Carly Filgueira

Carly Filgueira
Houston Methodist Research Institute · Nanomedicine & Cardiovascular Surgery

PhD

About

69
Publications
7,323
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,490
Citations
Introduction
Dr. Filgueira obtained her masters and doctorate degrees in Chemistry from Rice University in 2005 and 2009. As a pre-doctoral student, she fabricated and characterized optically responsive nanostructures and their plasmonic interactions under the direction of Dr. Naomi Halas. She was awarded several honors, including a NIH Keck Nanobiology training fellowship, NSF sponsorship to attend the 55th Lindau Nobel Laureate Meeting in Germany, and a Dean's Office Travel Award. She was also honored with both The Harry B. Weiser Award for Excellence in Service and The Harry B. Weiser Research Award in Recognition of Research Excellence at Rice University. Dr. Filgueira joined Houston Methodist in 2011 as a postdoctoral student under the direction of Dr. Anders Berkenstam and Dr. Paul Webb in collaboration with Dr. Jan-Ake Gustafsson. She focused on nuclear hormone receptors, specifically Estrogen Receptor beta and Liver X Receptor beta, and small molecule screening using a combination of direct binding and cell based assays. Dr. Filgueira is currently a member of the Department of Nanomedicine with appointments as Assistant Research Member in the Research Institute, and Assistant Research Professor of Nanomedicine in the Institute for Academic Medicine.

Publications

Publications (69)
Article
Full-text available
Radiofrequency (RF) catheter ablation is the current standard of care for patients with medically refractory ventricular tachycardia. 1 Despite improvements in catheter technology, higher density mapping, and ablation techniques, outcomes remain plateaued. One shortcoming of RF ablation is the inability to consistently create transmural lesions in...
Article
Full-text available
Objective To demonstrate an ultra-high field (UHF) 7 T delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) protocol for quantitative post-traumatic osteoarthritis (PTOA) detection and monitoring in a rabbit anterior cruciate ligament transection (ACLT) model. Design ACL transections were performed unilaterally in 5 rabbits (33-weeks-old, 3.5 ±...
Article
Full-text available
Biofouling is the unwanted adsorption of cells, proteins, or intracellular and extracellular biomolecules that can spontaneously occur on the surface of metal nanocomplexes. It represents a major issue in bioinorganic chemistry because it leads to the creation of a protein corona, which can destabilize a colloidal solution and result in undesired m...
Preprint
Biofouling is the unwanted adsorption of cells, proteins, or intracellular and extracellular bio-molecules that can spontaneously occur on the surface of metal nanocomplexes. It represents a major issue in bioinorganic chemistry because it leads to the creation of a protein corona, which can destabilize a colloidal solution and result in undesired...
Article
Full-text available
Due to their well-defined plasmonic properties, gold nanorods (GNRs) can be fabricated with optimal light absorption in the near-infrared region of the electromagnetic spectrum, which make them suitable for cancer-related theranostic applications. However, their controversial safety profile, as a result of surfactant stabilization during synthesis,...
Preprint
Due to their well-defined plasmonic properties, gold nanorods (GNRs) can be fabricated with optimal light absorption in the near-infrared region of the electromagnetic spectrum, which make them suitable for cancer-related theranostic applications. However, their controversial safety profile, as a result of surfactant stabilization during synthesis,...
Conference Paper
Nanomedicine's inability to penetrate throughout an entire tumor volume, resulting from heterogeneous distribution within the tumor mass, remains a crucial limiting factor for a vast range of theranostic applications. Despite innumerable studies conducted on the topic that have shown efficacy and biocompatibility of colloidal gold nanoparticles (GN...
Article
A large majority of cardiovascular nanomedicine research has focused on fabricating designer nanoparticles for improved targeting as a means to overcome biological barriers. For cardiac related disorders, such as atherosclerosis, hypertension, and myocardial infarction, designer micro or nanoparticles are often administered into the vasculature or...
Article
Full-text available
The heterogeneous distribution of delivery or treatment modalities within the tumor mass is a crucial limiting factor for a vast range of theranostic applications. Understanding the interactions between a nanomaterial and the tumor microenvironment will help to overcome challenges associated with tumor heterogeneity, as well as the clinical transla...
Preprint
Heterogeneous distribution of delivery or treatment modalities within the tumor mass is a crucial limiting factor for a vast range of theranostic applications. Understanding the interactions between a nanomaterial and the tumor microenvironment will help to overcome challenges associated with tumor heterogeneity as well as the clinical translation...
Conference Paper
Full-text available
Nanomedicines’ inability to penetrate throughout the entire volume of a tumor due to heterogeneous distribution within the tumor mass remains a crucial limiting factor for a vast range of theranostic applications, including image-guided radiation therapy. Despite many studies conducted on the topic having shown the efficacy and biocompatibility of...
Conference Paper
Lung cancer produces the highest number of cancer-related deaths worldwide. Currently, Non-Small Cell Lung Cancer (NSCLC) accounts for more than 85% of those cases. To date, achieving an early and precise diagnosis of NSCLC remains challenging due to extensive intratumor heterogeneity, which concerns not only to tumor epithelial cells but also the...
Article
Full-text available
Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer. PDACs harbor oncogenic mutations in the KRAS gene, and ongoing efforts to directly target its mutant protein product to inhibit tumor growth are a priority not only in pancreatic cancer but in other malignancies such as lung and colorectal cancers where KRAS is al...
Article
Full-text available
It has been suggested that particle size plays an important role in determining the genotoxicity of gold nanoparticles (GNPs). The purpose of this study was to compare the potential radio-sensitization effects of two different sized GNPs (3.9 and 37.4 nm) fabricated and examined in vitro in Lewis lung carcinoma (LLC) as a model of non-small cell lu...
Conference Paper
Full-text available
This study aims to evaluate the in vivo distribution of Gold Nanoparticles (GNPs) at different time points after intratumoral (IT) injection, exploiting their properties as contrast agents for Computed Tomography (CT). GNPs approximately 40 nm in diameter were synthesized with a surface plasmon peak at ~530 nm, capped with Bovine Serum Albumin (BSA...
Preprint
It has been suggested that particle size plays an important role in determining the genotoxicity of gold nanoparticles (GNPs). The purpose of this study was to compare the potential radio-sensitization effects of two different sized GNPs (3.9 and 37.4 nm) fabricated and examined in vitro in Lewis Lung carcinoma (LLC) as a model of non-small cell lu...
Article
Full-text available
Chronic diseases such as hypertension and rheumatoid arthritis are persistent ailments that require personalized lifelong therapeutic management. However, the difficulty of adherence to strict dosing schedule compromises therapeutic efficacy and safety. Moreover, the conventional one-size-fits-all treatment approach is increasingly challenged due t...
Article
The pericardium, which surrounds the heart, provides a unique enclosed volume and a site for the delivery of agents to the heart and coronary arteries. While strategies for targeting the delivery of therapeutics to the heart are lacking, various technologies and nanodelivery approaches are emerging as promising methods for site specific delivery to...
Article
Globally, 145.2 million people suffer from moderate to severe vision impairment or blindness due to preventable or treatable causes. However, patient adherence to topical or intravitreal treatment is a leading cause of poor outcomes. To address this issue, we designed an intraocularly implantable device called the nanofluidic Vitreal System for The...
Article
Pre-exposure prophylaxis (PrEP) with antiretroviral (ARV) drugs are effective at preventing human immunodeficiency virus (HIV) transmission. However, implementation of PrEP presents significant challenges due to poor user adherence, low accessibility to ARVs and multiple routes of HIV exposure. To address these challenges, we developed the nanochan...
Article
Conventional systemic immunotherapy administration often results in insufficient anti-tumor immune response and adverse side effects. Delivering immunotherapeutics intratumorally could maximize tumor exposure, elicit efficient anti-tumor immune response, and minimize toxicity. To fulfill the unmet clinical need for sustained local drug delivery and...
Article
Conventional systemic immunotherapy administration often results in insufficient anti-tumor immune response and adverse side effects. Delivering immunotherapeutics intratumorally could maximize tumor exposure, elicit robust anti-tumor immune response, and minimize toxicity. To fulfill the unmet clinical need for sustained local drug delivery and to...
Article
Full-text available
With nearly 40% of U.S. adults obese, and childhood and adolescent rates rising, obesity and associated comorbidities are serious public health concerns with massive societal costs. Often, lifestyle interventions do not offer sufficient weight loss to improve health, requiring surgery and medications as adjunct management strategies. Here, we prese...
Article
Full-text available
Ionic transport through nanofluidic systems is a problem of fundamental interest in transport physics and has broad relevance in desalination, fuel cells, batteries, filtration, and drug delivery. When the dimension of the fluidic system approaches the size of molecules in solution, fluid properties are not homogeneous and a departure in behavior i...
Article
Full-text available
Core–shell particles Fe2P@Au have been prepared beginning with Fe2P nanorods, nanocrosses and nanobundles prepared from the solvothermal decomposition of H2Fe3(CO)9(μ3-PtBu). Iron phosphide structures can be produced from a single-source organometallic precursor with morphological control by varying the surfactant conditions to yield fiber bundles...
Article
This study demonstrated a nanochannel membrane device (NMD) for controlled and sustained release of GC-1 in rats, in the context of the treatment of metabolic syndrome. Release profiles were established in vitro both with and without 5% labrasol for over 2 months. In vivo pharmacokinetic evaluation showed effective GC-1 plasma concentrations, which...
Article
We report an electro-nanofluidic membrane for tunable, ultra-low power drug delivery employing an ionic field effect transistor. Therapeutic release from a drug reservoir was successfully modulated, with high energy efficiency, by actively adjusting the surface charge of slit-nanochannels 50, 110, and 160 nm in size, by the polarization of a buried...
Article
Aim: Thyroid hormones regulate metabolic response. While triiodothyronine (T3) is usually considered to be the active form of thyroid hormone, one form of diiodothyronine (3,5-T2) exerts T3-like effects on energy consumption and lipid metabolism. 3,5-T2 also improves glucose tolerance in rats and 3,5-T2 levels correlate with fasting glucose in hum...
Article
Background/objectives: Our objective was to assess the sustained, low-dose and constant administration of the thyroid receptor-β (TRβ)-selective agonist GC-1 (sobetirome) from a novel nanochannel membrane device (NMD) for drug delivery. As it known to speed up metabolism, accomplish weight loss, improve cholesterol levels and possess anti-diabetic...
Article
A high incidence (∼75%) of primary breast cancers are estrogen receptor positive (ER+), and a large fraction of these patients can pursue chemopreventive therapies. However, due to adverse side effects, only 5% to 20% of the women at high risk who could benefit from chemotherapeutics enroll in preventive treatment. There is a clear need for alterna...
Article
Full-text available
Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and l...
Article
Full-text available
Non-steroidal anti-inflammatory drugs (NSAIDs) display anti-inflammatory, antipyretic and analgesic properties by inhibiting cyclooxygenases and blocking prostaglandin production. Previous studies, however, suggested that some NSAIDs also modulate peroxisome proliferator activated receptors (PPARs), raising the possibility that such off target effe...
Article
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes...
Article
Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA Nuclear receptors (NRs) regulate a variety of biological processes and are critically important in the emergence, prevention, and treatment of cancers. Many NRs represent well-validated drug targets as their ligands are used extensively in medicine. However, there sti...
Article
Full-text available
The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from hi...
Article
Full-text available
Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways...
Article
Full-text available
Optical trapping forces depend on the difference between the trap wavelength and the extinction resonances of trapped particles. This leads to a wavelength-dependent trapping force, which should allow for the optimization of optical tweezers systems, simply by choosing the best trapping wavelength for a given application. Here we present an optical...
Article
Full-text available
Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue cultu...
Article
Nanoshells are optically tunable core-shell nanostructures with demonstrated uses in surface enhanced spectroscopies. Based on their ability to support surface plasmons, which give rise to strongly enhanced electromagnetic fields at their surface, nanoshells provide simple, scalable, high-quality substrates. In this article, we outline the developm...
Article
To investigate the dynamics of exchange/transfer of lipids between membranes, we have studied the interaction of donor-deuterated DMPC vesicles with DMPC hybrid bilayers on Au nanoshells using SERS. Experimental data confirm partial lipid exchange/transfer in the outer leaflet of the hybrid bilayer. The kinetics of the exchange/transfer process fol...
Conference Paper
Metallic nanostructures designed to provide plasmon resonances at specific optical frequencies and strong yet uniform near-field electromagnetic enhancements are useful nanodevices for light-driven sensing and actuation. To use plasmonic nanostructures for molecular recognition, their properties must be exploited in combination with molecular layer...
Article
Nanoparticles composed of magnetic cores with continuous Au shell layers simultaneously possess both magnetic and plasmonic properties. Faceted and tetracubic nanocrystals consisting of wustite with magnetite-rich corners and edges retain magnetic properties when coated with a Au shell layer, with the composite nanostructures showing ferrimagnetic...
Conference Paper
We study the enhancement of optical forces associated with optical trapping red-shifted from resonance absorption. Particles with tunable resonances are manipulated using a single-focus optical trap with tunable wavelength, and studied using back- focal-plane interferometry.
Article
The growth of a continuous, uniform Au layer on a dielectric nanoparticle is the critical step in the synthesis of nanoparticles such as nanoshells or nanorice, giving rise to their unique geometry-dependent plasmon resonant properties. Here, we report a novel, streamlined method for Au layer metallization on prepared nanoparticle surfaces using ca...
Conference Paper
We study the effects of optical tweezing near and far from the optical resonance of the trapped object. Single particles are manipulated and studied using a single-focus optical trap with variable wavelength.
Article
The incorporation of small molecules into lipid bilayers is a process of biological importance and clinical relevance that can change the material properties of cell membranes and cause deleterious side effects for certain drugs. Here we report the direct observation, using surface-enhanced Raman and IR spectroscopies (SERS, SEIRA), of the insertio...
Conference Paper
We explore the enhancement of optical forces associated with optical trapping near resonance absorption. Gold nanoshells, particles with a tunable resonance, are manipulated and studied using a single-focus optical trap with tunable wavelength.
Article
We examine the enhancement of optical trapping forces due to plasmon resonances of nanoshells. Nanoshells are nanoscale particles with a dielectric core and metallic coating that exhibit tunable plasmon resonances. Theory predicts that the optical trapping force may be three to fifty times larger for trapping-laser wavelengths near resonance than f...
Article
Our understanding of how the geometry of metallic nanostructures controls the properties of their surface plasmons, based on plasmon hybridization, is useful for developing high-performance substrates for surface enhanced spectroscopies. In this tutorial review, we outline the design of metallic nanostructures tailored specifically for providing el...
Article
Destruction of hypoxic regions within tumors, virtually inaccessible to cancer therapies, may well prevent malignant progression. The tumor's recruitment of monocytes into these regions may be exploited for nanoparticle-based delivery. Monocytes containing therapeutic nanoparticles could serve as "Trojan Horses" for nanoparticle transport into thes...
Article
We investigate near-resonant trapping of Rayleigh particles in optical tweezers. Although optical forces due to a near-resonant laser beam have been extensively studied for atoms, the situation for larger particles is that the laser wavelength is far from any absorption resonance. Theory predicts, however, that the trapping force exerted on a Rayle...
Article
Single-molecule detection with chemical specificity is a powerful and much desired tool for biology, chemistry, physics, and sensing technologies. Surface-enhanced spectroscopies enable single-molecule studies, yet reliable substrates of adequate sensitivity are in short supply. We present a simple, scaleable substrate for surface-enhanced Raman sp...
Article
Designing nanostructures for surface-enhanced Raman spectroscopy (SERS) is an active area of research because of the potential for chemical sensing with single-molecule sensitivity. We report preliminary SERS measurements on Au bowtie structures with nanometer size interelectrode gaps fabricated by electromigration. Initial data suggest that the bo...
Article
The conversion of hexagonal-, square-, and cross-shaped MnO nanoparticles into mixed MnO−Mn3O4 nanoparticles occurs with retention of the nanoparticle shape. Upon aging, extra diffraction spots appear in the TEM analyses of both hexagonal- and cross-shaped nanoparticles (NPs). These extra diffraction spots can be assigned to the spinel form of Mn3O...
Article
Alkanethiol self-assembled monolayers (SAMs) on gold exhibit a series of sharp resonances in their surface-enhanced Raman spectrum that depend dramatically on carbon chain length. This unusual behavior suggests a coupling of the gold-sulfur bond stretch with the longitudinal acoustic, "accordion", vibrations of the molecular alkane chain. A simple...
Article
In this paper, we report an all-optical SERS-based nanodevice capable of measuring pH in its local nanoscale vicinity continuously over the range 5.8 to 7.6 pH units. The device consists of an Au nanoshell with a pH sensitive molecular adsorbate functions as a standalone, all-optical nanoscale pH meter that monitors its local environment with an av...
Article
Here we report in vitro and in vivo detection of self-assembled Au-imidazole by using near-infrared surface-enhanced Raman scattering (NIR-SERS). In vivo, the Au-imidazole structures were administered into tumor-bearing mice and detected noninvasively. The self-assembled Au-imidazole complexes were generated by the adsorption of imidazole molecules...
Article
We show that an Au nanoshell with a pH-sensitive molecular adsorbate functions as a standalone, all-optical nanoscale pH meter that monitors its local environment through the pH-dependent surface-enhanced Raman scattering (SERS) spectra of the adsorbate molecules. Moreover, we also show how the performance of such a functional nanodevice can be ass...
Article
The packing density of thiolated poly(ethylene glycol) (PEG) adsorbates on Au nanoshells is determined by exploiting the surface-enhanced Raman scattering response of individual nanoshell substrates. By incorporating the linker molecule p-mercaptoaniline (pMA), the number of 2000 MW and 5000 MW PEG molecules on each nanoparticle is determined by in...
Conference Paper
In this paper, we report an all-optical SERS-based nanodevice capable of measuring pH in its local nanoscale vicinity continuously over the range 5.8 to 7.6 pH units. The device consists of an Au nanoshell with a pH sensitive molecular adsorbate functions as a standalone, all-optical nanoscale pH meter that monitors its local environment with an av...
Article
We demonstrate a convenient and cost-effective chemical approach for fabricating highly ordered Au nanoparticle arrays with sub-10-nm interparticle gaps. Near-field enhancements inside the interparticle gaps create uniform periodic arrays of well-defined "hot spots" exploitable for large surface-enhanced Raman spectroscopy (SERS) enhancements. A ce...

Network