Carsten Rother

Carsten Rother
  • Prof.
  • TU Dresden

About

291
Publications
95,326
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
39,384
Citations
Current institution
TU Dresden

Publications

Publications (291)
Article
Videoconferencing has become a ubiquitous medium for collaborative work. It does suffer however from various drawbacks such as zoom fatigue. This paper addresses the quality of user experience by exploring an enhanced system concept with the capability of conveying gaze and attention. Gazing Heads is a round-table virtual meeting concept that uses...
Article
Full-text available
We contribute to the sparsely populated area of unsupervised deep graph matching with application to keypoint matching in images. Contrary to the standard supervised approach, our method does not require ground truth correspondences between keypoint pairs. Instead, it is self-supervised by enforcing consistency of matchings between images of the sa...
Preprint
Full-text available
We contribute to the sparsely populated area of unsupervised deep graph matching with application to keypoint matching in images. Contrary to the standard \emph{supervised} approach, our method does not require ground truth correspondences between keypoint pairs. Instead, it is self-supervised by enforcing consistency of matchings between images of...
Article
Full-text available
Context. The characterization of the interior of an exoplanet is an inverse problem. The solution requires statistical methods such as Bayesian inference. Current methods employ Markov chain Monte Carlo (MCMC) sampling to infer the posterior probability of the planetary structure parameters for a given exoplanet. These methods are time-consuming be...
Preprint
Full-text available
We present the evaluation methodology, datasets and results of the BOP Challenge 2022, the fourth in a series of public competitions organized with the goal to capture the status quo in the field of 6D object pose estimation from an RGB/RGB-D image. In 2022, we witnessed another significant improvement in the pose estimation accuracy -- the state o...
Article
Full-text available
In this work, we focus on outdoor lighting estimation by aggregating individual noisy estimates from images, exploiting the rich image information from wide-angle cameras and/or temporal image sequences. Photographs inherently encode information about the lighting of the scene in the form of shading and shadows. Recovering the lighting is an invers...
Chapter
Full-text available
The graph matching optimization problem is an essential component for many tasks in computer vision, such as bringing two deformable objects in correspondence. Naturally, a wide range of applicable algorithms have been proposed in the last decades. Since a common standard benchmark has not been developed, their performance claims are often hard to...
Preprint
Full-text available
The graph matching optimization problem is an essential component for many tasks in computer vision, such as bringing two deformable objects in correspondence. Naturally, a wide range of applicable algorithms have been proposed in the last decades. Since a common standard benchmark has not been developed, their performance claims are often hard to...
Preprint
Full-text available
Light field applications, especially light field rendering and depth estimation, developed rapidly in recent years. While state-of-the-art light field rendering methods handle semi-transparent and reflective objects well, depth estimation methods either ignore these cases altogether or only deliver a weak performance. We argue that this is due curr...
Preprint
In this work, we focus on outdoor lighting estimation by aggregating individual noisy estimates from images, exploiting the rich image information from wide-angle cameras and/or temporal image sequences. Photographs inherently encode information about the scene's lighting in the form of shading and shadows. Recovering the lighting is an inverse ren...
Preprint
The characterization of an exoplanet's interior is an inverse problem, which requires statistical methods such as Bayesian inference in order to be solved. Current methods employ Markov Chain Monte Carlo (MCMC) sampling to infer the posterior probability of planetary structure parameters for a given exoplanet. These methods are time consuming since...
Preprint
We present Neural Head Avatars, a novel neural representation that explicitly models the surface geometry and appearance of an animatable human avatar that can be used for teleconferencing in AR/VR or other applications in the movie or games industry that rely on a digital human. Our representation can be learned from a monocular RGB portrait video...
Preprint
Full-text available
We present SSOD, the first end-to-end analysis-by synthesis framework with controllable GANs for the task of self-supervised object detection. We use collections of real world images without bounding box annotations to learn to synthesize and detect objects. We leverage controllable GANs to synthesize images with pre-defined object properties and u...
Preprint
Benchmark datasets that measure camera pose accuracy have driven progress in visual re-localisation research. To obtain poses for thousands of images, it is common to use a reference algorithm to generate pseudo ground truth. Popular choices include Structure-from-Motion (SfM) and Simultaneous-Localisation-and-Mapping (SLAM) using additional sensor...
Article
Full-text available
Modern generative deep learning (DL) architectures allow for unsupervised learning of latent representations that can be exploited in several downstream tasks. Within the field of oncological medical imaging, we term these latent representations “digital tumor signatures” and hypothesize that they can be used, in analogy to radiomics features, to d...
Preprint
We introduce a new architecture called a conditional invertible neural network (cINN), and use it to address the task of diverse image-to-image translation for natural images. This is not easily possible with existing INN models due to some fundamental limitations. The cINN combines the purely generative INN model with an unconstrained feed-forward...
Article
Full-text available
We describe a learning-based system that estimates the camera position and orientation from a single input image relative to a known environment. The system is flexible w.r.t. the amount of information available at test and at training time, catering to different applications. Input images can be RGB-D or RGB, and a 3D model of the environment can...
Chapter
We introduce a new architecture called a conditional invertible neural network (cINN), and use it to address the task of diverse image-to-image translation for natural images. This is not easily possible with existing INN models due to some fundamental limitations. The cINN combines the purely generative INN model with an unconstrained feed-forward...
Article
Full-text available
When designing a semantic segmentation model for a real-world application, such as autonomous driving, it is crucial to understand the robustness of the network with respect to a wide range of image corruptions. While there are recent robustness studies for full-image classification, we are the first to present an exhaustive study for semantic segm...
Chapter
Multispectral photoacoustic imaging (PAI) is an emerging imaging modality that enables the recovery of functional tissue parameters such as blood oxygenation. However, the underlying inverse reconstruction problems are potentially ill-posed, meaning that radically different tissue properties may-in theory-yield comparable measurements. In this work...
Preprint
We contribute to approximate algorithms for the quadratic assignment problem also known as graph matching. Inspired by the success of the fusion moves technique developed for multilabel discrete Markov random fields, we investigate its applicability to graph matching. In particular, we show how it can be efficiently combined with the dedicated stat...
Preprint
Full-text available
Recent work demonstrated that flow-based invertible neural networks are promising tools for solving ambiguous inverse problems. Following up on this, we investigate how ten invertible architectures and related models fare on two intuitive, low-dimensional benchmark problems, obtaining the best results with coupling layers and simple autoencoders. W...
Chapter
In this work, we focus on outdoor lighting estimation by aggregating individual noisy estimates from images, exploiting the rich image information from wide-angle cameras and/or temporal image sequences. Photographs inherently encode information about the scene’s lighting in the form of shading and shadows. Whereas computer graphic (CG) methods tar...
Chapter
Standard supervised learning breaks down under data distribution shift. However, the principle of independent causal mechanisms (ICM, [31]) can turn this weakness into an opportunity: one can take advantage of distribution shift between different environments during training in order to obtain more robust models. We propose a new gradient-based lea...
Preprint
Image registration is the basis for many applications in the fields of medical image computing and computer assisted interventions. One example is the registration of 2D X-ray images with preoperative three-dimensional computed tomography (CT) images in intraoperative surgical guidance systems. Due to the high safety requirements in medical applica...
Preprint
Multispectral photoacoustic imaging (PAI) is an emerging imaging modality which enables the recovery of functional tissue parameters such as blood oxygenation. However, the underlying inverse problems are potentially ill-posed, meaning that radically different tissue properties may - in theory - yield comparable measurements. In this work, we prese...
Chapter
For safety-critical applications such as autonomous driving, CNNs have to be robust with respect to unavoidable image corruptions, such as image noise. While previous works addressed the task of robust prediction in the context of full-image classification, we consider it for dense semantic segmentation. We build upon an insight from image classifi...
Article
Photometric surveys with the Hubble Space Telescope (HST) allow us to study stellar populations with high-resolution and deep coverage, with estimates of the physical parameters of the constituent stars being typically obtained by comparing the survey data with adequate stellar evolutionary models. This is a highly non-trivial task due to effects s...
Preprint
Standard supervised learning breaks down under data distribution shift. However, the principle of independent causal mechanisms (ICM, Peters et al. (2017)) can turn this weakness into an opportunity: one can take advantage of distribution shift between different environments during training in order to obtain more robust models. We propose a new gr...
Preprint
For safety-critical applications such as autonomous driving, CNNs have to be robust with respect to unavoidable image corruptions, such as image noise. While previous works addressed the task of robust prediction in the context of full-image classification, we consider it for dense semantic segmentation. We build upon an insight from image classifi...
Preprint
Full-text available
This paper presents the evaluation methodology, datasets, and results of the BOP Challenge 2020, the third in a series of public competitions organized with the goal to capture the status quo in the field of 6D object pose estimation from an RGB-D image. In 2020, to reduce the domain gap between synthetic training and real test RGB images, the part...
Preprint
Full-text available
With the maturing of deep learning systems, trustworthiness is becoming increasingly important for model assessment. We understand trustworthiness as the combination of explainability and robustness. Generative classifiers (GCs) are a promising class of models that are said to naturally accomplish these qualities. However, this has mostly been demo...
Preprint
Photometric surveys with the Hubble Space Telescope (HST) remain one of the most efficient tools in astronomy to study stellar clusters with high resolution and deep coverage. Estimating physical parameters of their constituents from photometry alone, however, is not a trivial task. Leveraging sophisticated stellar evolution models one can simulate...
Preprint
Full-text available
Neural rendering techniques promise efficient photo-realistic image synthesis while at the same time providing rich control over scene parameters by learning the physical image formation process. While several supervised methods have been proposed for this task, acquiring a dataset of images with accurately aligned 3D models is very difficult. The...
Preprint
There are a variety of approaches to obtain a vast receptive field with convolutional neural networks (CNNs), such as pooling or striding convolutions. Most of these approaches were initially designed for image classification and later adapted to dense prediction tasks, such as semantic segmentation. However, the major drawback of this adaptation i...
Preprint
Full-text available
We consider the maximum-a-posteriori inference problem in discrete graphical models and study solvers based on the dual block-coordinate ascent rule. We map all existing solvers in a single framework, allowing for a better understanding of their design principles. We theoretically show that some block-optimizing updates are sub-optimal and how to s...
Preprint
Full-text available
Dense, discrete Graphical Models with pairwise potentials are a powerful class of models which are employed in state-of-the-art computer vision and bio-imaging applications. This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle. Surprisingly, by making a small change to the low-performing solver, the Max...
Preprint
Full-text available
We propose a fast approximate solver for the combinatorial problem known as tracking-by-assignment, which we apply to cell tracking. The latter plays a key role in discovery in many life sciences, especially in cell and developmental biology. So far, in the most general setting this problem was addressed by off-the-shelf solvers like Gurobi, whose...
Preprint
Training deep neural networks to estimate the viewpoint of objects requires large labeled training datasets. However, manually labeling viewpoints is notoriously hard, error-prone, and time-consuming. On the other hand, it is relatively easy to mine many unlabelled images of an object category from the internet, e.g., of cars or faces. We seek to a...
Preprint
We describe a learning-based system that estimates the camera position and orientation from a single input image relative to a known environment. The system is flexible w.r.t. the amount of information available at test and at training time, catering to different applications. Input images can be RGB-D or RGB, and a 3D model of the environment can...
Preprint
Full-text available
The Information Bottleneck (IB) objective uses information theory to formulatea task-performance versus robustness trade-off. It has been successfully appliedin the standard discriminative classification setting. We pose the question whetherthe IB can also be used to train generative likelihood models such as normalizingflows. Since normalizing flo...
Preprint
A central question of representation learning asks under which conditions it is possible to reconstruct the true latent variables of an arbitrarily complex generative process. Recent breakthrough work by Khemakhem et al. (2019) on nonlinear ICA has answered this question for a broad class of conditional generative processes. We extend this importan...
Preprint
Full-text available
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements. Applications include finding multiple vanishing points in man-made scenes, fitting planes to architectural imagery, or estimating multiple rigid motions within the same sequence. In contrast to previous works, which resorted to hand-crafted...
Chapter
This paper presents the evaluation methodology, datasets, and results of the BOP Challenge 2020, the third in a series of public competitions organized with the goal to capture the status quo in the field of 6D object pose estimation from an RGB-D image. In 2020, to reduce the domain gap between synthetic training and real test RGB images, the part...
Preprint
We address a core problem of computer vision: Detection and description of 2D feature points for image matching. For a long time, hand-crafted designs, like the seminal SIFT algorithm, were unsurpassed in accuracy and efficiency. Recently, learned feature detectors emerged that implement detection and description using neural networks. Training the...
Preprint
Full-text available
Multispectral optical imaging is becoming a key tool in the operating room. Recent research has shown that machine learning algorithms can be used to convert pixel-wise reflectance measurements to tissue parameters, such as oxygenation. However, the accuracy of these algorithms can only be guaranteed if the spectra acquired during surgery match the...
Chapter
Multispectral optical imaging is becoming a key tool in the operating room. Recent research has shown that machine learning algorithms can be used to convert pixel-wise reflectance measurements to tissue parameters, such as oxygenation. However, the accuracy of these algorithms can only be guaranteed if the spectra acquired during surgery match the...
Preprint
Full-text available
We propose a method for depth estimation from light field data, based on a fully convolutional neural network architecture. Our goal is to design a pipeline which achieves highly accurate results for small- and wide-baseline light fields. Since light field training data is scarce, all learning-based approaches use a small receptive field and operat...
Preprint
When designing a semantic segmentation module for a practical application, such as autonomous driving, it is crucial to understand the robustness of the module with respect to a wide range of image corruptions. While there are recent robustness studies for full-image classification, we are the first to present an exhaustive study for semantic segme...
Preprint
Fitting model parameters to a set of noisy data points is a common problem in computer vision. In this work, we fit the 6D camera pose to a set of noisy correspondences between the 2D input image and a known 3D environment. We estimate these correspondences from the image using a neural network. Since the correspondences often contain outliers, we...
Preprint
In this work, we address the task of natural image generation guided by a conditioning input. We introduce a new architecture called conditional invertible neural network (cINN). The cINN combines the purely generative INN model with an unconstrained feed-forward network, which efficiently preprocesses the conditioning input into useful features. A...
Chapter
This work presents a deep object co-segmentation (DOCS) approach for segmenting common objects of the same class within a pair of images. This means that the method learns to ignore common, or uncommon, background stuff and focuses on common objects. If multiple object classes are presented in the image pair, they are jointly extracted as foregroun...
Chapter
We address the task of 6D pose estimation of known rigid objects from single input images in scenarios where the objects are partly occluded. Recent RGB-D-based methods are robust to moderate degrees of occlusion. For RGB inputs, no previous method works well for partly occluded objects. Our main contribution is to present the first deep learning-b...
Chapter
The task of generating natural images from 3D scenes has been a long standing goal in computer graphics. On the other hand, recent developments in deep neural networks allow for trainable models that can produce natural-looking images with little or no knowledge about the scene structure. While the generated images often consist of realistic lookin...
Preprint
We present Neural-Guided RANSAC (NG-RANSAC), an extension to the classic RANSAC algorithm from robust optimization. NG-RANSAC uses prior information to improve model hypothesis search, increasing the chance of finding outlier-free minimal sets. Previous works use heuristic side-information like hand-crafted descriptor distance to guide hypothesis s...
Chapter
Full-text available
This document summarizes the 4th International Workshop on Recovering 6D Object Pose which was organized in conjunction with ECCV 2018 in Munich. The workshop featured four invited talks, oral and poster presentations of accepted workshop papers, and an introduction of the BOP benchmark for 6D object pose estimation. The workshop was attended by 10...
Preprint
Full-text available
State of the art methods for semantic image segmentation are trained in a supervised fashion using a large corpus of fully labeled training images. However, gathering such a corpus is expensive, due to human annotation effort, in contrast to gathering unlabeled data. We propose an active learning-based strategy, called CEREALS, in which a human onl...
Preprint
This document summarizes the 4th International Workshop on Recovering 6D Object Pose which was organized in conjunction with ECCV 2018 in Munich. The workshop featured four invited talks, oral and poster presentations of accepted workshop papers, and an introduction of the BOP benchmark for 6D object pose estimation. The workshop was attended by 10...
Preprint
Full-text available
The task of generating natural images from 3D scenes has been a long standing goal in computer graphics. On the other hand, recent developments in deep neural networks allow for trainable models that can produce natural-looking images with little or no knowledge about the scene structure. While the generated images often consist of realistic lookin...
Chapter
Full-text available
We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D input image. The training data consists of a texture-mapped 3D object model or images of the object in known 6D poses. The benchmark comprises of: (i) eight datasets in a unified format that cover different practical scenarios, including two new datasets focusing on...
Chapter
Full-text available
Dense, discrete Graphical Models with pairwise potentials are a powerful class of models which are employed in state-of-the-art computer vision and bio-imaging applications. This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle. Surprisingly, by making a small change to a low-performing solver, the Max P...
Conference Paper
Full-text available
Dense, discrete Graphical Models with pairwise potentials are a powerful class of models which are employed in state-of-the-art computer vision and bio-imaging applications. This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle. Surprisingly, by making a small change to the low-performing solver, the Max...
Article
Full-text available
The success of deep learning in computer vision is based on availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm...
Preprint
Full-text available
We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D input image. The training data consists of a texture-mapped 3D object model or images of the object in known 6D poses. The benchmark comprises of: i) eight datasets in a unified format that cover different practical scenarios, including two new datasets focusing on...
Article
Full-text available
This work presents a deep object co-segmentation (DOCS) approach for segmenting common objects of the same class within a pair of images. This means that the method learns to ignore common, or uncommon, background stuff and focuses on objects. If multiple object classes are presented in the image pair, they are jointly extracted as foreground. To a...
Article
We propose and study a novel 'Panoptic Segmentation' (PS) task. Panoptic segmentation unifies the traditionally distinct tasks of instance segmentation (detect and segment each object instance) and semantic segmentation (assign a class label to each pixel). The unification is natural and presents novel algorithmic challenges not present in either i...
Article
Full-text available
Semantic segmentation is the task of labeling every pixel in an image with a predefined object category. It has numerous applications in scenarios where the detailed understanding of an image is required, such as in autonomous vehicles and medical diagnosis. This problem has traditionally been solved with probabilistic models known as conditional r...
Article
Full-text available
We address the task of estimating the 6D pose of known rigid objects, from RGB and RGB-D input images, in scenarios where the objects are heavily occluded. Our main contribution is a new modular processing pipeline. The first module localizes all known objects in the image via an existing instance segmentation network. The next module densely regre...
Article
Full-text available
Popular research areas like autonomous driving and augmented reality have renewed the interest in image-based camera localization. In this work, we address the task of predicting the 6D camera pose from a single RGB image in a given 3D environment. With the advent of neural networks, previous works have either learned the entire camera localization...
Preprint
The success of deep learning in computer vision is based on availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm...
Conference Paper
Full-text available
This paper addresses the task of estimating the 6D pose of a known 3D object from a single RGB-D image. Most modern approaches solve this task in three steps: i) Compute local features; ii) Generate a pool of pose-hypotheses; iii) Select and refine a pose from the pool. This work focuses on the second step. While all existing approaches generate th...

Network

Cited By