Caroline ColleyAstraZeneca, Cambridge United Kingdom · Antibody Discovery and Protein Engineering
Caroline Colley
About
18
Publications
3,123
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,724
Citations
Publications
Publications (18)
Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red)...
Ion channels play crucial roles in physiology by modulation of cellular functions that include electrical excitability, secretion, cell migration, and gene transcription. They are an important target class for drug discovery and have historically been targeted using small molecule approaches. A significant opportunity exists to target these channel...
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR...
Calcitonin gene-related peptide (CGRP) is a small neuropeptide and a potent vasodilator that is widely associated with chronic pain and migraine. An antibody that inhibits CGRP function would be a potential therapeutic for treatment of these disorders. Here we describe the isolation of highly potent antibodies to CGRP from phage and ribosome displa...
Highly sensitive, high-throughput assay technologies are required for the identification of antibody therapeutics. Multiplexed assay systems are particularly advantageous because they allow evaluation of several parameters within 1 well, increasing throughput and reducing hands-on laboratory time.
The mirrorball (TTP Labtech), using high-throughput...
Identification of potential lead antibodies in the drug discovery process requires the use of assays that not only measure binding of the antibody to the target molecule but assess a wide range of other characteristics. These include affinity ranking, measurement of their ability to inhibit relevant protein-protein interactions, assessment of their...
IL-17A is a pro-inflammatory cytokine produced by the newly identified Th17 subset of T-cells. We have isolated a human monoclonal antibody to IL-17A (CAT-2200) that can potently neutralize the effects of recombinant and native human IL-17A. We determined the crystal structure of IL-17A in complex with the CAT-2200 Fab at 2.6 A resolution in order...
Through exhaustive two-hybrid screens using a budding yeast genomic library, and starting with the splicing factor and DEAH-box RNA helicase Prp22p as bait, we identified yeast Prp45p and Prp46p. We show that as well as interacting in two-hybrid screens, Prp45p and Prp46p interact with each other in vitro. We demonstrate that Prp45p and Prp46p are...
The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the alpha (NR1C1) and gamma (NR1C3) subtypes, respectively. By contrast, the the...
The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here w...
Through a genetic screen to search for factors that interact with Prp17/Cdc40p, a protein involved in both cell cycle progression and pre-mRNA splicing, we identify three novel factors, which we call Syf1p, Syf2p, and Syf3 (SYnthetic lethal with cdc Forty). Here we present evidence that all three proteins are spliceosome associated, that they assoc...
Biochemical and genetic experiments have shown that the PRP17 gene of the yeast Saccharomyces cerevisiae encodes a protein that plays a role during the second catalytic step of the splicing reaction. It was found recently that PRP17 is identical to the cell division cycle CDC40 gene. cdc40 mutants arrest at the restrictive temperature after the com...
We have identified a novel splicing factor, Isy1p,
through two-hybrid screens for interacting proteins involved
in nuclear pre-mRNA splicing. Isy1p was tagged and demonstrated
to be part of the splicing machinery, associated with spliceosomes
throughout the splicing reactions. At least a portion of
the Isy1 protein population is associated wit...
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-s...
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-s...
The PRP17 gene of the yeast Saccharomyces cerevisiae encodes a protein that participates in the second step of the splicing reaction. It was found recently that the yeast PRP17 gene is identical to the cell division cycle CDC40 gene. The PRP17/CDC40 gene codes for a protein with several copies of the WD repeat, a motif found in a large family of pr...