last 10 years. For this 

reason our study was only conducted in these two sites and not replicated more widely. 

The vegetation was simple in structure with the canopy dominated by the mature beech 

trees Nothofagus solandri and N. menziesii. The understory consisted primarily of 

Pseudopanax spp., Coprosma spp., Cyathodes juniperina, Leucopogon fasciculatus, 

Griselinia littoralis and juvenile Nothofagus. One site was designated the „wasps-

maintained‟ site and the second site was designated the „wasps-controlled‟ site where at the 

end of February, mid way through the sampling season, common wasps were poisoned. 

The common wasp became established in New Zealand in the 1980s and is now a 

dominant species in Nothofagus forests (Harris 1991, Beggs 2001). The bush ant is a 

common ant species in these Nothofagus forests; they are generalist foragers and make 

their nests in the leaf litter under rocks and in logs (Don 2007). 
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3.3.2 Poisoning 

Common wasps were poisoned by the Department of Conservation in the wasps-

controlled site at the end of February 2008. Common wasp control had been undertaken at 

a similar time of year in the previous years. This was achieved by the placement of 

Xstinguish™ bait (active ingredient fipronil at 0.1 g/kg) in permanent bait stations. Bait 

stations were attached to trees in a 50 × 200 m grid pattern covering 825 ha. This poisoning 

area is part of a pest control programme at Nelson Lakes National Park that has been 

ongoing since 1997 (DOC 2006). Any uneaten bait was removed from bait stations after 48 

hours. The effect of poisoning was monitored by Malaise trapping and was determined to 

reduce common wasp densities at this site by an average of 70.9 % (± 28.7) (data presented 

in chapter two). This single poisoning event significantly reduced common wasp numbers 

in the wasps-controlled site for the remainder of the season. 

 

3.3.3 24 Hour observations of foraging 

 Ten trees with honeydew and foraging bush ants present were haphazardly selected 

at each site. All bush ants and common wasps on each tree were counted every hour for a 

period of 24 hours. Time was separated into day (6 am to 8 pm) and night (9 pm to 5 am) 

based on times of sunrise and sunset. The majority of bush ants appeared to forage within 2 

m of the ground (C. Duthie Pers. Obs.), therefore only those bush ants and common wasps 

foraging on trunks up to a height of 2 m above the ground were counted. Counts lasted 1 

minute per tree to reduce the possibility of counting the same animals twice. On all 

occasions temperatures ranged between 16 °C during the day and 10 °C during the night, 

there was no rain during any of the observational periods. 
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3.3.4 Data analysis 

The number of bush ants and common wasps foraging during the day in wasps-

maintained and wasps-controlled sites, pre- and post-poisoning was analysed using 

ANOVA with total numbers of bush ants and common wasps in each time period as the 

dependent variable. The fixed factors were treatment (wasps-maintained or wasps-

controlled) and month (pre- and post-poisoning); the interaction between treatment and 

month was also tested. Twenty four hour observations of foraging were analysed using 

repeated-measures ANOVA. Time (hours) was the fixed factor and month (pre- and post-

poisoning), treatment (wasps-maintained or wasps-controlled), and animal (common wasps 

or bush ants) were the between-subject factors. The relationship between the numbers of 

bush ants and the numbers of common wasps foraging during the day was analysed using 

Spearman's correlation. Comparisons of the numbers of bush ants foraging during the day 

and night in wasps-controlled and wasps-maintained sites in both pre- and post-poisoning 

periods was analysed using ANOVA with numbers of bush ants as the dependent variable 

and treatment (wasps-maintained or wasps-controlled), month (pre- and post-poisoning), 

and time (day, 6am to 9pm, or night, 10pm to 5am) as fixed factors. Data were Log10 

transformed and met assumptions of normality. Where the assumption of sphericity was 

violated in the repeated-measures ANOVA we used the Greenhouse-Geisser correction. 

All analyses were performed in SPSS 16.0 (2008). 
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3.4 Results  

There were more bush ants foraging on trees in the wasps-maintained site 

compared to the wasps-controlled site (Fig 3.1). In the wasps-maintained site there was a 

mean of 93.93 ± 6.59 and 98.93 ± 6.59 ants in the pre- and post-poisoning periods 

respectively. In the wasps-controlled site there was a mean of 15.53 ± 2.39 and 33.53 ± 

2.39 ants in the pre- and post-poisoning periods respectively. Bush ant numbers increased 

in the wasps-controlled site in the post poisoning period indicated by a significant effect of 

month on bush ant numbers (Table 3.1), there was no significant interaction between 

treatment and month as bush ant numbers did not differ in the wasps-maintained area 

between pre- and post-poisoning periods. 

 

Table 3.1 Results for ANOVA analysis of day-time foraging 

The number of bush ants and common wasps foraging during the day in wasps-maintained and wasps-

controlled sites, pre- and post-poisoning. The fixed factors were treatment (wasps-maintained or wasps-

controlled) and month (pre- and post-poisoning).  

 

Analysis F d.f. P 

    

Ants    

    Treatment 210.133 1,56 < 0.001  

    Month     5.376 1,56    0.024   

    Treatment x Month 1.717 1,56         0.195 

    

    

Wasps    

    Treatment 20.302 1,56 < 0.001  

    Month 0.600 1,56         0.442 

    Treatment x Month 15.544 1,56 < 0.001  
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Figure 3.1 Foraging by bush ants and common wasps 

Numbers of bush ants (open bars) and common wasps (closed bars) foraging on trees during the day in both 

wasps-maintained and wasps-controlled sites, pre- and post-poisoning (data are means ± 1 SE) 

 

There were more common wasps foraging in the wasps-maintained site in the post-

poisoning period but fewer common wasps foraging in the wasps-controlled site in the 

post-poisoning period (Fig 3.1). In the wasps-maintained site there was a mean of 22.47 ± 

2.06 and 28.47 ± 1.91 common wasps in the pre- and post-poisoning periods respectively. 

In the wasps-controlled site there was a mean of 21.41 ± 2.33 and 12.47 ± 1.02 common 

wasps in the pre- and post-poisoning periods respectively. There was a significant 

interaction between treatment and month. Common wasp numbers decreased in the wasp-

controlled site in the post poisoning period yet increased in the wasp-maintained site 

indicating that the poisoning treatment had the effect of reducing common wasp numbers. 
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Figure 3.2 twenty-four hour foraging by bush ants and common wasps 

Numbers of both bush ants (closed symbols) and common wasps (open symbols) foraging on trees over a 24 

hour period in both the wasps-maintained and the wasps-controlled sites before the poison treatment was 

applied (Fig. 2a) and after the poison treatment was applied (Fig. 2b). All data are means ± 1 SE. Data have 

been standardized by Log10 transformation to enable patterns to be more easily interpreted. 

 
 

Within each 24 h period, we observed a significant difference in the numbers of bush 

ants and common wasps across time periods (Fig 3.2, table 3.2). Common wasps remained 

at low numbers during the day and were absent between the hours of 9pm and 6am, 

whereas bush ants continued to forage throughout both day and night. There were 

significant differences in the numbers of bush ants over time represented by a peak in 

abundance between 8 and 10 pm as wasps cease to forage for the night and a decline in 

number at dawn as wasps begin foraging for the day, after 9am ant numbers rise again to 

relatively stable day time levels. There was also a significant difference in the numbers of 

ants over time in the different treatment sites due to more bush ants foraging on trees in the 

wasps-maintained site compared to the wasps-controlled site. There was no significant 

difference in bush ant numbers between sampling periods (pre- and post-poisoning). There 

was a significant difference in the numbers of wasps foraging over time, wasps were 

completely absent between 10 pm and 6 am. There was no significant difference in the 
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overall numbers of common wasps foraging over time in the different treatment sites or the 

different sampling periods. There was, however, a significant interaction between 

treatment and month, as there were more common wasps foraging in the wasps-controlled 

site in the pre-poisoning period yet more common wasps were foraging in the wasps-

maintained site in the post-poisoning period. 

 

Table 3.2  Results for repeated measures ANOVA analysis of 24 hour foraging 

Time (hours) was the fixed factor and month (pre- and post-poisoning), treatment (wasps-maintained or 

wasps-controlled), and animal (common wasps or bush ants) were the between-subject factors.  

 

Analysis F d.f. P  

     

Common wasps and bush ants     

    Time 3.57 2.50,180.1 < 0.05     

    Time x Animal 7.62 2.50,180.1 < 0.001  

    Time x Treatment 4.02 2.50,180.1 < 0.01     

    Time x Month 0.54 2.50,180.1    0.62  

    Time x Animal x Treatment 4.31 2.50,180.1 < 0.01     

    Time x Animal x Month 0.63 2.50,180.1    0.57  

    Time x Treatment x Month 0.48 2.50,180.1    0.66  

    Time x Animal x Treatment x Month 0.80 2.50,180.1    0.48  

     

Bush ants     

    Time 5.15 2.46,88.61 < 0.001  

    Time x Treatment 4.20 2.46,88.61 < 0.01    

    Time x Month 0.57 2.46,88.61    0.60  

    Time x Treatment x Month 0.57 2.46,88.61    0.60  

     

Common wasps     

    Time 38.29 3.47,125.01 < 0.001  

    Time x Treatment 1.49 3.47,125.01    0.21  

    Time x Month 1.49 3.47,125.01    0.21  

    Time x Treatment x Month 5.93 3.47,125.01 < 0.001  
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Figure 3.3 Relationship between foraging bush ants and common wasps 

Relationship between the numbers of bush ants and the numbers of common wasps foraging during the day 

in the wasps-maintained site pre-poisoning (Fig 3a) and the wasps-maintained site post-poisoning (Fig 3b) 

and the wasps-controlled site pre-poisoning (Fig 3c) and the wasps-controlled site post-poisoning (Fig 3d). 

Lines fitted are beta spline curves. 

 
 In the wasps-maintained site in the pre-poisoning period, common wasp numbers 

increased as bush ant numbers increased (r
 
= 0.282 p < 0.001) however, in the post-

poisoning period common wasp numbers declined with an increase in bush ant numbers (r
 

= -0.276 p < 0.001) (Fig 3.3). In the wasps-controlled site there was no relationship 

between bush ant numbers and common wasp numbers in either the pre- or post-poisoning 

periods. 



Chapter Three – Temporal Foraging Patterns  

 

66 
 

 

Figure 3.4 Bush ants foraging over 24 hours 

Comparisons of the numbers of bush ants foraging during the day and night in wasps-maintained and wasps- 

controlled sites before (open bars) and after poisoning (closed bars) (data are means ± 1 SE) 

 

There were consistently more bush ants foraging on trees in the wasps-maintained site 

compared to the wasps-controlled site (Fig 3.4, table 3.3). There were also more bush ants 

foraging on trees in the post-poisoning period when compared to the pre-poisoning period. 

There were significantly more bush ants foraging on trees during the night (103.03 ± 15.25 

at night, 60.48 ± 5.34 during the day). There was a significant interaction between 

treatment and month; a similar number of ants were foraging during both day and night in 

the wasps controlled area in the post-poisoning period whereas in the wasps-maintained 

area considerably more ants foraged during the day in the post poisoning period. 
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Table 3.3 Results for ANOVA analysis of ant foraging over 24 hours. 

Comparisons of the numbers of bush ants foraging during the day and night in wasps-controlled and wasps-

maintained sites in both pre- and post-poisoning periods. Numbers of bush ants were the dependent variable 

and treatment (wasps-maintained or wasps-controlled), month (pre- and post-poisoning), and time (day, 6am 

to 9pm, or night, 10pm to 5am) were fixed factors. Data were Log10 transformed to meet assumptions of 

normality.  

 

Analysis  F d.f.      p 

    

Day or Night 17.798 1,88 <0.001  

Treatment 282.564 1,88 <0.001  

Month 28.705 1,88 <0.001  

Time x Treatment 1.156 1,88  0.285 

Time x Month 0.003 1,88  0.959 

Treatment x Month 9.442 1,88 <0.01    

Time x Treatment x Month 2.767 1,88  0.100 

    
 

3.5 Discussion 

3.5.1 Ant foraging in relation to common wasp abundance 

LandCare Research have conducted annual common wasp density surveys at Nelson 

Lakes National Park since 1988. The mean abundance of nests during this time was 18.5 (± 

2.05) (LandCare Research, unpublished data). Common wasp densities in 2007 were 

recorded at 18.7 nests per hectare; therefore, wasp abundance during this study was at 

average levels for this location. 

Common wasp numbers were successfully reduced in the wasps-controlled site 

resulting in fewer common wasps foraging on trees in the post-poisoning period. 

Additionally, we saw an increase in common wasp numbers in the post-poisoning period in 

the wasps-maintained site indicating a typical seasonal increase in numbers (Beggs et al. 

1998). From our data, at this single location, it appears that a reduction in common wasp 

numbers may provoke an increase in the numbers of bush ants foraging on trees. The 
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numbers of bush ants increased in the wasps-controlled site when common wasp numbers 

were experimentally reduced and yet bush ant numbers remained stable in the wasps-

maintained site in the post-poisoning period. Common wasps and bush ants have been 

observed foraging for the same type of food, such as dead insects and honeydew, so may 

directly compete for protein and carbohydrates in these forests. It could be expected that 

bush ants and common wasps may also directly compete for honeydew and yet bush ants 

continue to forage on honeydew even when faced with high numbers of common wasps. 

With a reduction in common wasp numbers bush ants may be better able to utilise the 

abundant honeydew resource. However, the resulting increase in honeydew use by bush 

ants may not be entirely a result of a reduction in direct competition but rather an increase 

in the quantity or quality of the resource. When common wasp numbers are at their peak 

they are capable of removing up to 99 % of the standing honeydew crop (Moller et al. 

1991). Additionally with such high honeydew use the quality of the drops declines (Moller 

and Tilley 1989), meaning that bush ants would have to forage more on the lesser quality 

honeydew for the same nutritional pay-off as higher quality honeydew.  

Honeydew is a patchy resource and varies with tree age, size, and aspect; 

consequently the invertebrate community varies across patches within the forest (Ewers 

2002). If the honeydew resource were more abundant, or of better quality, in the wasps-

maintained site this could enable bush ant populations to become concentrated. Better 

competitors with greater dispersal ability (in this case common wasps) may result in 

weaker competitors becoming concentrated in patches with greater resource density 

(Abrams and Wilson 2004) as common wasps are influenced by their dispersal ability and 

will not attain densities that would reduce the resources. Alternatively if the honeydew 

resource were of lesser quality in the wasps-maintained site, due to constant harvesting by 

common wasps, then bush ants may need to feed more frequently on this resource to gain 
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enough nutrition for the colony. Dussutour and Simpson (2008) found that ants are able to 

regulate their carbohydrate intake and when presented with a less concentrated resource 

had to feed for longer to meet the „nutritional intake target‟ of the colony. Alternatively 

there may be subtle differences in the microclimate or habitat influencing nest choice by 

bush ants. Bush ants nest under rock or in logs (Don 2007) and appear to avoid areas where 

the soil moisture is high.  

 

3.5.2 Experimental caveats 

This research, which occurred at a single location, is pseudoreplicated and therefore 

may not be a valid representation of interactions in Nothofagus systems elsewhere. The 

unique opportunity to investigate interactions within this forest, with such a long-term 

history of common wasp control, was unable to be replicated elsewhere therefore the 

results obtained are specific to this location but inferences may be made for other 

Nothofagus systems. There were more bush ants foraging overall in the wasps-maintained 

site regardless of the sampling period therefore there may have been inherent differences in 

our two sampling sites despite their observed similarities in vegetation, aspect, and 

elevation. Given that common wasps and bush ants share similar life history strategies, and 

overlap considerably in diet, it may be expected that bush ants would also be impacted by 

the effect of poisoning. However, poison stations were spaced in a 50 m by 200 m grid 

pattern making it unlikely that significant numbers of bush ants would have access to this 

poison. Bush ant nest density in this location is 0.06 (± 0.015) nests m
2
, or 600 nest ha

-1 
(C. 

Duthie unpublished data). It is possible that a few nests in close proximity to poison 

stations may have been affected but a significant reduction in bush ant numbers across the 

entire area due to poison seems unlikely. It is also possible that wasp densities we not 
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controlled sufficiently to see conclusive results. These caveats are all related to historic 

management practices. 

 

3.5.3 Temporal partitioning of the honeydew resource 

Temporal separation is common amongst ants in hot climates where conditions 

may be lethal to some species giving sole access to those species able to tolerate extreme 

temperatures (Andersen 2008, and refs therein). A similar but opposite effect may be seen 

here where common wasps are unable to tolerate colder temperatures and lower light levels 

at night and must confine their foraging to the day (Heinrich 1984). Bush ants however, are 

able to tolerate the colder nighttime temperatures so are able to forage over the whole 24 

hour period. Common wasps were completely absent from trees during the night, whereas 

bush ants continued to forage in consistent numbers throughout the 24 hour period of our 

observations. However, similar numbers of bush ants foraged both during the day and at 

night there was no evidence of a difference in diurnal and nocturnal use of the honeydew 

resource by bush ants and this observed pattern of foraging was not affected by the 

removal of common wasps. There was however, a distinct pattern to foraging by bush ants 

in the wasps-maintained area. There was a rise in ant foraging between 8 pm and 10 pm 

just prior to when wasps ceased foraging for the night and a decrease in forager numbers at 

9 am just after wasps began foraging for the day. This could be due to a number of factors 

such as a change in temperature or light levels or differences in honeydew production by 

scale insects. Even though bush ants do forage at night it is unknown whether this is an 

adaptation to competition as there is no literature investigating foraging patterns in this ant 

species.  

Given the absence of any reduction of numbers of bush ants due to common wasp 

foraging temporal partitioning may not be important in maintaining coexistence between 
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bush ants and common wasps as there may already be some form of spatial partitioning. It 

has been suggested that intraspecific aggregation of species on distinct resource patches 

may enable coexistence, as with greater aggregation species become more self-limiting and 

it becomes harder for species to exclude each other (Shorrocks et al. 1984). Common 

wasps are very abundant in the canopy and on the upper tree trunks, therefore bush ants 

may be less affected by competition or resource depletion by confining their foraging to 

the lower trunks. In these Nothofagus forests more honeydew is produced in the sub-

canopy than on the trunks (Beggs et al. 2005, Wardhaugh et al. 2006). Bush ants have been 

observed higher on the trunks so are potentially able to climb to the canopy but it seems 

unlikely they would concentrate their foraging there. Additionally these ants have been 

observed nesting at the base of Nothofagus trees where they may tend root feeding 

Hemiptera within their nests. We could therefore hypothesis that there is no competition in 

this system between bush ants and common wasps as there may be sufficient honeydew 

resource for all. 

 

3.6 Conclusion 

  

There was an increase in the numbers of bush ants foraging on honeydew when we 

experimentally reduced common wasp numbers. This increase may be due to a change in 

both the quantity and quality of the available honeydew. For future research honeydew 

quality could be assessed by HPLC analysis as in Beggs et al. (2005) and Grant and Beggs 

(1989). There was no evidence of temporal niche partitioning even though bush ants forage 

at night and common wasps do not. There were no more bush ants foraging nocturnally 

than there were foraging diurnally. However, bush ants and common wasps may partition 

the honeydew resource spatially with bush ants concentrating their foraging lower on the 
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tree trunks and common wasps foraging mainly in the canopy. The honeydew resource is 

concentrated in the canopy (Wardhaugh et al. 2006) and common wasps are better able to 

access this resource than bush ants which energetically may be confined to foraging lower 

on the tree. Bush ants are capable of climbing to the canopy however the energy required 

to concentrate their foraging there may make this unlikely. Bush ants are therefore limited 

to a less abundant resource lower on the trunks. Bush ants may compensate for this by 

continuing to forage throughout the night when common wasps are absent, however this 

behaviour may not be as a direct result of competitive pressure. The foraging behaviour of 

bush ants may indeed be entirely independent of any interactions with common wasps, 

rather with their behaviour regulated by abiotic factors and colony resource requirements. 

Additional study sites with long-term wasp control programmes would help elucidate the 

trends in our data. 
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4.1 Abstract 

 

Where there is persistence of native species in the face of competition from 

invasive species trophic interactions may be altered. Stable isotopes can provide a sensitive 

indicator of environmental change to help quantify the impacts of species invasions on 

natural food webs. In this study we aimed to examine the effect of an invasive species on 

native competitors. The introduced common wasp (Vespula vulgaris (Linnaeus)) has 

successfully established in Nothofagus forests and, by collecting the carbohydrate rich 

honeydew resource, has reached extremely high densities (Beggs 2001). Prolasius advenus 

(Fr. Smith), commonly referred to as the New Zealand bush ant, is the predominant ant 

species in New Zealand Nothofagus forests. Competition between common wasps and 

bush ants, both for honeydew and prey, may change the trophic ecology of these species. 

To examine the relative trophic level status of native bush ants and invasive common 

wasps and any possible change in that status due to reduction of a competitor (common 

wasps) we examined nitrogen and carbon isotope ratios. Neither native bush ants nor 

invasive common wasps showed a change in δ
13

C or δ
15

N enrichment related to a treatment 

effect. There was, however, a difference in the trophic position of bush ants and common 

wasps relative to each other. Additionally, bush ants showed an increase in trophic level in 

sites where common wasps were maintained. Common wasps may be depleting more of 

the honeydew resource in these sites, restricting bush ants to foraging for prey. Observed 

changes in these trophic levels may be as a result of natural seasonal variation in 

consumption related to nutritional requirements of the colony. A comparison of the diets 

would help determine the impact of increasing common wasp numbers on native bush ants. 

Further research is needed to determine if native bush ants in our study sites have altered 

their diet in the face of this common wasp invasion. 
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4.2 Introduction  

 

Competition between species for a food resource is a driving force structuring 

ecosystems (Brown and Davidson 1977). In a system where a new species has recently 

invaded competitive exclusion may occur if there has not been sufficient time for niche 

differentiation (Mooney and Cleland 2001, Gurnell et al. 2004). This competitive exclusion 

may result from higher resource-use efficiency or a superior foraging technique by an 

invader, enabling competitive superiority (Shea and Chesson 2002). For example, 

Argentine ant (Linepithema humile) invasions in California reduced the number of native 

species by the mechanisms of superior resource exploitation and interference with native 

competitors (Human and Gordon 1997). A reduction in the number of native species after 

Argentine ant invasions alters interactions among the remaining species and leads to a 

reorganisation of the remaining community (Sanders et al. 2003). Niche adjustments by 

species with overlapping resource requirements may enable coexistence (Mooney and 

Cleland 2001, Gilbert et al. 2008). For example, native crabs on Tokelau were excluded 

from areas of the island following the introduction of the invasive yellow crazy ant. This 

exclusion not only forced crabs to feed at a lower trophic level but appeared to alter their 

relative distribution across islands (McNatty et al. 2009).  

In the Nothofagus forests of New Zealand‟s South Island, honeydew produced by 

the sooty beech scale insect (Ultracoelostoma spp.) is an abundant resource with 3800 to 

4600 kg dry weight of honeydew produced hectare
-1

 year
-1

 (Ewers 2002, Beggs et al. 

2005). Sooty beech scale insects can add a large amount of soluble carbon into the 

Nothofagus forest ecosystem in the form of honeydew. High in sugars, with a carbon 

content of 42 % (Beggs et al. 2005), this honeydew is an important food source for birds, 

lizards, and invertebrates (Morales et al. 1988, Markwell et al. 1993, Ewers 2002). The 
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introduced common wasp (Vespula vulgaris (Linnaeus)) has successfully established in 

Nothofagus forests and, by collecting the carbohydrate rich honeydew resource, has 

reached extremely high densities (Beggs 2001). Vespula vulgaris are generalist foragers 

and also prey on many native insects (Beggs et al. 1998, Beggs 2001). In other systems 

with honeydew producing insects ants form the dominant group of consumers (Carroll and 

Janzen 1973, Stadler and Dixon 1999, Mailleux et al. 2003). Prolasius advenus (Fr. 

Smith), commonly referred to as the New Zealand bush ant, is the predominant ant species 

in New Zealand Nothofagus forests (McColl 1975, Don 2007). Bush ants are generalist 

foragers and have been frequently observed feeding on honeydew produced by the sooty 

beech scale insect (see chapter three).  

Social Hymenoptera, such as common wasps and bush ants in this forest system, 

can simultaneously fill multiple trophic roles as primary predators (via feeding upon 

herbivores), secondary predators (via feeding on predatory arthropods), and as primary 

consumers (via feeding on exudates from herbivores which produce honeydew) (Mooney 

and Tillberg 2005). The degree of resource partitioning among these animals may have 

important consequences for the dynamics of this forest system. Competition between 

common wasps and bush ants both for honeydew and prey may change the trophic ecology 

of these species. Resource requirements in social insects such as bush ants and common 

wasps change seasonally so the effects of interspecific competition may also vary 

seasonally. In the Southern Hemisphere summer common wasp numbers peak between 

January and May and studies have shown that numbers of other invertebrates decline as a 

result of both predation and strong competitive interactions (Moller and Tilley 1989, Beggs 

et al. 1998, Beggs 2001). As common wasp foraging on honeydew increases there is a 

corresponding decline in the size and the sugar content of honeydew drops (Moller et al. 

1991). Honeydew can be a complete food source, not just a collection of sugars but a 
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complex mixture of nutrients containing amino acids, proteins, minerals, and B-vitamins 

(Way 1963).When drops are left undisturbed water is evaporated from them and they 

undergo a process of concentration resulting in a higher quality resource (Moller and Tilley 

1989).  

Stable isotopes can provide a sensitive indicator of environmental change to 

quantify the impacts of species invasions on natural food webs (Vander Zanden et al. 

1999). The δ
15

N values in an animal‟s tissue can provide information about that animal‟s 

diet and relative trophic level; wherein on average the δ
15

N value of predators is 3 – 4 ‰ 

higher than the values of their prey. Values of δ
13

C provide information about the resource 

base and values change little as carbon moves through the food web (de Niro and Epstein 

1981, Peterson and Fry 1987, Post 2002, Sanders and Platner 2007, Schmidt et al. 2007). 

Therefore, the analysis of stable isotopes can be useful in investigating the impact of an 

invasive species on the resource use of native competitors.  

 In this study we aimed to examine the effect of an invasive species on native 

competitors, using the native bush ant Prolasius advenus and the invasive common wasp 

Vespula vulgaris as a study system. We asked if the isotope ratios and trophic level of 

native competitors change in response to the removal of this invasive species. Additionally, 

as predation and competition pressure from an invasive species may impact populations of 

other predators, such as spiders and Carabidae, we asked if the trophic positions and 

isotope ratios of these other predators change in response to the removal of an invasive 

species.  
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4.3 Methods 

 

4.3.1 Study sites  

Three pairs of experimental sites were set up in different locations in the Nelson 

region. Locations were a minimum of 20km apart. At each location the vegetation was 

similar, with the canopy dominated by the mature beech trees, Nothofagus solandri and N. 

menziesii. The understory consisted primarily of Pseudopanax spp., Coprosma spp., 

Cyathodes juniperina, Leucopogon fasciculatus, Griselinia littoralis and juvenile 

Nothofagus. The locations were in the nature recovery area of Nelson Lakes National Park 

(41°48′ S, 172° 50′ E at 630 m and 41°49′ S, 172° 50′ E at 630 m), Maitai Valley, east of 

Nelson City (41°17′ S, 173° 21′ E at 160 m and 41°18′ S, 173° 22′ E at 265 m) and the 

Roding Valley, south-east of Nelson City (42°21′ S, 173° 16′ E at 220 m and 41°21′ S, 

173° 17′ E at 270 m). Each pair of sites comprised a control site (wasps-maintained), and a 

treatment site (wasps-controlled) where at the end of February, mid-way through the 

experimental season, common wasps were poisoned. Poisoning was achieved by the 

placement of bait stations containing Xstinguish™ bait (active ingredient fipronil at 

0.1g/kg). Bait stations were attached to trees in a 50 × 200 m grid pattern in a 1 km
2
 area 

surrounding each study site. Except for Nelson Lakes National Park where due to an 

existing pest control programme an 8.25 km
2
 area was poisoned. Any uneaten bait was 

removed from bait stations after 48 hours. Each site in the pair was separated by no less 

than 1.5 km. The effect of poisoning was monitored by Malaise trapping and was later 

determined to reduce common wasp densities by an average of 69.2% (± 16.5) This single 

poisoning event significantly reduced common wasp numbers for the remainder of the 

season. Differences in common wasp abundances between pre- and post-poisoning periods 
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was analysed using ANOVA with number of common wasps as the dependant variable and 

location (Maitai, Roding and Rotoiti), treatment (wasps-maintained or wasps-controlled) 

and time (pre- and post-poisoning) as the fixed factors. A Post-hoc LSD test was 

performed to determine any difference in common wasp reduction between locations. All 

ANOVA analyses were performed in SPSS 16.0 (2008). 

 

4.3.2 Isotope analysis 

To ascertain the relative trophic level status of native bush ants and invasive 

common wasps and any possible change in that status due to removal of a competitor 

(common wasps) we tested nitrogen and carbon isotope ratios. We opportunistically 

collected samples of bush ants and common wasps from each location in December 2008 

and April 2009 both before and after common wasp poisoning
1
. As samples are based on 

weight and not number, we collected two individual common wasps, and two samples of 

approximately 50 bush ants at each of the six sites. Bush ants and common wasps were 

collected alive and starved for 24 h prior to processing to purge gut contents and avoid 

skewing the results toward recent feeding (Tillberg et al. 2006). The animals were then 

killed by freezing and stored frozen until processing.  

To assess the change in trophic position and relative isotope ratios of other 

secondary consumers we sampled spiders and Carabid beetles using pitfall traps. From 

each of the six study sites we collected no fewer than two samples of spiders (secondary 

consumers), Carabidae (secondary consumers), and Collembola (primary consumers). 

Collembola were collected to establish a baseline for trophic level analysis (e.g. Wise et al. 

2006). One 10 m x 10 m quadrat was established at each study site. Ten pitfall traps were 

placed haphazardly within the quadrat no closer than 2 m to any other pitfall trap. Pitfall 

                                            
1
 Further samples will be collected before and after poisoning in the summer of 2009/2010. 
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traps were plastic cups with a diameter of 70 mm, one third filled with water. At the end of 

each collection period traps were sieved to remove water and the samples were frozen for 

transportation back to the laboratory. At the laboratory all samples were separated and 

dried at 60 °C, then ground to a fine powder using a mortar and pestle prior to analysis. 

Carbon and nitrogen stable isotope analysis was performed using a Dumas elemental 

analyzer (Europa ScientiWc ANCA-SL) interfaced to an isotope mass spectrometer 

(Europa ScientiWc 20/20 Stable Isotope Analyzer). 

 

4.3.3 Data analysis 

The trophic level of each invertebrate sampled was estimated using δ
15

N data with 

a baseline correction method to interpret δ
15

N relative to that of a primary consumer‟s δ
15

N 

after Vander Zanden et al. (1999). In this study the baseline representative of primary 

consumers was the δ
15

N of Collembola (e.g. Wise et al. 2006). Each invertebrate‟s trophic 

position was calculated using the formula:  

 

Trophic position invertebrate = ((δ
15

Ninvertebrate − δ
15

Nbaseline)/3.4) + 2 

 

where 3.4 is the assumed increase in δ
15

N per trophic level. Trophic level scores of 3 or 

greater are indicative of a secondary consumer. Trophic level changes were analysed using 

ANOVA. Trophic level was the dependent variable with „Animal‟ (wasps or ants, spiders 

or Carabidae), „Time‟ (pre-poisoning or post-poisoning) and „Site‟ (wasps-controlled or 

wasps-maintained) as the fixed factors. Interactions between animal, site and time were 

also investigated.  

 The relative change in isotope ratios between wasps-controlled and wasps-

maintained sites for both δ
13

C and δ
15

N was calculated by first log transforming the data 
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then dividing the wasps-controlled isotope value by the wasps-maintained value. Results 

were then back-transformed to account for the multiplicative nature of ratios. Changes in 

δ
15

N and δ
13

C isotope values were analysed by comparing the 95% confidence intervals 

with the wasps-maintained value of one. If the wasps-controlled confidence interval 

included one the value was determined to be not significantly different from the wasps-

maintained value.  

 

4.4 Results 

Poisoning reduced common wasp numbers in the wasps-controlled sites by an 

average of 69.2% (± 16.5) (Fig. 4.1, Table 4.1). There was a significant interaction 

between treatment and time, due to fewer common wasps overall in the Rotoiti location 

post-poisoning, independent of the poisoning treatment. The post-hoc analysis revealed 

that Rotoiti was significantly different (p = 0.003), this is due to the high numbers of 

common wasps at Rotoiti in both the wasps-maintained and wasps-controlled sites in the 

pre-poisoning period. 

 

Table 4.1 ANOVA results for wasp abundance 

Location is Maitai, Roding or Rotoiti. Site is wasps-maintained or wasps-controlled and time is pre- or post-

poisoning 

 

Analysis F d.f. P 

    

Location 2.73 2,28   0.08 

Treatment 10.19 1,28 < 0.01 

Time 12.61 1,28  < 0.001 

Treatment x Time 4.19 1,28 < 0.05 
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Figure 4.1 Reduction in common wasp numbers after poisoning at the different treatment sites 

Numbers of common wasps in wasps-controlled and wasps-maintained sites in both pre- and post-poisoning 

periods. Data are means ± 1 SE 

 

4.4.1 Do the isotope ratios of native species change after the removal of an invasive 

competitor?  

  Bush ants showed a significant change in δ
13

C enrichment over time in both pre- 

and post-poisoning periods in the wasps-controlled sites relative to the wasps-maintained 

sites (Fig. 4.2a). There was a significant change in the δ
15

N enrichment of bush ants in the 

pre-poisoning period between the wasps-controlled and wasps-maintained sites (Fig. 4.2b); 

however, ratios did not differ in the post-poisoning period. 

Common wasps showed a significant increase in δ
15

N enrichment pre-poisoning in 

the wasps-controlled site relative to the wasps-maintained site (Fig. 4.2b). There was no 
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significant change in enrichment in the post-poisoning period.  No significant change in 

isotope ratios of common wasps was observed for either δ
13

C associated with common 

wasp reduction (Fig. 4.2a); δ
13

C values appeared to remain constant over time regardless of 

treatment. 

 

Figure 4.2 Isotope changes in bush ants and common wasps pre- and post-poisoning 

Change in the enrichment of δ
13

C (4.2a) and δ
15

N (4.2b) in bush ants and common wasps between pre- and 

post-poisoning periods. Confidence intervals that encompass the value of 1 (dashed line) indicate no change 

in enrichment in the wasps-controlled site relative to the wasps-maintained site. Data are means ± 95% CI 
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Figure 4.3 Isotope changes in spiders and Carabidae pre- and post-poisoning 

Change in the enrichment of δ
13

C in and δ
15

N in spiders (4.3a) and Carabidae (4.3b) between pre- and post-

poisoning periods. Confidence intervals encompassing the value of 1 (dashed line) indicate no change in 

enrichment in the wasps-controlled site relative to the wasps-maintained site. Data are means ± 95% CI 

 

There was a significant change in enrichment of δ
13

C of Carabidae and spiders the 

pre-poisoning period in the wasps-controlled site relative to the wasps-maintained site (Fig. 

4.3a & b); however, there was no change in the post-poisoning period. There was also a 

significant change in enrichment of δ
15

N of spiders, but not Carabidae, in the post-
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poisoning period in the wasps-controlled site relative to the wasps-maintained site (Fig. 

4.3a & b) and no change in the pre-poisoning period for either Carabidae or spiders. 

 

4.4.2 Do trophic positions change after the removal of an invasive competitor? 

The trophic level of bush ants, common wasps, spiders and Carabidae were 

assessed using δ
15

N data with a baseline correction method (Vander Zanden et al. 1999). 

There was a significant difference between the trophic level scores of bush ants and 

common wasps (Table 4.2, Fig. 4.4), with bush ants showing consistently higher scores 

than common wasps in wasps-controlled and wasps-maintained sites in both pre- and post-

poisoning assessment periods. However, the trophic positions of bush ants and common 

wasps in all treatments were well within the range indicative of a secondary consumer 

(Vander Zanden et al. 1999).  

 

Table 4.2 ANOVA results for changes in trophic position 

Animal is wasps or ants, Time is pre- or post poisoning and Site is wasps-controlled or wasps-maintained  

Analysis         F        d.f.          P 

    

Animal 95.32 1,71 < 0.001 

Time 35.62 1,71 < 0.001 

Site 2.17 1,71   0.15 

Animal x Site 0.04 1,71   0.84 

Time x Site 4.03 1,71      < 0.05 

Animal x Time 6.11 1,71 < 0.05 

Animal x Time x Site 1.72 1,71    0.19 

    

 

There was a significant effect of time, the trophic levels of bush ants and common 

wasps increased between sampling periods in both wasps-controlled and wasps-maintained 

sites. There was a significant interaction between time and site, there was a greater increase 

in trophic level of both ants and wasps in the wasps-maintained areas post-poisoning than 

there was in the wasps-controlled areas. There was also a significant interaction between 
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animal and time; bush ants showed a greater increase in trophic level in the wasps-

maintained area than in the wasps-controlled area in the post-poisoning period whereas 

wasps increased in trophic level to an equal degree in both areas. 

 

Figure 4.4 Mean trophic levels of common wasps and bush ants 

 Trophic levels of common wasps (4.4a) and bush ants (4.4b) in wasps-controlled and wasps-maintained sites 

both pre- and post-poisoning. Trophic level values of 3 and above are indicative of the level of secondary 

consumer. Data are mean values ±1 SE.  

 



Chapter Four – Trophic Level Changes  

 

92 
 

 Trophic scores of both spiders and Carabidae were indicative of secondary 

consumer status in all treatments (Fig. 4.5). There was no significant difference in the 

trophic level of spiders before or after poisoning (Fig. 4.5a, table 4.3). There was also no 

significant difference in the trophic level of spiders in wither the wasps-controlled or 

wasps-maintained sites and no interaction between site and time; trophic levels increased 

in the post-poisoning period regardless of treatment. There was a significant difference in 

the trophic level of Carabidae over time (Fig. 4.5b, table 4.3), the trophic level increased 

overall in the post-poisoning period. However, there was no significant difference in the 

trophic level of spiders in either the wasps-controlled or wasps-maintained sites, and no 

interaction between site and time. 

 
 
Table 4.3 ANOVA results for changes in trophic position of spiders and Carabidae 

Time is pre- or post-poisoning and site is wasps-controlled or wasps-maintained  

 
Analysis                F        d.f.        P 

    

Spiders    

      Time 3.53 1,8     0.09 

      Site   0.22 1,8     0.65 

      Time x Site 0.15 1,8     0.71 

    

Carabidae    

      Time 78.88 1,8  < 0.01 

      Site   4.09 1,8     0.07 

      Time x Site 4.09 1,8     0.07 
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Figure 4.5 Mean trophic level of spiders and Carabidae 

Trophic levels of spiders (4.5 a) and Carabidae (4.5b) in wasps-controlled and wasps-maintained sites both 

pre- and post-poisoning. Trophic level values of 3 and above are indicative of the level of secondary 

consumer. Data are mean values ±1 SE. 
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4.5 Discussion 

 

 This study aimed to test the effect of an invasive species on the isotope ratios of a 

native competitor, using the native bush ants, Prolasius advenus, and the invasive common 

wasps, Vespula vulgaris. We asked if the isotope ratios and trophic level of native 

competitors change in response to the removal of this invasive species. Additionally, as 

predation and competition pressure from an invasive species may impact populations of 

other predators, such as spiders and Carabidae, we asked if the trophic positions and 

isotope ratios of these other predators change in response to the removal of an invasive 

species. Arthropod communities can be significantly disrupted when invaded by another 

predatory arthropod (Porter and Savignano 1990, Human and Gordon 1997, Hoffman et al. 

1999, Krushelnycky and Gillespie 2008). In addition to changes in community structure, 

invasions may alter trophic positions and isotope ratios of the invaded populations. 

Following invasion by crazy ants, native crabs on the islands of Tokelau showed a 

decrease in δ
15

N suggesting exclusion from previously used resources (McNatty et al. 

2009). Further, pressure by an invasive predator can serve to increase the abundance of 

primary producers and thus causing isotopic shifts across the community (Britton et al. 

2009). In this study both bush ants and common wasps showed an increase in the ratio of 

δ
15

N in the pre-poisoning period but not in the post-poisoning period. The δ
13

C ratios of 

common wasps did not change in the wasps-controlled area relative to the wasps-

maintained area in either sampling period; however bush ants showed an increase in the 

wasps-controlled areas relative to the wasps-maintained areas in both periods. There was 

also an increase over time in the trophic levels of both bush ants and common wasps.  

Other predators in this system may be impacted by the introduction of an invasive 

predator. In our study there was a change in the enrichment of δ
13

C in both spiders and 
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Carabidae in the pre-poisoning period but not in the post-poisoning period. The ratio of 

δ
15

N for spiders in creased in post-poisoning period but not in the pre-poisoning period; 

however, the δ
15

N ratio of Carabidae did not change in either period. The trophic level of 

these two predators also increased over time independent of the poisoning treatment. 

 

4.5.1 Do the isotope ratios of native species change after the reduction in number of an 

invasive competitor?  

Ratios of δ
13

C and δ
15

N were examined in both native and invasive species to 

determine if the exclusion of an invasive competitor would alter the isotope enrichment of 

native competitors. In the pre-poisoning sampling period both native bush ants and 

invasive common wasps showed an increase in δ
15

N enrichment in the wasps-controlled 

sites relative to the wasps-maintained sites. This relative increase may be related to the 

greater number of wasps in the wasps-maintained sites in this pre-poisoning period 

meaning that relatively more prey items were available in the wasps-controlled sites.  

Bush ants showed an increase in δ
13

C enrichment in both the pre- and post-

poisoning sampling periods when comparing the wasps-controlled sites to the wasps-

maintained sites; however common wasps showed no change in either period. This 

increase in δ
13

C in bush ants may be as a result of less competition from wasps as there 

were fewer wasps overall in the wasps-controlled sites independent of sampling time. 

 Other studies have found changes in isotope ratios after the removal of an invasive 

predator. For example Lepak et al. (2006) found that two years after the removal of an 

invasive smallmouth bass the isotope values and consequently the trophic level of the 

competing native lake trout increased as a result of increased access to prey fish. In our 

study there was an increase in enrichment of δ
13

C of both spiders and Carabidae in the pre-
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poisoning period in the wasps-controlled sites relative to the wasps-maintained sites but no 

change in the post-poisoning period.  

Spiders showed a small increase in δ
15

N ratios in the wasps-controlled sites, where 

common wasp numbers were reduced, in the post-poisoning period compared to wasps-

maintained sites where common wasps remained at natural levels, while Carabidae showed 

no difference indicating no change in protein consumption. It may be that spiders are more 

impacted by common wasp predation potentially compete for more similar food resources 

than do Carabidae and common wasps. In this study Carabidae were only identified to 

family, and it may be the case that individual species of Carabidae were differently 

affected by common wasp abundances. A more detailed study needs to be conducted to 

more accurately quantify the impact on these species. 

 

4.5.2 Do trophic positions change after the reduction in number of an invasive 

competitor? 

 Trophic levels were assessed using the stable isotope δ
15

N with a baseline 

correction method as in Vander Zanden et al. (1999). Results showed that the overall 

trophic level of native bush ants is higher than that of the invasive common wasps; 

however, both are well within the range of a secondary consumer. Both of these species are 

omnivorous and rely on carbohydrates in the form of honeydew and protein from insect 

prey (Richter 2000, Dussutour and Simpson 2009). In a study by Tillberg et al. (2007) 

invasive Argentine ants showed a decrease in trophic level as a result of resource depletion 

and their increasing reliance on honeydew. Bush ants have been observed foraging for 

honeydew in these forests, and have associations with root Homoptera present in some 

bush ant nests at the base of Nothofagus trees (Don 2007, J. Grangier Pers. Comm.).  
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Honeydew is present on both the trunks and branches of Nothofagus trees with 

more honeydew produced in the sub-canopy than on the trunks (Beggs et al. 2005), 

therefore bush ants may have less access to the honeydew resource than common wasps 

and rely more on prey items for colony survival. This would have the effect of elevating 

their trophic position above that of common wasps. The increased access to the honeydew 

resource by common wasps may have implications for their foraging behaviour (Beggs and 

Wardle 2006). Predators with high nitrogen requirements are more likely to be active 

hunters rather than sit-and-wait predators; this behaviour serves to increase expenditure of 

excess carbon (Denno and Fagan 2003). Therefore, common wasps may use more of the 

honeydew resource to fuel predatory behaviour.  

There was a significant effect of time, with the trophic level of both bush ants and 

common wasps increasing between sampling periods. This increase in trophic level may be 

a reflection of a change in dietary requirements, provoking an increase in protein 

consumption. Protein and carbohydrates are the two key dietary components that ensure 

colony growth and survival, and a shift in the ratio of these components depends on the 

presence of larvae. The ratio is protein-biased when larvae are present but carbohydrate-

biased when larvae are absent (Behmer 2009, Dussutour and Simpson 2009). The increase 

in trophic position after the removal of common wasps may not be a reflection of a 

reduction in competition but rather a reflection of a seasonal dietary change to promote 

brood production or a seasonal increase in prey availability.  

The observed interaction between time and site was reflected in an increase in the 

trophic level of bush ants and common wasp in the wasps-maintained sites in the post 

poisoning period when compared to the wasps-controlled sites. The observed increase in 

trophic level may be as a result of fewer primary consumers as prey. There may be more 

predation in the wasps-maintained sites due to a greater number of wasps, thereby reducing 
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the availability of primary consumers as prey. Comparison of the isotope ratios of 

predators is subject to the isotopic variation amongst prey (Quevedo et al. 2009). If 

predators are feeding on other secondary consumers, this consumption will be reflected in 

an increase in trophic level. The chance of primary consumers such as caterpillars making 

it through the summer season is greatly reduced due to common wasp predation in the 

early summer (Beggs and Rees 1999).  

The interaction between site and time was reflected differently in bush ants and 

common wasps. Bush ants showed a greater increase in trophic level in the wasps-

maintained than in the wasps-controlled sites while wasps increased to the same degree in 

both treatments. Increased predation due to an increased number of common wasps in the 

wasps-maintained sites may have restricted the diet of bush ants to secondary consumers 

and thereby elevating their trophic levels to a greater degree than sites where there was a 

greater diversity of prey. 

Overall variations in isotope ratios of generalists, reflecting trophic positions, have 

been attributed to ambient variation at the base of the food web, with variation in δ
15

N 

linked to variation in phosphorus in the leaf litter (McGlynn et al. 2009). Therefore, the 

increase in the observed trophic level may be as a result of an increase in δ
15

N in the 

Collembola used in this study as a baseline. There remains, however, a difference in the 

trophic position of bush ants and common wasps relative to each other. 

Both the Carabidae and spiders sampled have trophic levels indicative of a 

secondary consumer indicating that the majority of their diet is obtained from protein 

sources. This is in accordance with their known diet (Wise et al. 2006). There was no 

increase in the trophic position of spiders in the wasps-controlled or wasps-maintained 

sites after the reduction in number of common wasps. The trophic level of Carabidae 

increased between sampling periods in the sites where common wasp numbers were 
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reduced. As with the trophic increases seen in both bush ants and common wasps, this 

increase may reflect seasonal changes in dietary requirements and appears not to be related 

to the reduction of common wasps. Spiders and Carabidae have also remained abundant in 

areas subject to invasion by Argentine ants (Tillberg et al. 2007). Spiders and Carabidae 

are secondary consumers and may not be competitively affected by common wasps 

therefore common wasps may not limit access to resources.  

There was significant variation in common wasp abundance both between sites and 

between treatments in the pre-poisoning period. Even though there was a reduction in 

common wasp numbers in the post-poisoning period in all wasps-controlled sites, there 

was also a reduction in common wasp numbers in the wasps-maintained sites. This 

variation in abundance may have confounded our results. 

 

4.6 Conclusion 

 

Bush ants and common wasps coexist on the same trophic levels; they both 

simultaneously fill multiple trophic roles as primary predators, secondary predators, and 

primary consumers, however, bush ants have a greater trophic level than common wasps. 

Additionally, bush ants showed an increase in trophic level in sites where common wasps 

were maintained. Common wasps may be depleting more of the honeydew resource in 

these sites restricting bush ants to foraging for prey. However, changes in the trophic levels 

of both bush ants and common wasps may also be as a result of natural seasonal variation 

in consumption related to the nutritional requirements of the colony. This change may be 

due to an increase in predation due to the nutritional requirements of new brood. Common 

wasps are known to consume an extraordinary amount of invertebrate prey during the 
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summer months to the detriment of all other predators in these forests (Beggs et al. 1998, 

Beggs 2001).  

From these results it appears that common wasps are not altering the trophic level 

of the other secondary predators tested as there was no change in enrichment of δ
15

N and 

δ
13

C of Carabidae between wasps-controlled and wasps-maintained sites in either the pre- 

or post-poisoning period and there was only a relatively small increase in the enrichment of 

δ15N observed in spiders in the post-poisoning period. The observed changes in trophic 

levels of these animals may be as a result of natural seasonal variation in diet. A 

comparison of the diets of common wasps, spiders and Carabidae would help determine 

the impact of increasing common wasp numbers on these other predators. The impacts of 

species invasions are complex, particularly among those species that fill multiple trophic 

roles. Native species that persist in the face of invasions may alter their resource use to 

enable coexistence. Further research is needed to determine if native competitors in our 

study sites have altered their diet in the face of this common wasp invasion. 
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5.1 Abstract  

 

Invasive species may competitively exclude native species from resources unless the native 

species can adapt behaviourally thereby enabling co-occurrence. Given that the influence 

of a competitor on resources is generally density-dependent, the behavioural responses of 

native species to foraging invasive species should depend on the densities of both species. 

Common wasps (Vespula vulgaris) appear to be using cues from native ants to enhance 

their foraging. Here we demonstrate how foraging by the native ants Prolasius advenus 

(the New Zealand bush ant) and Huberia brounii results in increased foraging by invasive 

common wasps, and show how this interaction is density-dependent on ant abundance. 

Common wasps were on average 2.3 times more numerous at food stations where ants 

were present. Common wasps removed significantly more food when foraging with ants 

than when common wasps foraged on their own. Recruitment patterns of common wasps 

provoke an aggressive response by bush ants. When present in greater numbers bush ants 

were significantly more likely to attack common wasps. Behavioural adaptations by native 

ants have impacts on foraging success and competitive interactions, and may enable co-

occurrence between these two potential competitors.  
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5.2 Introduction 

 

Competition between species for a food resource can be a driving force structuring 

ecosystems and contributing to observed patterns of species distribution and abundance 

(Brown and Davidson 1977, Human and Gordon 1999, Chase et al. 2002, Sanders and 

Gordon 2003, Lester et al. 2009). Interspecific competition between species on the same 

trophic level often leads to a competitively dominant species displacing a subordinate 

species at food resources, and can result in competitive exclusion (Brown 1971, Holway 

1999). However, competitive exclusion is not the only outcome; some competitors manage 

to coexist despite differences in dominance. It is possible that behavioural adaptations by 

native species to dominant invaders may enable species co-occurrence in the face of 

competition for resources (Mooney and Cleland 2001). For example, in a study of the 

effects of yellow crazy ants on native hermit crabs, crabs adjusted their foraging behaviour 

to minimise contact with ants (McNatty et al. 2009).   

In most circumstances the influence of a competitor is density-dependent. Small 

numbers of foragers may provoke little response whereas large numbers of foragers will 

elicit more of a response from a foraging competitor. In a study of the fire ant Solenopsis 

invicta in Florida competition among colonies was density dependant with brood raids 

increasing as colony density increased (Adams and Tschinkel 1995). Additionally, in 

laboratory experiments with invasive Argentine ants, aggressive behaviour towards native 

ants was more likely to occur at higher densities of Argentine ants (Sagata and Lester 

2009). Some plasticity in the density-dependant response of heterospecific competitors 

could be an important adaptive trait enabling co-occurrence.  

The invasive common wasp, Vespula vulgaris (L.) (hereafter referred to as 

„common wasp‟), a native of Europe, established in the 1980s in the Nothofagus forests of 
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the South Island of New Zealand and now dominates these forests to the detriment of 

native birds and insects (Clapperton et al. 1994). By collecting the carbohydrate-rich 

honeydew resource produced by the sooty beech scale insect (Ultracoelostoma spp.) 

common wasps have reached extremely high densities (Beggs et al. 1998, Beggs 2001). At 

an average abundance of 10,000 workers per hectare, common wasps attain higher 

densities in these forests than seen anywhere else in the world (Thomas et al. 1990). 

Common wasps have been estimated to consume a similar insect prey biomass over the 

summer to autumn period as the entire bird fauna over the whole year, outcompeting all 

other predators in this system (Moller and Tilley 1989, Harris 1991, Beggs 2001). The 

predominant ant species in New Zealand Nothofagus forests is Prolasius advenus (Fr. 

Smith) or the New Zealand bush ant (McColl 1975). Bush ants are generalist foragers and 

have been observed feeding on honeydew, consuming small invertebrates, and scavenging 

for larger invertebrates (Don 2007). Huberia brounii Forel is a second endemic ant species 

that inhabits native forests and is common in leaf litter. Like bush ants, the biology of this 

species is not well known (Don 2007). Huberia is a genus endemic to New Zealand while 

bush ants belong to a genus with all other representatives in Australia (Shuttack 2000). The 

common wasp genus Vespula is exotic to and invasive in Australia and New Zealand 

(Donovan 1984, Matthews et al. 2000). Therefore neither genus of ants has had recent 

historical or evolutionary interactions with this wasp.  

This research examined interactions between native ants and invasive common 

wasps during foraging. Our specific goals were to determine whether the presence of 

exotic wasps influences the foraging success of native ants, or conversely whether the 

presence of native ants influences the foraging success of invasive common wasps. We 

aimed to determine if the amount of food taken by both ants and common wasps differs 

when each species forages individually or together. We tested if aggressive behaviour of 
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common wasps or native ants is density-dependent. Additionally we assessed whether 

numerical dominance corresponds to behavioural dominance at food resources.  

 

5.3 Methods 

 

5.3.1 Study site  

This study was conducted from February to April 2009 in the nature reserve in 

Nelson Lakes National Park, a 5000 hectare reserve within the 100,000 hectare national 

park in the South Island of New Zealand (41°49′ S, 172° 50′ E at 615m elevation). The 

vegetation is simple in structure with the canopy dominated by the mature beech trees, 

Nothofagus solandri and N. menziesii. The understory consists of Pseudopanax spp., 

Coprosma spp., Cyathodes juniperina, Leucopogon fasciculatus, Griselinia littoralis and 

juvenile Nothofagus.  

 

5.3.2 Wasp or ant exclusion experiments 

To determine whether the presence of common wasps influenced the foraging 

success of native ants we compared the foraging success of native ant species in the 

presence and absence of common wasps. Exclusion experiments were conducted in three 

quadrats measuring 10 m × 10 m. Within each quadrat 10 experimental units were placed 

haphazardly. Each experimental unit consisted of three food stations: one which excluded 

common wasps, one which excluded ants, and one which allowed access to both. In this 

forest bush ant nests occur at a density of approximately 0.06 m
2
, H. brounii at a density of 

0.05 m
2
 and common wasps at a density of 0.03 m

2
 (C. Duthie unpublished data). 

Therefore we could be confident that experimental units were likely to be visited by ants 
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and common wasps from different nests both from within the quadrat and from 

surrounding areas. The experiment was conducted four times on four separate days during 

the middle of each day. Observations were recorded every 10 min for a period of 3 h. At 

every observational period the number of ants and common wasps at each food station was 

recorded. The ants were able to be identified to species in the field but samples were taken 

back to the laboratory for confirmation.  

All food stations contained approximately 5 g of tuna in oil placed on a white 

plastic disc 10 cm in diameter. The common wasp exclusion food stations were placed 

within a wire mesh cage with a mesh diameter of 2 mm allowing access to ants but not 

common wasps. The ant exclusion food stations were placed on another plastic disc 20 cm 

in diameter with the edges coated in tanglefoot
®
 (Tanglefoot Co., Grand Rapids, Michigan, 

USA). The three food stations were placed in a triangular arrangement no closer than 50 

cm to each other, and the whole experimental unit was no closer that 2 m to any other unit. 

Exclusion experiments were analysed using repeated-measures ANOVA to test for 

the differences in numbers of bush ants and H. brounii present at food over time in the 

presence and absence of common wasps. Also analysed were the numbers of common 

wasps recruiting to foods over time in the presence of both bush ants and H. brounii. Time 

(minutes) was the explanatory variable and numbers of ants and common wasps were 

between subject factors. Relevant assumptions of normality, homoescedacity and 

sphericity were examined here and in all parametric statistics presented below. Where the 

assumption of sphericity was violated (for specific analyses) the Greenhouse-Geisser 

correction was used. 
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5.3.3 Resource dominance on a natural food  

To assess resource dominance on a more typical food resource we used adult 

yellow mealworm beetles (Tenebrio molitor) as a substitute for naturally occurring 

invertebrate prey. These experiments were conducted in two quadrats measuring 10 m x 10 

m. The experiment was conducted four times on two separate days. Ten experimental units 

were placed haphazardly within each quadrat no closer than 2 m to any other unit. A single 

freshly decapitated beetle was placed on a white plastic disc 10 cm in diameter. 

Observations were made every 20 min for 3 h. At each observational period the number of 

ants and common wasps at each food station was recorded. Ants and common wasps were 

able to be identified to species in the field but samples were taken back to the lab for 

confirmation.  

To test for the differences in numbers of ants and common wasps recruiting to 

beetles over time these experiments were analysed using repeated-measures ANOVA. 

Time (minutes) was the fixed factor and numbers of ants and common wasps were between 

subject factors.  

 

5.3.4 Food collection experiments  

Collection experiments were conducted to determine the amount of food taken by 

both ants and common wasps when each species was foraging individually or together. 

Experimental units were set up as in the exclusion trials. However, we added an additional 

treatment of a food item that was made unavailable to both ants and common wasps to 

account for the weight of food lost to evaporation. Food used in this experiment was tuna 

in oil as in the exclusion experiments. This experiment was conducted three times on three 

separate days. To mitigate any effects of the weighing process on foraging on the first day 

observations were taken every half hour, on the second day observations were taken every 
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hour, and on the third day observations were taken every 2 h. Foods were weighed in 

grams to 2 decimal places at the beginning of each experiment and at each observation 

period using a portable balance (Diamond brand, model A04).  

Collection experiments were analysed using ANOVA to test for a difference in 

food consumed between treatments. Weight was the dependent variable and treatment and 

day were explanatory variables. A post-hoc LSD test was used to determine individual 

differences between treatments and days. 

 

5.3.5 Behavioural interactions between common wasps and ants 

Behavioural interaction experiments were conducted to examine if aggressive 

behaviour of common wasps or ants was density-dependent. These experiments were 

conducted in quadrats measuring 5 m × 5 m. Each experiment was conducted in a different 

quadrat no closer than 20 m from the site of a previous experiment.  A total of five 

experiments were conducted on four separate days with each experiment lasting three 

hours. Tuna was utilised in these experiments rather than mealworms to reduce the chance 

of the baits being removed before the end of the experimental period. Ten tuna food 

stations were placed haphazardly within each experimental quadrat with approximately 5 g 

of tuna in oil placed on a white plastic disc 10 cm diameter. Each food station was no 

closer that 1 m to any other. Interactions between ants and common wasps at food stations 

were recorded for a period of three hours. Ant behaviour was categorised into four classes: 

(1) „retreat‟, ants retreated from a common wasp; (2) „ignore‟, ants ignored the presence of 

a common wasp; (3) „rush‟, ants run directly at a common wasp; and, (4) „bite‟, ants bite 

the common wasp either on the legs or antennae. Common wasp behaviour was 

categorised into four classes: (1) „ignore‟, common wasps ignored the ants; (2) „leave‟, 

common wasps left the food station; (3) „distressed‟, common wasps appeared visibly 
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distressed shaking their heads and grooming; and, (4) „wasp removed ant‟, the common 

wasp picked up an ant from the food station and dropped it unharmed nearby. Interactions 

were recorded as they occurred during the experimental period. The time of each 

observation was recorded along with the number of ants and common wasps present on the 

food station, and the species of ant. Only the initial behaviour and response was recorded 

at any food station for any one observation time.  

Behavioural data were analysed using multinomial logistic regression. Individual 

data from all replicates was pooled for each treatment. Aggression scores (1 - 4) were 

dependent on species (ant or common wasp) and numbers of ants present (in classes 1-5, 6-

10, 11-15 and 16+). The reference category for the regression analysis was behavioural 

category 1. 

 

5.3.6 Forager abundance 

To assess forager abundance of both common wasps and ants pitfall and Malaise 

traps were set for four days during the April experiments. Two 20 × 20 m quadrats were 

established 20 m away from the experimental quadrats. One Malaise trap was placed in the 

centre of each quadrat and 20 pitfall traps were placed haphazardly within the quadrat no 

closer than 2 m to any other pitfall trap. Pitfall traps were plastic cups with a diameter of 

70 mm; they were ⅓ filled with water with the addition of a drop of detergent to break the 

surface tension. Forager abundance on food stations in the exclusion experiments was 

assessed by counting the numbers of each species of ant and common wasp both with and 

without heterospecific foragers. Differences in the numbers of foragers present in pitfall 

traps was analysed using ANOVA with number of individuals as the dependant variable 

and species of ant as the explanatory variable. 
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5.4 Results 

 

5.4.1 Wasp or ant exclusion experiments 

Exclusion experiments determined whether the presence of common wasps 

influences the foraging success of native ants or vice versa. Both common wasps and ants 

usually discovered the food within 10 minutes of the start of the experiment. There were up 

to 35 ants present at some stations however, there was seldom more than one common 

wasp per food station in any one observation period. Neither species of ant co-occurred at 

food stations. Common wasps were on average 2.3 times more numerous at food stations 

where ants were present.  

There was no significant difference between the numbers of bush ants present on 

foods in the presence of common wasps than in exclusion treatments. In both treatments 

the numbers of bush ants increased over time (Fig. 5.1a, table 5.1). Huberia brounii was 

more abundant at foods that had common wasps present. Significantly more H. brounii 

were present on foods in the presence of common wasps than in exclusion treatments; on 

average there were 3.6 times more ants at food station that had common wasps present. 

This may reflect a reluctance of H. brounii to forage in the common wasp exclusion food 

stations due to an avoidance of novel items in their environment; they are more cautious 

than bush ants and very easily startled (C. Duthie Pers. Obs.). The two treatments were 

influenced by time, when common wasps were present H. brounii declined in abundance 

after 100 minutes however, their numbers steadily increased in the wasp exclusion 

treatments (Fig. 5.1b, table 5.1). More common wasps visited food stations with ants 

present than those without. Additionally, there was a significant difference between the 

number of common wasps present on foods in the presence of H. brounii and the number 
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of common wasps present on foods in the presence of bush ants, overall more common 

wasps visited food stations with H. brounii present than those with bush ants present. The 

numbers of common wasps present with bush ants decreased after 80 minutes; however, 

numbers present with H. brounii increased throughout the experiment (Fig. 5.1c, table 5.1). 
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Figure 5.1 Recruitment of Huberia brounii, Prolasius advenus and Vespula vulgaris to food stations  

numbers of P. advenus on food stations which excluded common wasps (closed squares) and numbers of P. 

advenus on food stations with allowed common wasps (open squares), (b) numbers of H. brounii on food 

stations which excluded common wasps (closed triangles) and numbers of H. brounii on food stations with 

allowed common wasps (open triangles), and (c) Numbers of common wasps on food stations which 

excluded ants (circles), numbers of common wasps on food stations on which P. advenus were present 

(squares) and numbers of common wasps on food stations on which H. brounii were present (triangles), all 

data are means ±1 SE. β-spline curves are fitted. 
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Table 5.1 Results for repeated-measures ANOVA analysis of exclusion experiments 

Each experimental unit consisted of three treatments: one which excluded common wasps, one which 

excluded ants, and one which allowed access to both. Time (minutes) was the fixed factor and numbers of 

ants and common wasps were between subject factors.  

 

Analysis F d.f. P 

     

Prolasius advenus   

     With wasps vs. no wasps 1.563 1,11     0.237 

     Time 7.608 18,198  < 0.001 

     Treatment x Time 2.333 18,198     0.002 

    

Huberia brounii   

     With wasps vs. no wasps 7.891 1,27 0.009 

     Time 6.524 18,486    < 0.001 

     Treatment x Time 3.466 18,486    < 0.001 

    

Common wasps and P. advenus   

     With ants vs. no ants 3.027 1,8      0.120 

     Time 1.11 18,144      0.348 

     Treatment x Time 1.417 18,144      0.131 

    

Common wasps and H. brounii   

     With ants vs. no ants 10.933 1,20   < 0.001 

     Time 4.141 18,360 0.003 

     Treatment x Time 1.43 18,360      0.114 

        

 

5.4.2 Resource dominance on a natural food  

These experiments assessed resource dominance on a typical food resource on 

which both ants and common wasps are likely to forage. Bush ants cooperatively removed 

mealworms from the food stations; this is reflected in a sharp decline in the number of ants 

at food stations after 60 minutes. This behaviour potentially enables bush ants to access 

more of the food as Huberia brounii did not display this cooperative behaviour. While 

there was no significant difference in overall numbers of bush ants and Huberia brounii at 

food stations (Fig. 5.2a & 5.2b) (F1,18 = 0.012, p = 0.9147) there was a significant 
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interaction between species and time (F8,32 = 6.397, p < 0.001) reflected in the decline of P. 

advenus at food stations. Neither H. brounii nor common wasps were able to remove 

beetles from the food stations and therefore remained feeding on haemolymph at the food 

stations rather than carrying food away. There was no difference in the numbers of 

common wasps with bush ants and the numbers of common wasps with H. brounii at food 

stations (Fig. 5.2a & 5.2b) (F1,17 = 0.068, p = 0.797).  

 

 

Figure 5.2  Recruitment of Huberia brounii, Prolasius advenus and Vespula vulgaris to beetle food 

stations 

(a) Those food stations with P. advenus present (b) Those food stations with H. brounii present. All data are 

means ±1 SE. The arrow in (a) marks the average time when P. advenus began to carry the beetle away. 

 

5.4.3 Food collection experiments  

Collection experiments determined the amount of food taken by ants and common 

wasps both together and separately (Fig. 5.3). There was a significant interaction between 

treatment and day in the amount of food collected (F6,27 = 5.055, p = 0.001).  A post hoc 

LSD test shows that „ants only‟ collected significantly less food than both „wasps only‟ and 

„wasps and ants‟ (p < 0.01 and p < 0.001, respectively). „Wasps and ants‟ collected 
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significantly more food than „wasps only‟ (p = 0.015). Surprisingly, the amount of food 

collected by „ants only‟ was not significantly different from evaporation rates (p = 0.809). 

This result corresponds with field observations, in which the ants appeared to primarily 

consume the oil associated with the tuna and remove very small pieces of tuna. Day three 

of observations was significantly different from days one and two (p < 0.001) with more 

food removed by common wasps on day three, presumably due to the fact that on that day 

the food was left for longer periods resulting in less disturbance of foraging common 

wasps. 

 

Figure 5.3 Food collected by ants and common wasps after 3 hours 

Treatments were; Ants only (common wasps were excluded), wasps only (ants were excluded), wasps and 

ants (both ants and common wasps are allowed access), and Control (both ants and common wasps are 

excluded). Letters a, b and c refer to the LSD comparisons. All data are mean ±1 SE.  
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5.4.4 Behavioural interactions between common wasps and ants 

Behavioural interaction experiments were conducted to examine if the aggressive 

behaviour of common wasps or ants is density-dependent. Substantially different responses 

to common wasps were displayed by the two ant species. Bush ants were significantly 

more likely to attack common wasps when these ants were present in greater numbers (Fig. 

5.4a) (odds ratio = 98.589, p < 0.001). Bush ants seldom retreated and this behavioural 

response decreased as the numbers of ant workers increased. There was no significant 

difference in the behavioural response of Huberia brounii to common wasps (Fig. 5.4b), 

regardless of the number of ants present, (odds ratio = 35.098, p = 0.996). The 

predominant recorded response of H. brounii was to retreat or ignore the presence of 

common wasps. However, during the course of the experiment H. brounii was observed to 

fall over and “play dead” when retreat appeared not an option. 

Common wasps appeared to be excluded from the foods when there were greater 

numbers of bush ants. When common wasps foraged in the presence of bush ants, (Fig. 

5.4c) they were more likely to ignore the ants when ants were present in low numbers 

(odds ratio = 68.905, p = 0.048) and more likely to leave when there were more ants 

present. More bush ants were removed by common wasps when ants were at low 

abundances. Common wasps seldom showed any response to the presence of H. brounii 

(Fig. 5.4d), there was no significant difference in the behavioural response of common 

wasps to H. brounii regardless of the numbers of ants present (odds ratio = 25.915, p = 

0.998). 
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Figure 5.4 Behavioural interactions between two species of native ants (Prolasius advenus and Huberia 

brounii) and the invasive common wasp Vespula vulgaris 

(a) Behavioural responses of P. advenus to common wasps. (b) Behavioural responses of H. brounii to 

common wasps. (c) Behavioural responses of common wasps to P. advenus. (d) Behavioural responses of 

common wasps to H. brounii. Behavioural categories for ants (4a & 4b) are 1- Retreat, 2- Ignore, 3- Rush, 4- 

Bite. Behavioural categories for common wasps (4c & 4d) are 1- Ignore, 2- Leave, 3- Distressed, 4- Wasp 

removed ant. Note that behavioural categories in figure 4a have been reversed to enable all bars to be seen. 

Numbers of behavioural observations range from 182 to 238 for this experiment. 
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5.4.5 Forager abundance 

Pitfall and Malaise traps were used to assess forager abundance of both common 

wasps and ants. Huberia brounii were the most abundant ant present in pitfall traps (F1,38 = 

6.923, p = 0.012), with a mean of 1.75 (± 0.56) ants per trap. In contrast there were 0.75 (± 

0.09) bush ants per trap. Interestingly we also caught 0.5 (± 0.22) Huberia striata in pitfall 

traps even though these ants were never present in any of our experimental treatments. For 

this reason they were excluded from the analysis. There were 128 (± 26) common wasps in 

each Malaise trap during the sampling period. In contrast with the trapping results, bush 

ants were the most common ant at food stations, both alone and when common wasps were 

present (4.16 ± 0.38 and 2.35 ± 0.25 ants per food station respectively) (differences in 

abundance at food stations are analysed in the wasp or ant exclusion experiments section). 

Huberia brounii were less numerous at food stations both alone and when common wasps 

were present (0.54 ± 0.05 and 1.98 ± 0.17 ants per food station respectively). There were 

0.24 ± 0.02 common wasps per food station when they occurred alone and 0.53 ± 0.04 and 

0.46 ± 0.06 per food station when they occurred with H. brounii and bush ants 

respectively. 

 

5.5 Discussion 

 

We observed a significant increase in the number of common wasps on foods on 

which ants were foraging. This increased common wasp foraging resulted in a higher food 

consumption when both species are present than when they forage alone. There are a 

number of possible reasons for this result. Firstly, common wasps may be picking up on 

visual foraging signals from ants. Secondly, common wasp conspecific attraction is 
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density-dependent in some Vespula species and they will recruit more when there are 

already common wasps present at a food source. Some species even preferentially land on 

feeders occupied by heterospecifics (Richter and Tisch 1999, D'Adamo and Lozada 2005). 

In our study, an increase in ant numbers on foods was correlated with an increase in the 

numbers of common wasps. This heterospecific attraction was reflected in greater numbers 

of common wasps present at baits where ants were also present. Ants appear, therefore, to 

unwittingly help common wasps access food resources. Additionally, density-dependent 

foraging behaviour increases the number of aggressive encounters on food resources.  

Mechanisms for communication are especially important in social animals. A 

diverse range of animals use visual and olfactory signals from both conspecifics and 

heterospecifics to find a food source (Giraldeau 1984). It could be expected that organisms 

that are related, such as social hymenoptera, or that have a similar evolutionary history, 

may be able to also use heterospecific signals for foraging. In Vespula wasps, visual 

signals by resident wasps can influence the foraging behaviour of both conspecific and 

heterospecific foragers with two out of seven species studied preferentially landing on 

feeders occupied by heterospecifics (Richter and Tisch 1999). Vespula wasps can also be 

influenced by visual and pheromone signals from both conspecifics and heterospecifics 

when foraging (Hendrichs and Hendrichs 1998, D'Adamo and Lozada 2005). Regardless of 

whether Vespula vulgaris use visual or olfactory signals from foraging ants, they may be 

using the presence of ants to find a food source. Another hypothesis is that common wasps 

may forage in greater numbers when there are more competitors present in an attempt to 

dominate the resource. Alternatively the increase in the average numbers of common 

wasps when ants are present could, in part, be due to the fact that with ants present a 

common wasp will frequently retreat and then quickly return to try again. Without ants 

present the common wasp will spend more time at the food station to gather the maximum 
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amount of food possible before returning to the nest, therefore the time spent between 

visits will be considerably longer when food has been removed. However, these potential 

hypotheses require further research to investigate their validity as explanations for our 

observed results. 

Common wasps periodically removed ants of both species from food stations. They 

were more likely to remove bush ants when these ants were at low numbers simply 

because when there were greater numbers of ants the common wasps could not gain access 

to the food. In these cases they were observed to land briefly on the side of the food station 

and then leave. The less aggressive nature of Huberia brounii enabled common wasps to 

remove these ants when the ants were at high densities without being subject to aggression. 

The behavioural response of common wasps removing ants was initially thought to be that 

of predation, however video footage clearly showed common wasps picking up ants and 

dropping them unharmed no more than 10 cm from the food. This behaviour seemed to 

serve the purpose of clearing space at the food station to allow common wasps to feed and 

may be seen as a novel and extreme form of interference competition that requires further 

study. 

The two native ant species in this study behaved very differently to each other in 

the presence of common wasps. Bush ants were more aggressive than H. brounii; they 

seldom retreated from common wasps and were more likely to attack common wasps even 

when present in relatively low numbers. The aggressive response of bush ants to common 

wasps generally came from ants that were not actively foraging on the bait but rather 

around the periphery of the food. This behaviour enabled them to dominate food resources 

and exclude common wasps, or at least disturb them. Given their disparity in size and the 

highly aggressive nature of common wasps it is a surprising finding of this study that 

common wasps are subordinate to bush ants. Masciocchi et al. (2009) concluded that 
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aggressive behaviours of native ants in Patagonia combined with worker aggregation may 

confer a competitive advantage when faced with competition from the invasive wasps V. 

germanica.  From our observations it seems that ants leave a food source by choice rather 

than being excluded by common wasps. Huberia brounii are less aggressive than bush 

ants. They will more commonly retreat or ignore common wasps and when threatened or 

surprised will „play dead‟ and H. brounii did not significantly alter their behavioural 

responses to common wasps regardless of the number of ants present. Observations during 

these experiments suggest that H. brounii may attack common wasps when they are 

surprised or cornered and were more likely to attack when present in large numbers but 

this may be due to the fact that any possible escape route was blocked by other workers, 

which is in sharp contrast to another exhibited behaviour of „playing dead‟ when surprised.  

Tanner and Adler (2009) have suggested that aggression may be reduced between 

existing competitors through the mechanism of an established hierarchy. There is no 

established hierarchy between these ant species and common wasps as V. vulgaris has only 

been established in New Zealand for a relatively short period of time. Huberia is an 

endemic genus and has no historical knowledge of Vespula wasps. Additionally, there are 

no native Vespula wasps in Australia where the rest of the Prolasius genus is located. Our 

experiments using a more natural food source (beetles) showed that bush ants were able to 

co-operatively remove beetles from the food stations potentially enabling these ants more 

access to the food via scramble competition. Huberia brounii did not exhibit this 

cooperative behaviour and were present on the beetles in low numbers. In these 

experiments common wasps were unable to carry the beetle away and were restricted to 

feeding on it in situ. However when presented with a food resource that was able to be 

portioned up and carried away (e.g. tuna) common wasps were able to carry off 

substantially more than ants. Natural resources may be partitioned in a way that common 
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wasps are limited by what they can carry away alone whereas ants are able to co-

operatively carry off larger insects. 

Invasive species often have detrimental effects on communities as their success as 

invaders may depend on superior competitive abilities facilitated by such behavioural 

characteristics as interspecific aggression and coloniality (Moller 1996, Holway and 

Suarez 1999). Invasive predators such as common wasps may alter the existing dynamics 

of native communities by depleting food sources (Kenis et al. 2009). Native species that 

display some behavioural plasticity may negate the detrimental effects of competition 

thereby enabling co-occurrence (Miner et al. 2005). The results of pitfall and Malaise 

trapping indicate that common wasps were more numerically abundant than ants in this 

forest system; however, ants were more abundant on food stations. There may be an 

increase in ant numbers on food to achieve competitive exclusion in the face of an 

aggressive competitor. In previous studies, increased population size has been shown to 

negate the potential for the detrimental effects of competition (Adler et al. 2007). Bush ants 

may be able to assess the benefit of defending a food resource from common wasps and 

when it is necessary to defend food, more workers are recruited. Huberia brounii were 

more numerically abundant than bush ants in pitfall traps however there were more bush 

ants than H. brounii present on food stations. This may be a reflection of the different 

behaviour exhibited by these two ant species, in that bush ants are altogether more 

aggressive than H. brounii. Tanner (2006) determined that ants that are part of a large 

group are likely to be more aggressive than ants from smaller groups. This increased 

aggression improved competitive abilities and resource defence. Bush ants reside in 

colonies that are large and have multiple queens (Don 2007) in contrast to H. brounii 

whose nests are small. Additionally, it seems that H. brounii avoid novel things in their 

environment which may account for the reduced numbers present on food stations. There 
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were also fewer common wasps than ants at food stations. There may have been an effect 

of our experimental design in this result, in that common wasps may have been somehow 

repelled from the ant exclusion treatment. Future work could address the issue of the 

experimental design in a more controlled environment.  

In conclusion, common wasps clearly compete with the native ants Prolasius 

advenus and Huberia brounii, as they compete for the same invertebrate prey and use the 

same carbohydrate resources (honeydew from the sooty beech scale insect). This study has 

suggested that common wasps may find and access resources more readily when ants are 

present. These ants may facilitate foraging by common wasps, demonstrated by the 

increase in common wasp numbers when foraging in the presence of ants. The outcome of 

competition is not easy to predict and may vary in different communities and with different 

densities of competitors. The impact of competition occurring between common wasps and 

these two native ant species is likely to be density dependant. Additionally competitive 

responses vary depending on the species of ant and the type of food resource.  
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6  Chapter Six 

General Discussion 

 

In this thesis I investigated the factors which may promote coexistence between 

endemic and invasive species which use a common resource. A summary of findings of 

this thesis are as follows: (1) the invertebrate community composition of the Nothofagus 

forest was significantly altered by the presence of the invasive common wasp Vespula 

vulgaris; (2) temporal separation of foraging, with distinct diurnal patterns, occurred 

between the native bush ant Prolasius advenus and Vespula vulgaris; (3) trophic levels of 

native bush ants changed in response to the removal of invasive common wasps; and (4) 

there was density dependant behavioural plasticity in competitive interactions between 

both the native ants Huberia brounii and Prolasius advenus, and the invasive common 

wasp Vespula vulgaris. Further, these findings have implications for the ecology of 

Nothofagus forests for our understanding of the considerable impact that invasive species 

may have on native ecosystems and particularly those species which have similar 

requirements. Additionally, this thesis provides important observations of the ecology and 

behaviour of two native ant species about which very little is known. 
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Communities under pressure from predators may exhibit a decrease in the abundance 

and diversity of native species (Human and Gordon 1999, Snyder and Evans 2006, Rowles 

and O'Dowd 2007, Bøhn et al. 2008). The invasive common wasp Vespula vulgaris is a 

voracious predator, which is known to have significant impact on the native fauna of 

Nothofagus forests (Thomas et al. 1990, Beggs 2001, Beggs and Wardle 2006).  

Because of the previously documented effects of common wasp predation I predicted 

that a reduction in common wasp numbers would result in a significant change in the 

community composition. After common wasp numbers were experimentally reduced I 

observed a substantial difference in the invertebrate community. The observed changes in 

community composition were as a result of differing abundances of families. I observed an 

overall decline in the numbers of many families over the summer period. This decline has 

implications for the trophic levels of other predacious species that co-occur with common 

wasps as protein resources become much more limited. The effect of resource limitation on 

isotope ratios and trophic levels is investigated in chapter four. 

 Under pressure from invasive omnivorous species, such as Vespula wasps, the 

abundance of prey species may decline as a result of increased predation (Harris 1991, Toft 

and Rees 1998). We may then see a consequent, indirect, decline in the number of other 

predacious species. Native ant species share many similar resource requirements with 

common wasps (Don 2007), and consequently may be particularly impacted by reduced 

prey availability due to common wasp predation and competition. Therefore, this study 

assessed the impact of common wasp reduction on two native ant species, The New 

Zealand bush ant, Prolasius advenus, and Huberia brounii.  

There was a decline in ant numbers caught in traps between sampling periods. In 

particular, the decline in numbers of bush ants contributed most to the observed change in 

overall community structure. Conversely, Huberia brounii increased in number 
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independently of the reduction in common wasp numbers. Common wasps alter their 

resource use seasonally depending on the nutritional needs of the colony (Harris 1991), so 

populations of competing species, such as native ants, which also use a variety of food 

resources, both protein and carbohydrate, may remain stable in number or even increase in 

abundance when pressure comes off some part of their normal diet. There are several 

explanations for the observed results. The most parsimonious explanation may be that we 

did not reduce common wasp numbers sufficiently to see a corresponding change in the 

invertebrate community. In order to more robustly determine the community effects of 

wasp removal it may be necessary to reduce common wasp numbers by up to 90 % for 

many years (Beggs et al. 1998, Toft and Rees 1998, Beggs and Rees 1999). Even under 

these conditions species that are particularly vulnerable to common wasp predation or 

competition may have already been permanently excluded from this system.  

In forests such as that at Nelson Lakes National park where an extensive annual 

poisoning program is in place, a seasonal reduction in the numbers of common wasps has 

the potential to lead to an increase in the abundance of food available to those common 

wasps that remain. This increase in food may lead to an increase in the quality of surviving 

queens, which in turn, may be able to establish more nests in the following year (Beggs et 

al. 1998). Therefore, it may be the case that repeated poisoning of an area to reduce 

common wasp numbers actually increases nest density in the early summer before the 

annual poisoning event. This increase in nest density may have the unintended 

consequence of increasing predation of native invertebrates, and thereby reducing, even 

further, the diversity and abundance of invertebrates in this system.  

It would appear that as poisoning is not possible earlier in the season, and repeated 

poisoning may have the effect of increasing wasp numbers, there may be no solution to a 

long term reduction in wasp numbers. In order to be of benefit to the invertebrate 
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community wasps need to be reduced by more than 90 % therefore; more research needs to 

be done on how to achieve this. It may be that to cease the poisoning operation and allow 

wasps to persist in this environment is a realistic outcome in light of the difficulties in 

reducing common wasp numbers sufficiently. There will always be high numbers of 

common wasps present in these Nothofagus forests due to the abundant carbohydrate 

resource, and the area that is currently under poison control is a relatively small portion of 

total Nothofagus forest present in the South Island. Unfortunately the invertebrate 

community in these forests may have already suffered irretrievable losses.  

Invasive species, when released from competition or predation, may increase in 

number rapidly and dominate niche space to the detriment of native species (Sakai et al. 

2001, Amarasekare 2002, Tillman 2004). Native species affected by invasive organisms 

may continue to persist by altering the way in which they use shared resources 

(Amarasekare 2003, Ricklefs 2004). Additionally, spatial heterogeneity may provide 

opportunities for resource partitioning and promote coexistence (Shurin et al. 2004). 

Understanding resource partitioning is fundamental to understanding strategies of resource 

use, the effects of competition, and the mechanisms of coexistence (Abrams 1980).  

In chapter three I investigated possible temporal niche shifts by bush ants in 

response to the presence of common wasps. In the face of a dominant invasive species, I 

hypothesised that the native ants in Nothofagus forests may have adjusted their pattern of 

resource use to avoid interspecific aggression or exclusion from resources. For example, 

bush ants and common wasps could potentially partition the honeydew resource spatially 

with bush ants concentrating their foraging lower on the tree trunks and common wasps 

foraging mainly in the canopy. The honeydew resource is concentrated in the canopy 

(Beggs et al. 2005, Wardhaugh et al. 2006). Common wasps are likely to be able to better 

access this resource than bush ants, which may be energetically confined to foraging lower 
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on the tree. Bush ants are capable of climbing to the canopy, however the energy required 

to concentrate their foraging there makes this unlikely. Bush ants may therefore be limited 

to a less abundant resource lower on the trunks. I hypothesised that bush ants may 

compensate for this by continuing to forage throughout the night when common wasps are 

absent; however, this behaviour may not be as a direct result of competitive pressure. 

When there is direct competition for a food resource there may an advantage in some 

degree of behavioral plasticity I investigate the idea of density dependent behavioral 

plasticity in chapter five. 

Because both bush ants and common wasps potentially compete for the same food 

resources, I predicted that I would see fewer bush ants foraging in areas of higher common 

wasp abundance. Additionally, bush ants and common wasps may partition the honeydew 

resource temporally to avoid direct competition. As bush ants have been observed foraging 

nocturnally I expected to see more bush ants foraging at night in areas of higher common 

wasp abundance. There was no evidence of temporal niche partitioning even though bush 

ants forage at night and common wasps do not. There were no more bush ants foraging 

nocturnally than there were foraging diurnally. Temporal separation is common amongst 

ants in hot climates where conditions may be lethal to some species, giving sole access to 

those species able to tolerate extreme temperatures (Vepsäläinen and Savolainen 1990, 

Cerdá et al. 1997, Andersen 2008, Lessard et al. 2009). A similar but opposite effect may 

be seen here, where common wasps are unable to tolerate colder temperatures at night and 

must confine their foraging to the day (Heinrich 1984).  

In order to better understand patterns of resource use, I experimentally reduced 

numbers of common wasps. I predicted that this reduction of a dominant competitor may 

provoke an increase in the number of bush ants foraging during the day, and reduce any 

difference between the numbers of bush ants foraging both diurnally and nocturnally. I 
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observed an increase in the numbers of bush ants foraging on honeydew when I 

experimentally reduced common wasp numbers. When common wasp numbers are at their 

peak they are capable of removing up to 99 % of the standing honeydew crop, in addition 

with such high honeydew use the quality of the drops declines (Moller et al. 1991). 

Consequently, bush ants may have to forage more on the lesser quality honeydew for the 

same nutritional pay-off as higher quality honeydew in the absence of wasps. Therefore the 

observed increase in the numbers of bush ants foraging on honeydew may be due to a 

change in both the quantity and quality of the available honeydew. Given that wasps have 

both an effect on the invertebrate community composition in Nothofagus forests and on the 

foraging patterns of native bush ants it may be expected that the trophic levels of ants will 

change in response to competition from wasps.  

Competition between species for a food resource can be a driving force structuring 

ecosystems (Brown and Davidson 1977). Niche adjustments by species with overlapping 

resource requirements may enable coexistence (Mooney and Cleland 2001, Gilbert et al. 

2008). Stable isotopes can provide a sensitive indicator of environmental change to 

quantify the impacts of species invasions on natural food webs (Vander Zanden et al. 

1999). Social hymenoptera such as bush ants and common wasps coexist on similar trophic 

levels; they both simultaneously fill multiple trophic roles as primary predators, secondary 

predators, and primary consumers (Mooney and Tillberg 2005). In chapter four I examined 

the effect of an invasive species on the trophic level of native competitors, using as a study 

system the native bush ant Prolasius advenus and the invasive common wasp Vespula 

vulgaris. I asked if the isotope ratios and trophic level of native competitors changed in 

response to the reduction in number of this invasive species.  

In the pre-poisoning sampling period both native bush ants and invasive common 

wasps showed an increase in δ
15

N enrichment in the wasps-controlled sites relative to the 
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wasps-maintained sites. This relative increase may be related to the greater number of 

wasps in the wasps-maintained sites in this pre-poisoning period meaning that relatively 

more prey items were available in the wasps-controlled sites.  

However, results showed that the overall trophic level of native ants was higher than 

that of the invasive common wasps, though both are well within the range of a secondary 

consumer (Vander Zanden et al. 1999). There was a significant effect of time, with the 

trophic level of both ants and common wasps increasing between sampling periods. The 

observed changes in the trophic levels of both bush ants and common wasps may be as a 

result of natural seasonal variation in food consumption related to the nutritional 

requirements of the colony. This change may be due to an increase in predation due to the 

nutritional requirements of new brood (Behmer 2009, Dussutour and Simpson 2009).  

The trophic levels of bush ants appear not to be impacted significantly by competition 

from wasps, and yet common wasps have a detrimental and well documented effect on the 

invertebrate community. Therefore, it may be the case that bush ants are able to forage at 

night for protein resources that during the day they are excluded from. In chapter three I 

investigated temporal foraging patterns of bush ants on the honeydew resource and found 

no significant difference in honeydew use over a 24 hour period. I did not investigate 

predation by ants during this time. I did, however, observe ants attacking and killing 

several invertebrates during the night, so it might not be unreasonable to expect that bush 

ants may exploit this hunting opportunity without interference from common wasps. 

As intense predation and competition pressure from an invasive species may impact 

populations of other predators, I asked if the trophic positions and isotope ratios of these 

other predators change in response to the reduction of an invasive species. Common wasps 

are known to consume an extraordinary amount of invertebrate prey during the summer 

months to the detriment of all other predators in these forests (Beggs et al. 1998, Beggs 
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2001), however, my results showed no evidence that common wasps are having a 

deleterious effect on the diet of the other secondary predators tested, as there was no 

change in enrichment of δ
15

N and δ¹³C of Carabidae as a result of the experimental 

reduction of common wasp numbers and only a small change in the enrichment of δ
15

N of 

spiders. Elsewhere spiders and Carabidae have also remained abundant in areas subject to 

invasion by Argentine ants (Tillberg et al. 2007). Therefore, the observed changes in 

trophic levels of spiders and Carabidae may be as a result of natural seasonal variation in 

diet.  

A more detailed comparison of the diets of common wasps, spiders and Carabidae 

would help determine the impact of increasing common wasp numbers on these other 

predators. The impacts of species invasions are complex, particularly among those species 

that fill multiple trophic roles. Native species that persist in the face of invasions may alter 

their resource use to enable coexistence. Further research is needed to determine if native 

competitors in my study sites have altered their diet in the face of this common wasp 

invasion. Native ants and common wasps manage to co-occur in the same environment 

using similar resources and yet there appears to be no reduction in number, trophic level, 

or foraging opportunity for these ants. It seems likely that the mechanism of co-occurrence 

may have a basis in behavioural adaptations. 

Interspecific competition between species on the same trophic level often leads to a 

competitively dominant species displacing a subordinate species at food resources, and can 

result in competitive exclusion (Brown 1971, Holway 1999). However, competitive 

exclusion is not the only outcome and some competitors manage to coexist despite 

differences in dominance. It is possible that behavioural adaptations by native species to 

dominant invaders may enable species co-occurrence in the face of competition for 

resources (Mooney and Cleland 2001). The specific goal of chapter five was to determine 
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whether the presence of exotic wasps influenced the foraging success of native ants, or 

conversely whether the presence of native ants influences the foraging success of invasive 

common wasps.  

Wasps clearly compete with the native bush ants and Huberia brounii, as all 

species consume invertebrate prey and common wasps and bush ants use the same 

carbohydrate resources (honeydew from the sooty beech scale insect) (McColl 1975, 

Moller and Tilley 1989, Harris 1991, Don 2007). I observed that significantly more 

common wasps visited food stations with ants present than those without. Additionally, 

there were significantly more common wasps present on foods in the presence of H. 

brounii than were present on foods in the presence of bush ants. This study has suggested 

that wasps may find and access resources more readily when native ants are present. 

Common wasps may be picking up on visual or olfactory foraging signals from native ants. 

Common wasp conspecific attraction is density-dependent in some Vespula species and 

they will recruit more when there are already wasps present at a food source, some species 

even preferentially land on feeders occupied by heterospecifics (Richter and Tisch 1999, 

D'Adamo and Lozada 2005).  

I tested if aggressive behaviour of wasps or ants is density-dependent. Additionally, 

I assessed whether numerical dominance corresponds to behavioural dominance at food 

resources. Bush ants were significantly more likely to attack common wasps when these 

ants were present in greater numbers. Bush ants seldom retreated from resources and this 

behavioural response decreased as the numbers of workers increased. However, the 

predominant behavioural response of Huberia brounii is to ignore common wasps. When 

common wasps foraged in the presence of bush ants they were more likely to ignore the 

ants, when ants were present in low numbers, and more likely to leave when there were 
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more ants present. More bush ants were removed by common wasps when ants were at low 

abundances. Common wasps seldom showed any response to the presence of H. brounii.  

Both bush ants and H. brounii may facilitate foraging by wasps, demonstrated by 

the increase in wasp numbers when foraging in the presence of ants. Masciocchi et al. 

(2009) concluded that aggressive behaviours of native ants in Patagonia combined with 

worker aggregation may confer a competitive advantage when faced with competition 

from the invasive wasps V. germanica.  The behavioural response of common wasps 

removing ants seemed to serve the purpose of clearing space at the food station to allow 

common wasps to feed, and may be seen as a novel and extreme form of interference 

competition that requires further study. 

The outcome of competition is not easy to predict and may vary in different 

communities and with different densities of competitors. The impact of competition 

occurring between common wasps and these two native ant species is likely to be density 

dependant. Additionally competitive responses vary depending on the species of ant and 

the type of food resource. Coexistence between endemic and invasive competitors is 

possible through two important mechanisms, niche separation and behavioural adaptations. 

I investigated temporal niche separation in chapter three and found that bush ants continue 

to forage throughout the night when common wasps are absent, this combined with the 

density-dependent behavioural adaptations displayed by bush ants towards common wasps 

may enable co-occurrence between native bush ants and invasive common wasps. 

 

6.1 Considerations for future research 

This thesis provides important observations of the ecology and behaviour of two native 

ant species, about which very little is known. In particular, this research focussed on the 

factors which may promote coexistence between an endemic and an invasive species. The 
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invasive wasp Vespula vulgaris and the native ants Huberia brounii and Prolasius advenus 

not only coexist in the same environment but also utilise very similar, if not identical, 

resources. Wasps and both species of ants are predators of invertebrates and both wasps 

and bush ants collect honeydew from the scale insects that infest the bark of Nothofagus 

trees. Despite this similarity in resource use, wasps and both species of ant remain 

numerous in Nothofagus forests when theory would predict that the negative effects of 

intraspecific competition would limit numbers of the weaker competitors.  

One of the major limiting factors of this study is the lack of a honeydew beech forest 

that has not been invaded by wasps. We simply have no knowledge of the invertebrate 

fauna prior to wasp invasion. Nor were we, in this study, able to control common wasp 

densities sufficiently to robustly detect an effect. It has been estimated that for the 

invertebrate community to recover from competition and predation pressure from common 

wasps it is necessary to reduce common wasp densities by more that 90 % (Beggs et al. 

1998, Toft and Rees 1998, Beggs and Rees 1999).  

Any study conducted entirely in the field will have variation that is unable to be 

controlled, if indeed it is able to be identified. A clear example of this in evident in chapter 

three where because of an existing long term poisoning program at Nelson Lakes National 

Park we were confined to working in just two sites in the one location. Any result from this 

study needs to be interpreted in the light of potential peculiarities of this single location. 

Additionally, differences that may arise as a result of differences in elevation and 

microclimate between sites could be further investigated. Future direction on this research 

topic should involve laboratory studies to control for environmental effects.  

Food preference trials of both ants and wasps would assist in understanding the 

possible impacts of predation in a natural environment. This would go some way to 

disentangling the effects of predation and natural seasonal variation in abundance. 
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Additionally, the observations of increased numbers of common wasps present on foods 

with increased numbers of native ants provide a tantalising first taste of potential 

facilitation between these species. The mechanism, either visual or olfactory, which 

provokes this behaviour, deserves attention. 

A more detailed investigation of the effects of the exclusion experiments used in 

chapter five should be undertaken in a controlled environment to investigate the effect of 

the exclosures on ant and wasp behaviour. It is possible that some of the results were 

confounded by a novel addition to the environment. Huberia brounii are not a particularly 

aggressive species and may have avoided the exclosures. Additionally behavioural 

interactions between these species could be tested in the more controlled environment of 

and artificial arena. This would remove any confounding factors due to environmental 

stimulus and concentrate solely on the interactions. This would also enable trials to be 

conducted to robustly investigate the density dependence of the aggressive response by 

bush ants. 

This research provides the first experimental evidence of honeydew foraging by 

native ants in Nothofagus forests, and adds to the relatively small body of literature about 

the behaviour and ecology of two of our native ant species. It would appear that the native 

ants present in Nothofagus forests in my study sites, unlike most other invertebrates, are 

not adversely impacted by competition or predation from common wasps. 
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