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Abstract

Selenium induces a senescence response in cells through induction of ataxia–telangiectasia mutated (ATM) and reactive oxygen species (ROS). Although a
role of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in DNA double-strand break repair is established, it is unclear how these proteins
function in response to selenium-induced oxidative stress and senescence induction. In this study, we demonstrated that pretreating normal human diploid
fibroblasts with DNA-PK kinase inhibitor NU 7026 suppressed selenium-induced senescence response. Selenium treatment induced phosphorylation of DNA-
PKcs on Thr-2647 and Ser-2056, the extent of which was decreased in the presence of ATM kinase inhibitor KU 55933 or the antioxidants N-acetylcysteine or
2,2,6,6-tetramethylpiperidine-1-oxyl. In contrast, the selenium-induced phosphorylation of ATM on Ser-1981 was not affected by NU 7026. Cells deficient in
DNA-PKcs or pretreated with NU 7026 or N-acetylcysteine were defective in selenite-induced ROS formation. Taken together, these results indicate a distinct
role of DNA-PKcs, in which this kinase can respond to and feed forward selenium-induced ROS formation and is placed downstream of ATM in the resultant
senescence response.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Selenium is a micronutrient essential for optimal health. A strong
body of geographical, animal and clinical evidence points to a role for
selenium in counteracting tumorigenesis (for details, see Ref. [1]). In
particular, the Nutritional Prevention of Cancer Trial concluded that
dietary supplementation of selenium three- to four-fold higher than
nutritional need, in the form of selenium-enriched yeast containing
65%–80% selenomethionine, reduced mortality from all cancers and
Abbreviations: ATM, ataxia–telangiectasia mutated; CM-H2DCFDA, 5-
(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl
ester; DAPI, 4,6-diamidino-2-phenylindole; DNA-PKcs, the catalytic subunit
of DNA-dependent protein kinase; DSBs, double-strand breaks; MEFs, mouse
embryonic fibroblasts; MSeA, methylseleninic acid; NAC, N-acetylcysteine;
Na2SeO3, sodium selenite; NHEJ, nonhomologous end-joining; PBS, phos-
phate-buffered saline; pATM Ser-1981, phospho-ATM at Ser-1981; pDNA-
PKcs Ser-2056, phospho-DNA-PKcs at Ser-2056; pDNA-PKcs Thr-2647,
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reactive oxygen species; SA-β-gal, senescence-associated -β-galactosidase;
Tempo, 2,2,6,6-tetramethylpiperidine-1-oxyl.
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decreased the incidence of lung, colorectal and prostate cancers [2]. In
contrast, the Selenium and Vitamin E Cancer Prevention Trial failed to
demonstrate that selenomethionine or vitamin E, alone or in
combination, prevented the incidence of prostate cancer in a
population of relatively healthy men [3]. Together with results from
animal studies [4,5], selenomethionine is unlikely the best active
selenium compound to counteract tumorigenesis. Whatever the
effective selenium speciation, the proposed mechanisms of selenium
chemoprevention include induction of apoptosis by reactive oxygen
species (ROS) [6–9], activation of cell cycle arrest [6,10,11], an
enhancement of DNA repair [12,13], an increase in mitochondrial
dysfunction [14], limiting endoplasmic reticulum stress [15], as well
as decreasing angiogenesis [16–19] in cancerous cells. We have
recently shown a different perspective, that selenium compounds can
activate a senescence response in noncancerous, but not in cancerous,
cells with doses ≤LD50 [20]. Thus, selenium compounds, in principle,
could activate early barriers of tumorigenesis and prevent the cells
from progressing to the malignant stage.

DNA damage response, an early barrier of tumorigenesis [21], can
be induced by the catalytic subunit of DNA-dependent protein kinase
(DNA-PKcs) and ataxia–telangiectasia mutated (ATM). The only
human PRKDC (DNA-PKcs) mutation known to date is the L3062R
missense mutation found in a severe combined immunodeficiency
patient [22]; however, the human glioma cell line M059J lacks DNA-
PKcs protein and expresses low levels of ATM protein [23]. ATM is
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mutated in the genome instability syndrome ataxia–telangiectasia
which is characterized by neuronal degeneration, immune defects,
premature aging and cancer predisposition [24]. The ATM pathway is
activated by interactions with the MRE11-RAD50-NBS1 complex and
by autophosphorylation on the Ser-1981 (pATM Ser-1981) residue
[25–28]. DNA-PKcs, Ku70 and Ku80 form the holoenzyme DNA-PK
that repairs DNA double-strand breaks (DSBs) by the nonhomologous
end-joining (NHEJ) pathway [29,30]. The Thr-2647 residue of DNA-
PKcs is phosphorylated (pDNA-PKcs Thr-2647) in vivo in an ATM-
dependent manner after ionizing radiation [31]. DNA-PKcs autopho-
sphorylation on Ser-2056 (pDNA-PKcs Ser-2056) is induced by DNA
DSBs and is required for proper NHEJ repair [32,33].

Originally known as major kinases in the signaling and repair of
DNA DSBs, emerging lines of recent evidence link DNA-PK and ATM to
redox regulation. Low levels of oxidative stress can activate DNA-PK
during mitochondrial respiration [34]. Moreover, ATM protein can be
activated by direct oxidative stress or in selenium-treated cells
[20,35,36], and neurons deficient in ATM show increased oxidative
stress [37,38]. Because ATM kinase is not the only kinase attributed to
H2A.X phosphorylation on Ser-139 (γH2A.X) [20] and both ATM and
DNA-PKcs can function redundantly in the cellular exposure to
ionizing radiation [31,37,39], we hypothesized that DNA-PKcs

participates in the selenium-induced DNA damage and senescence
responses. We show here that DNA-PKcs is placed downstream of
ATM, relays oxidative stress and is required for the senescence
response in normal diploid fibroblasts treated with selenium
compounds.

2. Method and materials

2.1. Cell culture and chemicals

The human pulmonary MRC-5 and colorectal CCD 841 CoN normal fibroblasts and
wild-type and DNA-PKcs

−/− mouse embryonic fibroblasts (MEFs) were cultured as
described previously [20,40]. MRC-5 and CCD 841 CoN cells were chosen to
recapitulate the selenium-induced senescence response based on our previous results
[20]. The DNA-PKcs

−/− and wild-type MEFs have been extensively employed for DNA
damage response studies [40]. Sodium selenite (Na2SeO3, 2 μmol/L, 24 h), methylse-
leninic acid (MSeA, 2 μmol/L, 24 h), N-acetylcysteine (NAC, a thiol-containing
derivative of L-cysteine, 5–10 mmol/L, 24 h) and 2,2,6,6-tetramethylpiperidine-1-
oxyl (Tempo, a membrane permeable nitroxide compound, 0.5–1 mmol/L, 24 h) were
obtained from Sigma-Aldrich (St. Louis, MO, USA) and were dissolved in phosphate-
buffered saline (PBS). NU 7026 and KU 55933 (10 μmol/L, 24 h) were purchased from
Tocris (Ellisville, MO, USA) and were dissolved in dimethyl sulfoxide.

2.2. Detection of ROS

Intracellular ROS were detected using 5-(and-6)-chloromethyl-2',7'-dichlorodihy-
drofluorescein diacetate, acetyl ester (CM-H2DCFDA) (Invitrogen, Carlsbad, CA, USA),
which is nonfluorescent until the removal of the acetate group by intracellular
esterases upon increased oxidative stress. After Na2SeO3 treatment, the cells were
rinsed once with PBS and then incubated with 10 μmol/L CM-H2DCFDA in PBS for 45
min at 37°C. The intracellular ROS levels were detected by using the filter set: Ex., 540
nm; Em., 490 nm, which is equipped in a fluorescence microplate reader (FLUOstar
OPTIMA, BMG Labtech, Cary, NC, USA). The fluorescent intensity was measured and
normalized to cells without any treatment. In preparation for ROS analysis by means of
flow cytometry, the cells were trypsinized and washed before incubation with CM-
H2DCFDA. After the cells were spun down, the resuspended cells were analyzed by
recording the mean FITC-A signals of each sample using the BD FACSCanto II flow
cytometer. The data were analyzed using FlowJo version 7.6.4 (Tree Star Inc., Ashland,
OR, USA). For ROS analysis by fluorescence microscope, cells were incubated with 10
μmol/L CM-H2DCFDA in 4% paraformaldehyde for 30 min at 37°C in the dark [41]. After
being rinsed gently with PBS, cells were imaged immediately under a Zeiss Axio
Observer Z1m fluorescent microscope (Zeiss, Thornwood, NY, USA) using the software
Axiovision. All samples were imaged using the GFP 488-nm excitation spectra setting,
and corresponding bright-field pictures were taken.

2.3. Immunofluorescence

Immunofluorescence analysis was performed as described previously with
modifications [20,42]. Briefly, cells were fixed in 4% paraformaldehyde for 15 min,
permeabilized with ice-cold methanol for 10 min at −20°C and then with 0.3% Triton
X-100 for 10 min, and blocked in 10 % normal goat serum in PBS containing glycine at
0.3mol/L for 1 h. The coverslipswere incubatedwith the following antibodies overnight
at 4°C: pDNA-PKcs Thr-2647 (lot 903801, 1:300, Abcam, Cambridge, MA, USA), pDNA-
PKcs Ser-2056 (lot 696143, 1:300, Abcam), DNA-PKcs (lot 715104, 1:300, Abcam), ATM
(lot YF-10-17-02, 1:500, Epitomics, Burlingame, CA, USA) and pATM Ser-1981 (lot
20772, 1:500, Rockland, Gilbertsville, PA, USA). The slides were thenwashed in PBS and
incubatedwith Alexa secondary antibodies (Alexa Fluor 488 and 594, 1:200, Invitrogen)
for 1 h at room temperature in the dark. Cells were then washed in PBS and mounted
onto slides containing a drop of 4,6-diamidino-2-phenylindole (DAPI) (Invitrogen). All
the images were obtained using the same parameters of brightness, contrast and
exposure time by using a Zeiss Axio Observer Z1m fluorescence microscope, and the
images were processed using deconvolution with the software AxioVision Release
4.7.2.0. Ten nuclei were randomly chosen and outlined using the spline function of the
software, and the densometric intensity of each of the proteins (DsRed and GFP) was
obtained and normalized by that of DAPI as described previously [43,44].

2.4. Cell survival assay

Cells were trypsinized and counted using a hemocytometer. The number of
untreated cells was set as 100%. For apoptotic analysis, cell pellets were resuspended in
500 μl binding buffer containing Annexin V-FITC and Sytox green dye according to
manufacturer's instruction (Apoptosis Detection Kit Plus, K201-400; Biovision Inc.,
Mountain View, CA, USA). The cells were then analyzed (Ex., 488 nm; Em., 530 nm in
the FL1 channel) by using a BD FACSCanto II flow cytometer.

2.5. Senescence assays

We detected expression of senescence associated-β-galactosidase (SA-β-gal) by
using a Senescence Detection Kit (MBL Co. Ltd., Woburn, MA, USA) according to the
manufacturer's instructions and our previous publication [20].

2.6. Statistics

All the experiments were independently performed and repeated three times. The
data were analyzed using GraphPad Prism software version 5.04 (GraphPad Software
Inc., La Jolla, CA, USA). One-tailed Student's t-test was applied to determine statistical
significance (Pb.05) between the treatments.

3. Results

3.1. DNA-PKcs is involved in the selenium-induced senescence response

We first tested the hypothesis that DNA-PKcs is involved in the
selenium-induced senescence response. Pretreatment of normal
MRC-5 and CCD 841 CoN human fibroblasts with NU 7026, a DNA-
PK kinase inhibitor [45–51], completely suppressed the SA-β-gal
expression induced by Na2SeO3 (Fig. 1A and C) and MSeA (Fig. 1B
and D). Consistent with our previous results [20], pretreatment of
MRC-5 cells with the antioxidants NAC or Tempo significantly
decreased cellular expression of SA-β-gal after the selenium
treatment. Compared to MRC-5 cells, CCD 841 CoN cells showed
greater SA-β-gal expression before and after selenium treatment.
Representative pictures are shown in Supplemental Figs. 1 and 2.
Thus, DNA-PKcs is involved in selenium-induced senescence
response in normal diploid fibroblasts.

3.2. DNA-PKcs is phosphorylated on Ser-2056 and Thr-2647 after
Na2SeO3 treatment and is downstream of ATM and ROS-dependent

We next determined whether and how selenium treatment
activates DNA-PKcs and ATM. Analyses of immunofluorescence
results indicated that Na2SeO3 treatment in MRC-5 cells induced
the formation of pDNA-PKcs Ser-2056 (Fig. 2A and Supplemental
Fig. 3) and Thr-2647 (Fig. 2B and Supplemental Fig. 4). Because
selenite-treated MRC-5 cells show induction of pATM Ser-1981
[20], we next determined the sequential events of DNA-PKcs and
ATM phosphorylation after selenium treatment. The selenite-
induced pDNA-PKcs Ser-2056 focus formation was completely
prevented by pretreatment either with KU 55933 (10 μmol/L, 24
h) or NU 7026 (10 μmol/L, 24 h) (Fig. 2A). Furthermore, the
selenite-induced pDNA-PKcs Thr-2647 focus formation was signifi-
cantly decreased by pretreatment with KU 55933, but not by NU



Fig. 1. Selenium-induced senescence response in normal human diploid fibroblasts is dependent on DNA-PK kinase activity and ROS. MRC-5 (A, B) and CCD 841 CoN (C, D) normal
human diploid fibroblasts were pretreated with the DNA-PK kinase inhibitor NU 7026 (10 μmol/L) or the antioxidants Tempo (0.5 mmol/L) or NAC (5 mmol/L) for 24 h, followed by
treatment with 2 μmol/L Na2SeO3 (A, C) or 2 μmol/L MSeA (B, D) for 48 h. SA-β-gal was measured 7 days after recovery from the selenium treatment. Values are means±S.E.M. (n=3;
*Pb.05, compared with cells without treatment; #Pb.05, compared with the cells treated with selenium only).
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7026 (Fig. 2B). In contrast, the selenite-induced pATM Ser-1981
focus formation was not affected by pretreatment with NU 7026 but
was significantly attenuated by pretreatment with KU 55933 (Fig. 3
and Supplemental Fig. 5). Treatment of MRC-5 cells with Na2SeO3,
KU 55933 or NU 7026 did not affect the expression of total ATM or
DNA-PKcs (Supplemental Figs. 3–5). Unlike MRC-5 cells, U-2 OS
osteosarcoma cells did not show any significant induction of the
DNA-PKcs phosphorylation events when treated with Na2SeO3 (2
μmol/L, 24 h) (data not shown). Because selenium-induced
Fig. 2. The selenium-induced formation of pDNA-PKcs Ser-2056 and Thr-2467 foci in MRC-5 cel
24 h), KU 55933 (10 μmol/L, 24 h) or the antioxidant Tempo (1mmol/L, 24 h) thenwith Na2SeO
PKcs on Ser-2056 (A) or on Thr-2647 (B). Values aremeans±S.E.M. (n=3; *Pb.05, compared wi
senescence can be inhibited by either NU 7026 or antioxidants
(Fig. 1), we asked whether the selenite-induced phosphorylation of
pDNA-PKcs is associated with ROS. Pretreatment of Tempo (1 mmol/
L, 24 h) completely suppressed (Pb.05) selenite-induced focus
formation of pDNA-PKcs Ser-2056 (Fig. 2A) and pDNA-PKcs Thr-
2467 (Fig. 2B) in MRC-5 cells. In conclusion, selenite-induced
formation of pDNA-PKcs Ser-2056 and Thr-2647 focus formation is
downstream of pATM Ser-1981 formation and depends on ROS in
MRC-5 normal diploid fibroblasts.
ls is dependent on ROS. MRC-5 cells were sequentially treated with NU 7026 (10 μmol/L,
3 (2 μmol/L, 24 h), followed by immunofluorescence analysis of phosphorylation of DNA-
th cells without treatment; #Pb.05, compared with the cells treated with Na2SeO3 only).

image of Fig.�2


Fig. 3. ATM is upstream of DNA-PKcs in the cellular response to Na2SeO3 treatment.
MRC-5 cells were sequentially treated with NU 7026 (10 μmol/L, 24 h) or KU 55933 (10
μmol/L, 24 h) then with Na2SeO3 (2 μmol/L, 24 h), followed by immunofluorescence
analysis of phosphorylation of ATM on Ser-1981. Values are means±S.E.M. (n=3;
*Pb.05, compared with cells without treatment; #Pb.05, compared with the cells
treated with Na2SeO3 only).
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3.3. DNA-PKcs contributes to selenite-induced oxidative stress

Because selenium-induced ATM and DNA-PKcs activation depends
on ROS, we assessed cellular ROS status by employing CM-H2DCFDA.
Treatment of MRC-5 cells with Na2SeO3 (2–10 μmol/L, 24 h) increased
(Pb.05) levels of ROS in a dose-dependent manner (Fig. 4A).
Fig. 4. DNA-PKcs is necessary for the production of ROS in selenite-treated cells. (A)MRC-5 cellsw
for 24 h, followed by incubation of CM-H2DCFDA (10 μmol/L) for 45 min at 37°C. H2O2 (10 μmol
signal was determined by fluorescence plate reader and normalizedwithMRC-5 cells without tre
#Pb.05, comparedwith thecells treatedwithNa2SeO3 at 2 μmol/L). (B–F)Wild-type andDNA-PKc

incubation of CM-H2DCFDA. The CM-H2DCFDA-positive cells were visualized by using a fluoresc
Surprisingly, pretreatment with NU 7026 (10 μmol/L, 24 h) nearly
reversed the selenite-induced ROS (2 μmol/L) formation. The validity
of the ROS results was verified by results of H2O2 treatment, and the
selenite-induced ROS was greatly reversed by pretreatment with NAC
(10 mmol/L, 24 h). These results implicate that the kinase activity of
DNA-PK is necessary for the selenite-induced oxidative stress in MRC-
5 cells. To verify this result, we determined ROS status in wild-type
and DNA-PKcs

−/− MEFs. Na2SeO3 treatment (2 μmol/L, 24 h) induced
ROS level in wild-type MEFs, but not in DNA-PKcs

−/− MEFs, as
assessed by immunofluorescent analyses (Fig. 4B) and by flow
cytometry (Fig. 4C and D). DNA-PKcs

−/−MEFs did not show increased
ROS level after H2O2 treatment either (10 μmol/L, 24 h, Fig. 4E and F).
Altogether, selenite-induced oxidative stress in MRC-5 cells is
dependent on DNA-PKcs.

3.4. Distinct impact of DNA-PKcs and ATM in the sensitivity of MRC-5
cells to Na2SeO3

Because DNA-PK kinase (Fig. 1) and ATM kinase [33] are
necessary for the selenium-induced senescence response, we
determined whether the kinase activities impact cellular sensitivity
of MRC-5 cells to Na2SeO3 (2–5 μmol/L, 24 h) coupled with NU
7026 (10 μmol/L) or KU 55933 (10 μmol/L). We found that KU
55933 or NU 7026 sensitized MRC-5 cells to Na2SeO3 treatment
based on cell counting experiments (Fig. 5A) and to selenite-
induced apoptosis (Fig. 5B). Although MRC-5 cells showed
increased sensitivity and apoptosis when treated with KU 55933
ere treatedwithNa2SeO3 alone or coupledwithNU 7026 (10 μmol/L) orNAC (10mmol/L)
/L, 1 h) was used as the CM-H2DCFDA positive control. The intensity of the CM-H2DCFDA
atment. Values aremeans±S.E.M. (n=3; *Pb.05, comparedwith cells without treatment;
s
−/−MEFswere treatedwithNa2SeO3 (2 μmol/L) orH2O2 (10 μmol/L) for 24h, followedby
ence microscope (B) or determined by flow cytometric analyses (C–F).

image of Fig.�3
image of Fig.�4


Fig. 5. Effect of KU 55933 and NU 7026 on the sensitivity of MRC-5 cells to Na2SeO3 treatment. MRC-5 cells were treated with Na2SeO3 alone or coupled with NU 7026 or KU 55933 (10
μmol/L, 48 h), allowed to recover, and counted when the control cells reached 90% confluency (A) or the percentage of apoptotic cells was determined by flow cytometry (B). Values
are means±S.E.M. (n=3; *Pb.05, compared with cells without treatment; #Pb.05).
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or NU 7026 alone, Na2SeO3 treatment sensitized MRC-5 cells to KU
55933 but not to NU 7026 toxicity. Therefore, Na2SeO3 and
defective ATM kinase additively promote cell death, while
Na2SeO3 and defective DNA-PK kinase may function in the same
cell death pathway. Taken together, DNA-PKcs and ATM differen-
tially regulate cellular sensitivity to selenite-induced apoptosis.
Fig. 6. A model depicting ROS, DNA-PKcs and ATM interplay and how they contribute to
selenium-induced senescence in normal diploid fibroblasts.
4. Discussion

In this study, we employed Na2SeO3 at levels that are above or
at the high end of the nutritional needs and that do not efficiently
up-regulate the expression of selenoproteins. Although the majority
of selenoproteins exhibit antioxidant activities, the doses of
selenium ≤LD50 utilized herein instead can induce ROS formation
[20]. Consequently, the mild oxidative stress elicits a senescence
response that we propose to halt tumorigenesis at an early stage in
normal cells. The inorganic forms of selenium, Na2SeO3 and
Na2SeO4, are typically used in animal diets [52,53], and the latter
is considered safer than the former. The organic forms of selenium
compounds, such as MSeA, have been proven to carry superior
anticarcinogenic activities based on animal studies [4,5]. Once
inside the cells, it is believed that the various selenium compounds
can be metabolized for selenoprotein regulation, ROS formation or
excreted, depending on the doses of the selenium compounds.

A proper DNA damage response is critical for cells to remain
healthy and prevent malignant changes. Although the DNA-PK
complex is well studied in the repair of DNA DSBs by NHEJ, here we
have identified an unexpected role of DNA-PKcs, as a positive
regulator of the selenium-induced oxidative stress. As depicted in
Fig. 6, we propose that selenium compounds, at a supranutritional
level, drive ROS formation and the subsequent ATM activation. The
ATM-dependent activation of DNA-PKcs maintains and contributes to
oxidative stress, which may reinforce the ROS-induced senescence
response to selenium exposure that counteracts early-stage tumor-
igenesis. Selenium-induced senescence may be regulated by p53 and/
or p16INK4a that are known to execute or maintain a senescent state. It
is also possible that ATM and DNA-PK contribute to selenium-induced
senescence through p53 phosphorylation or through modulation of
the ATM downstream checkpoint mediators such as Chk2 or SMC1.
Consistent with this view, we have recently shown that p53 is
indispensable for selenium-induced senescence in MRC-5 cells [54].
Because antioxidant treatment does not reverse selenium-induced
senescence as significantly as NU 7026 does, selenium may also use
pathways other than the one we describe here, which implicates
DNA-PKcs in relaying the selenium-induced ROS formation.

DNA-PKcs Ser-2056 autophosphorylation from ionizing radiation
and its localization to laser-induced DNA breaks are independent of
ATM; however, phosphorylation of DNA-PKcs on Thr-2647 and other
sites in the Thr-2609 cluster is dependent on ATM upon ionizing
radiation [55–57]. These DNA-PKcs phosphorylation events, together
with the recognition of broken DNA ends and recruitment of DNA-
PKcs by the Ku70/Ku80 heterodimer, collectively render a full
activation of the NHEJ pathway for the repair of DNA DSBs [31].
Contrary to the response to direct DNA DSBs, induction of pDNA-PKcs

Ser-2056 by selenium treatment depends on the kinase activity of
ATM. Metabolites of selenium compounds do not directly cause DNA
DSBs; rather, they promote the formation of ROS [1,6,58]. Oxidative
stress is known to induce a nuclear loss of Ku70 and Ku80 in the
pancreatic acinar AR42J cells [59], as well as to directly activate the
ATM kinase [35,36]. Therefore, upon selenium-induced oxidative
stress, the Ku70/Ku80 heterodimer may be uncoupled from DNA-PKcs

and transported out from the nucleus. Dissociation from Ku70/Ku80
may allow DNA-PKcs Ser-2056 to become an ATM phosphorylation
target. Whatever the mechanism, selenium compounds and DNA
DSBs differentially induce pDNA-PKcs Ser-2056 phosphorylation in an
ATM-dependent or an ATM-independent manner.

The phosphorylation of DNA-PKcs on Thr-2647 upon either
ionizing radiation [31] or selenium treatment (Fig. 2B) requires the
kinase activity of ATM.We have recently shown that cellular exposure
to selenium compounds can induce the formation of the oxidative 8-
oxoguanine DNA lesions [42]. If not repaired efficiently, the 8-
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oxoguanine accumulation can lead to DNA breaks that depend on the
mismatch repair proteins MLH1 or MSH2 [42,60]. Interestingly, DNA-
PKcs phosphorylation on the Ser-2609 cluster, which includes Thr-
2647, is needed for the Artemis endonuclease to process DNA DSBs
[61,62]. Furthermore, the DNA-PK-Artemis pathway can be activated
by oxidative stress in normal cells [34,61]. Similar to DNA DSBs,
selenium-induced phosphorylation of DNA-PKcs on Thr-2647 does
not need the kinase activity of DNA-PK. It is thus conceivable that the
selenium-induced pDNA-PKcs Thr-2647 formation is a downstream
event of ATM activation when the unrepaired oxidative DNA damage
has manifested into unresolved DNA breaks.

To our knowledge, our research provides the first evidence that
DNA-PKcs not only responds to but also contributes to ROS
production, particularly in senescent cells. It is known that DNA-
PKcs autophosphorylation can facilitate the Artemis endonuclease for
the stabilization of the p53 protein in response to oxidative stress
[34,62]. Therefore, the role of DNA-PKcs in maintaining ROS levels
appears to be a biological necessity to ensure sustained up-regulation
of senescence-promoting factors such as p53. Consistent with this
notion, we have recently demonstrated that p53 is required for
selenium-induced senescence in MRC-5 cells [54]. DNA-PKcs may also
feed forward regulation of ROS during the selenium-induced
senescence response through oxygen generators. For example,
mitochondrial dysfunction occurs under oxidative stress and in
senescent cells [63–65], and DNA-PKcs silencing can suppress the
expression of the ROS-generating xanthine oxidoreductase [66]. Of
note, endogenous oxidative stress and DNA-PKcs phosphorylation
exist in MRC-5 cells under our 20% oxygen cell culture condition, as
their levels are decreased upon antioxidant treatment (Fig. 4A). To
summarize, the full extent to which and how DNA-PKcs promotes ROS
formation will require further investigation.

Here we have identified a novel role of DNA-PKcs as a positive
regulator of the senescence response as a result of selenium treatment
in normal diploid fibroblasts. Upon selenium-induced oxidative
stress, DNA-PKcs is downstream of ATM in the DNA damage response
pathway. In particular, the DNA-PK kinase activity contributes to
oxidative stress, which represents a feed-forward regulation of
selenium-induced ROS leading to sustained activation of ATM and
DNA-PK and the senescence response. We believe that ROS can act as
a signal for precancerous cells to confer and sustain the ATM- and
DNA-PKcs-dependent senescence response, an early barrier of
tumorigenesis. Cancer cells are immune to this signaling due to
their intrinsically high levels of oxidative stress. Although selenium
has been touted for its chemopreventive action on cancer cells, our
results support a different view, of which selenium can stifle
tumorigenesis at the early stages, before a cell turns malignant
through the response to and the maintenance of ROS by the ATM-
DNA-PKcs pathway.
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