Carmen Valverde-Tercedor

Carmen Valverde-Tercedor
Universidad de Las Palmas de Gran Canaria | ULPGC · Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)

PhD

About

17
Publications
3,330
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
261
Citations
Citations since 2017
5 Research Items
196 Citations
2017201820192020202120222023010203040
2017201820192020202120222023010203040
2017201820192020202120222023010203040
2017201820192020202120222023010203040
Additional affiliations
January 2008 - June 2013
University of Granada
Position
  • PhD Student

Publications

Publications (17)
Article
Full-text available
Magnetotactic bacteria (MTB) biomineralize intracellular magnetite (Fe3O4) crystals surrounded by a magnetosome membrane (MM). The MM contains membrane-specific proteins that control Fe3O4 mineralization in MTB. Previous studies have demonstrated that Mms13 is a critical protein within the MM. Mms13 can be isolated from the MM fraction of Magnetosp...
Article
Full-text available
Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.Thus, bo...
Article
Protein-surface interactions play a pivotal role in processes as diverse as biomineralization, biofouling and the cellular response to medical implants. In biomineralization processes, biomacromolecules control mineral deposition and architecture via complex and often unknown mechanisms. For studying these mechanisms, the formation of magnetite nan...
Article
MamC from Magnetococcus marinus MC-1 has been shown to control the size of magnetite crystals in in vitro experiments, thereby demonstrating its potential as a candidate protein for the production of magnetite nanoparticles possibly useful in medical and other applications. However, the importance of the structure and aggregation state of the prote...
Article
Nanoparticles and their assemblies exhibit properties that can be used for a wide range of applications. However, creating multifunctional assemblies has remained challenging. Inspired by magnetotactic bacteria, genetically engineered single building blocks from magnetosome chains are used and complemented by additional components to form fluoresce...
Article
Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membra...
Article
Full-text available
The biomineralization of magnetotactic bacterial magnetite nanoparticles is a topic of intense research due to the particles' narrow size distribution and magnetic properties. Incorporation of foreign metal ions into the crystal matrix of magnetotactic bacterial magnetite has been previously examined by a number of investigators. In this study, cel...
Article
Full-text available
Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most ha...
Article
Full-text available
Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualizati...
Article
Magnetite is a common iron oxide produced both inorganically and biogenically. Biologically-induced magnetite is often originated, under appropriate conditions, as a result of the Fe3+ reduction by dissimilatory iron reducing bacteria, which are usually found in anoxic environments or at the oxic-anoxic interface. Such a Fe3+ bioreduction occurs up...

Network

Cited By