Caroline DraxlElectric Power Research Institute | EPRI
Caroline Draxl
PhD
About
58
Publications
28,910
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,554
Citations
Publications
Publications (58)
The atmospheric dynamics that occur near the intersection of land and water offer exciting and challenging opportunities for wind energy deployment in coastal locations. New models and tools are continually being developed in support of wind resource assessment, and three recent products are explored in this work for their performance in representi...
This article introduces the 2023 National Offshore Wind data set (NOW-23), which offers the latest wind resource information for offshore regions in the United States. NOW-23 supersedes, for its offshore component, the Wind Integration National Dataset (WIND) Toolkit, which was published a decade ago and is currently a primary resource for wind res...
This article introduces the 2023 National Offshore Wind data set (NOW-23), which offers the latest wind resource information for offshore regions in the United States. NOW-23 supersedes, for its offshore component, the Wind Integration National Dataset (WIND) Toolkit, which was published a decade ago and is currently a primary resource for wind res...
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models for the use case of wind energy development and operation. Several coupling methods and techniques for generating turbulence at...
As offshore wind farm development expands, accurate wind resource forecasting over the ocean is needed. One important yet relatively unexplored aspect of offshore wind resource assessment is the role of sea surface temperature (SST). Models are generally forced with reanalysis data sets, which employ daily SST products. Compared with observations,...
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models for the use case of wind energy development and operation. Several coupling methods and techniques for generating turbulence at...
With the increasing level of offshore wind energy investment, it is correspondingly important to be able to accurately characterize the wind resource in terms of energy potential as well as operating conditions affecting wind plant performance, maintenance, and lifespan. Accurate resource assessment at a particular site supports investment decision...
Building on the verification and validation work developed under the Second Wind Forecast Improvement Project, this work exhibits the value of a consistent procedure to evaluate wind power forecasts. We established an open-source Python code base tailored for wind speed and wind power forecast validation, WE-Validate. The code base can evaluate mod...
With the planned construction of vast offshore wind farms along the US East Coast, identifying and understanding key coastal processes, such as sea breezes, has become a critical need for the sustainability and development of US offshore wind energy. In this study, a new two-step identification method is proposed to detect and characterize three ty...
Rapid expansion of wind energy development across the world has highlighted the need to better understand turbine-caused avian mortality. The risk to golden eagles (Aquila chrysaetos) is of particular concern due to their small population size and conservation status. Golden eagles subsidize their flight in part by soaring in orographic updrafts, w...
With the increasing level of offshore wind energy investment, it is correspondingly important to be able to accurately characterize the wind resource in terms of energy potential as well as operating conditions affecting wind plant performance, maintenance, and lifespan. Accurate resource assessment at a particular site supports investment decision...
The energy system needs a range of forecast types for its operation in addition to the narrow wind power forecastthat has been the focus of considerable recent attention. Therefore, the group behind the former IEA Wind Task36 Forecasting for Wind Energy has initiated a new IEA Wind Task with a much broader perspective, whichincludes prospective int...
As offshore wind farm development expands, accurate wind resource forecasting over the ocean is needed. One important yet relatively unexplored aspect of offshore wind resource assessment is the role of sea surface temperature (SST). Models are generally forced with reanalysis data sets, which employ daily SST products. Compared with observations,...
Mesoscale numerical weather prediction (NWP) models are generally considered more accurate than reanalysis products in characterizing the wind resource at heights of interest for wind energy, given their finer spatial resolution and more comprehensive physics. However, advancements in the latest ERA-5 reanalysis product motivate an assessment on wh...
We investigate the impact of three land surface models (LSMs) on simulating hub-height wind speed under three different soil regimes (dry, wet, and frozen) to improve understanding of the physics of wind energy forecasts using the Weather Research and Forecasting (WRF) model. A six-day representative period is selected for each soil condition. The...
We present a review of existing wind-wave coupling models and parameterizations used for large-eddy simulation of the marine atmospheric boundary layer. The models are classified into two main categories: (i) the wave phase-averaged, sea-surface-roughness models and (ii) the wave phase-resolved models. Both categories are discussed from their imple...
To simulate the airflow through a wind farm across a wide range of atmospheric conditions, microscale models (e.g., large-eddy simulation, LES, models) have to be coupled with mesoscale models, because microscale models lack the atmospheric physical processes to represent time-varying local forcing. Here we couple mesoscale model outputs to a LES s...
Mountains can modify the weather downstream of the terrain. In particular, when stably stratified air ascends a mountain barrier, buoyancy perturbations develop. These perturbations can trigger mountain waves downstream of the mountains that can reach deep into the atmospheric boundary layer where wind turbines operate. Several such cases of mounta...
The overall goal of the Mesoscale-to-Microscale Coupling (MMC) project is to improve coupling between mesoscale and microscale simulations via improved guidance and new strategies for setting up simulations and for the development of new tools that can be used across the community. Including the mesoscale forcing is critical to modeling the full en...
Wind power forecasts have been operationally used for over 25 years. Despite this fact, there are still many possibilities to improve and enhance forecasts, both from the weather prediction side and in the use of the forecasts. Until now, most applications have focused on deterministic forecast methods. This is likely to change in the future as pen...
Wind and solar energy sources are climate and weather dependent, therefore susceptible to a changing climate. We quantify the impacts of climate change on wind and solar electricity generation under high concentrations of greenhouse gases in Texas. We employ mid-twenty-first century climate projections and a high-resolution numerical weather predic...
The ascent of stably stratified air over a mountain barrier can trigger the generation of mountain waves. Mountain waves occur frequently over the Columbia River Gorge in western North America and can impact wind power generation over the area. Therefore, predicting the details of mountain waves events (e.g., dominant wavelength, timing, and durati...
We present the first synthetic aperture radar (SAR) offshore wind atlas of the US East Coast from Georgia to the Canadian border. Images from RADARSAT-1, Envisat, and Sentinel-1A/B are processed to wind maps using the geophysical model function (GMF) CMOD5.N. Extensive comparisons with 6008 collocated buoy observations of the wind speed reveal that...
Mesoscale-to-microscale coupling (MMC) aims to address the limited scope of traditional large-eddy simulations by driving the microscale flow with information concerning large-scale weather patterns provided by mesoscale models. We present a new offline MMC technique for horizontally homogeneous microscale flow conditions, in which internal forcing...
The wind-energy (WE) industry relies on numerical weather prediction (NWP) forecast models as foundational or base models for many purposes, including wind-resource assessment and wind-power forecasting. During the Second Wind Forecast Improvement Project (WFIP2) in the Columbia River Basin of Oregon and Washington, a significant effort was made to...
Abstract. Large mountains can modify the weather downstream of the terrain. In particular, when stably stratified air ascends a mountain barrier, buoyancy perturbations develop. These perturbations can trigger mountain waves downstream of the mountains that can reach deep into the atmospheric boundary layer where wind turbines operate. Several such...
The primary goal of the Second Wind Forecast Improvement Project (WFIP2) is to advance the state-of-the-art of wind energy forecasting in complex terrain. To achieve this goal, a comprehensive 18-month field measurement campaign was conducted in the region of the Columbia River basin. The observations were used to diagnose and quantify systematic f...
Accurately representing flow across the mesoscale to the microscale is a persistent roadblock for completing realistic microscale simulations. The science challenges that must be addressed to coupling at these scales include the following: 1) What is necessary to capture the variability of the mesoscale flow, and how do we avoid generating spurious...
Annually and seasonally averaged wind profiles from three Doppler lidars were obtained from sites in the Columbia River basin of east-central Oregon and Washington, a major region of wind-energy production, for the Second Wind Forecast Improvement Project (WFIP2) experiment. The profile data are used to quantify the spatial variability of wind flow...
Offshore wind resource assessments for the conterminous U.S. and Hawai'i have been developed before, but Alaska's offshore wind resource has never been rigorously assessed. Alaska, with its vast coastline, presents ample potential territory in which to build offshore wind farms, but significant challenges have thus far limited Alaska's deployment o...
We present the first synthetic aperture radar (SAR)-based offshore wind atlas of the US East Coast from Georgia to the Canadian border. Images from Radarsat-1, Envisat, Sentinel-1A, and Sentinel-1B are processed to wind maps using the Geophysical Model Function (GMF) CMOD5.N. Extensive comparisons with 6,008 collocated buoy observations revealed th...
In 2015 the U.S. Department of Energy (DOE) initiated a 4-yr study, the Second Wind Forecast Improvement Project (WFIP2), to improve the representation of boundary layer physics and related processes in mesoscale models for better treatment of scales applicable to wind and wind power forecasts. This goal challenges numerical weather prediction (NWP...
The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy a...
Coupled mesoscale-microscale simulations are required to provide time-varying weather-dependent inflow and forcing for large-eddy simulations under general flow conditions. Such coupling necessarily spans a wide range of spatial scales (i.e., ~10m to ~10 km). Herein, we use simulations that involve multiple nested domains with horizontal grid spaci...
Climate change might impact various components of the bulk electric power system, including electricity demand; transmission; and thermal, hydropower, wind, and solar generators. Most research in this area quantifies impacts on one or a few components and does not link these impacts to effects on power system planning and operations. Here, we advan...
The sensitivities of idealized large-eddy simulations (LESs) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations in two physical factors, geostrophic wind speed and surface r...
The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental‐scale, national, or regional renewa...
The sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface ro...
The value of day-ahead solar power forecasting improvements was analyzed by simulating the operation of the Independent System Operator – New England (ISO-NE) power system under a range of scenarios with varying solar power penetrations and solar power forecasting improvements. The results showed how the integration of solar power decreased operati...
Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the a...
Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlation...
Wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters a...
The U.S. Department of Energy (DOE) Atmosphere to Electrons (A2e) program seeks to better model the flow physics that affect the energy produced by wind farms. To that end, beginning in FY2015, A2e initiated a Mesoscale to Microscale Coupling (MMC) project to look at the best methods to model the interface between the mesoscale systems and the micr...
Offshore wind fluctuations are such that dedicated prediction and control systems are needed for optimizing the management of wind farms in real-time. In this paper, we present a pioneer experiment – Radar@Sea – in which weather radars are used for monitoring the weather at the Horns Rev offshore wind farm, in the North Sea. First, they enable the...
The existence of vertical wind shear in the atmosphere close to the ground requires that wind resource assessment and prediction with numerical weather prediction (NWP) models use wind forecasts at levels within the full rotor span of modern large wind turbines. The performance of NWP models regarding wind energy at these levels partly depends on t...
Several kinds of observations are used today in operational NWP models with the aim of better forecasts by improving the analyses used by models. With the ongoing numerous offshore deployments of wind farms, especially in Europe (e.g., Denmark, UK, and Germany), but also in the US, a new set of measurements becomes available: wind speeds measured o...
The peculiarities of meteorological wind potential in alpine settings compared to flatland and offshore sites are studied. Four data sources are used: Global reanalysis ERA40 from ECMWF, long-term stations in the Tyrolean Alps, spatially dense measurements near the best site and Doppler sodar wind profiles. Due to the decrease of density with heigh...
An adaptive spectral method is used to verify wind speed forecasts and simulations from members of the Multi-Scheme Ensemble Prediction System (MSEPS), set up for the Horns Rev offshore wind farm in the Danish North Sea. The 75 members of the MSEPS are run on the same model grid with a resolution of 5km. The members differ in their numerical formul...
Within the scope of the EU-Interreg IIIb project "Alpine Windharvest", wind measurement sites in the Tyrolean Alps were statistically evaluated concerning their wind energy potential. The data sets consisted of the 70day Special Observation Period of the Mesoscale Alpine Program (MAP), when stations were set up densely in the Wipp Valley, and of sp...
First results and statistics for wind at 10 m and 30 m are presented. The variation and rough turbulence analysis shows influence of the topographical conditions. For 2196 data in ten minutes resolution wind speed in 30 m is 14 % higher than in 10 m agl. Difference in turbulence in two hights show the existence of wakes on the top.