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Abstract

Understanding protein–ligand interactions is a fundamental question in basic biochemistry, and the

role played by the solvent along this process is not yet fully understood. This fact is particularly rele-

vant in lectins, proteins that mediate a large variety of biological processes through the recognition

of specific carbohydrates. In the present work, we have thoroughly analyzed a nonredundant and

well-curated set of lectin structures looking for a potential relationship between the structural

water properties in the apo-structures and the corresponding protein–ligand complex structures.

Our results show that solvent structure adjacent to the binding sites mimics the ligand oxygen struc-

tural framework in the resulting protein–ligand complex, allowing us to develop a predictive method

using a Naive Bayes classifier. We also show how these properties can be used to improve docking

predictions of lectin–carbohydrate complex structures in terms of both accuracy and precision, thus

developing a solid strategy for the rational design of glycomimetic drugs. Overall our results not only

contribute to the understanding of protein–ligand complexes, but also underscore the role of the

water solvent in the ligand recognition process. Finally, we discuss our findings in the context of lec-

tin specificity and ligand recognition properties.
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Introduction

The analysis of the structure and dynamic properties of the solvent
around protein active sites, has gathered strong attention among the
scientific community, showing that the water molecules that are dis-
placed upon ligand binding are key players for determining the under-
lying thermodynamics of the process (Michel et al. 2009; Hummer
2010; Setny et al. 2010). As a result of the protein–solvent interac-
tions, water molecules are not placed randomly on the protein surface,
adopting thus awell-established structure, defined by regions of highly

ordered water molecules. This solvent structure is particularly relevant
in regions such as protein active- and ligand-binding/recognition sites
(Barillari et al. 2007; Abel et al. 2008; Higgs et al. 2010; Beuming et al.
2012; Saraboji et al. 2012).

Lectins are one of the main categories of sugar-binding proteins,
defined by the presence of carbohydrate recognition domain, with
its corresponding carbohydrate binding site (CBS) and a lack of cata-
lytic activity toward their ligands. They are present in all living organ-
isms performing a wide variety of biological activities including cell
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recognition, communication and cell growth, and are of wide interest
in biotechnology and as potential therapeutic targets (Compagno et al.
2014). Thus, understanding and predicting protein–carbohydrate in-
teractions if of paramount relevance in the field of glycobiology. One
of the salient features of carbohydrate ligands, and their binding sites,
lies in their hydrophilic nature, which accentuate or emphasize the ef-
fect of solvent reorganization throughout the biomolecular association
process (Chervenak and Toone 1995).

Water molecules and carbohydrate hydroxyl groups usually par-
ticipate in the same interactions with the protein. Thus, understanding
solvent structure can provide significant insight into the carbohy-
drate binding and recognition processes. The relationships between
the solvent structure in the CBS of several proteins, including many
lectins, and the resulting protein–ligand complexes, have been steadily
studied during the last decade using both computational (Frank and
Schloissnig 2010; Kumar et al. 2013) and experimental methods
(Kadirvelraj et al. 2008; Saraboji et al. 2012; von Schantz et al.
2012; Andres et al. 2013; Johal et al. 2013).

Explicit water molecular dynamics (MD) simulations, combined
with a solid statistical thermodynamic analysis framework, as that
provided by the inhomogeneous fluid solvation theory, have allowed
to systematically characterize the solvent structure and dynamics at the
protein surfaces, through the identification of the so-called water or
hydration sites (Lazaridis 1998; Li and Lazaridis 2006). A water site
corresponds to a confined region in the space adjacent to the protein
surface, where the probability of finding a water molecule is signifi-
cantly higher than that observed in the bulk solvent at the same density
(Li and Lazaridis 2005; Abel et al. 2008; Di Lella et al. 2010). In pre-
vious works, using this strategy, wewere able to show that the position
and attribute of the water sites are good predictors of the hydroxyl
groups positions in the resulting lectin–carbohydrate complex (Di
Lella et al. 2007; Gauto et al. 2009), being able, even to predict the
subtle selectivity of lectins between two epimers (Gauto et al. 2011).
Given the relevance of the determination of an atomic resolution struc-
ture for any given protein–ligand complex (Fadda and Woods 2010),
there is a widespread use of in silico strategies for their prediction (i.e.,
molecular docking methods) (Morris et al. 1998; Taylor et al. 2002;
Brooijmans and Kuntz 2003; Friesner et al. 2004; Leach et al. 2006;
Abel et al. 2008; Englebienne andMoitessier 2009; Yuriev et al. 2009;
Wang et al. 2011). These, however, show a weak performance for lec-
tin–carbohydrate complexes (Kerzmann et al. 2008; Agostino et al.
2009; Mishra et al. 2012; Gauto et al. 2013). In a previous work
from our group, we used the above-mentioned MD-derived water
sites, to significantly improve the docking of carbohydrates. Our
results showed that by modifying the AutoDock4 scoring function
favoring those ligand conformations where the carbohydrate–OH
groups match the position of the water sites, the predictions
show significant improvement in terms of both accuracy, measured
as the potentiality to predict the complex structure closest to the
one obtained by X-ray crystallography and also its capability for
differentiating the correct complex among wrong predictions
(Gauto et al. 2013).

To achieve a deeper understanding of the relationship between the
solvent structure and lectin–carbohydrate complexes, we decided to
study a large set of lectin structures available in the Protein Data
Bank (PDB) and analyze the properties of the crystallographic water
molecules. Analysis of crystallographic waters in the active or ligand-
binding site of proteins has been extensively studied in the last decades
and shown to provide useful information for the process of drug de-
sign. For instance, several properties such as hydrogen bond interac-
tions, the mobility of the water molecules or the influence of the

local site shape, have been extensively analyzed and correlated with
the affinity of modified ligands designed to displace and/or keep
those crystallographic waters (Li and Lazaridis 2005; Kadirvelraj
et al. 2008; Barillari et al. 2011; Saraboji et al. 2012; Garcia-Sosa
2013). Also, the X-ray structures of protein–carbohydrate complexes
as well as those of glycoproteins have also been extensively used to
analyze and understand the complex structure of carbohydrates them-
selves, andmany high-quality databases andweb resources on the sub-
ject are available, like the carbohydrate structure suite (Lütteke et al.
2005) among others (Ranzinger et al. 2008; von der Lieth et al. 2011).
However, to our knowledge, no work has thoroughly analyzed the re-
lationship between the solvent structure described by the crystallo-
graphic waters in a ligand-free (or apo) lectin and the structure of
the corresponding protein–carbohydrate complexes, and/or used solv-
ent structure information to understand and predict lectin–saccharide
complex properties.

In the present work, we have thoroughly analyzed a nonredundant
and well-curated set of lectin structures looking for a potential rela-
tionship between the structural water properties in the apo-structures
and the corresponding protein–ligand complex structures. Our results
show that the position of crystallographic waters in the ligand-free
structures tends to mimic the carbohydrate –OH structural frame-
work, thus underscoring their role in the ligand recognition process.
We also show how crystallographic water properties can be used to
predict their likelihood of being replaced by carbohydrate ligand
polar groups, and how this information can be used to improve dock-
ing predictions of lectin–carbohydrate complex structures. Therefore,
the presented analysis results not only in a deeper understanding of the
protein–ligand interactions, but also provides theoretical framework
for the prediction of these complex and the rational design of glycomi-
metic drugs.

Results

The results are organized as follows: First, we describe and analyze
general properties of protein–carbohydrate structures. Secondly, we
analyze in detail several properties of the crystallographic water mole-
cules and compare them with the protein–ligand complex structure,
and use this information to develop a Bayesian predictive method to
classify water sites in relation to their likelihood of being replaced
by the ligand. Finally, we use the information derived from the crystal-
lographic water analysis to improve the prediction of potential pro-
tein–carbohydrate complex using a molecular docking scheme.

Data set construction

The present lectin–carbohydrate data set was built retrieving first all
available lectin structures from the PDB (date, April 2014). Structures
were grouped in unique protein sets and only those sets containing
at least one lectin–carbohydrate complex structure and one apo-
structure were retained. A total of 19 unique lectin sets that could be
grouped in 8 families, and consisting in 167 structures of lectin–carbo-
hydrate complexes and 75 apo-structures were analyzed. All statistical
analyses were performed considering (whenever possible) each individ-
ual structure, each individual unique protein set and an average value
determined for each protein family, in order to avoid possible bias
due to overrepresentation of a particular protein or protein family.

Analysis of protein–carbohydrate complexes

Figure 1A shows the fraction of available crystal structures that are
bound either to mono-, di-, tri- or larger oligosaccharides (up to
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Fig. 1. (A) Percentage of Lectin–carbohydrate complex structures available with mono-, di-, tri- or larger oligosaccharides. (B) Average number of monosaccharide units found interacting with the protein in the

corresponding mono-, di-, tri- and larger lectin carbohydrate complexes. (C) The number of carbohydrate ligand oxygen atoms in contact with the protein in lectin–carbohydrate complexes classified according to the

number of contacting monosaccharide units. (D) The percentage of carbohydrate oxygen atoms in contact with the protein classified according to the number of contacting monosaccharide units. Black bars are

determined considering each crystal structure, gray and white bars are the average results grouped by unique protein sets and families (when available), respectively.
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heptasaccharides). The figure clearly shows that there is a predomin-
ance of structures crystallized with monosaccharaides (∼60% of the
total), followed by disaccharides (∼20%), and so on. The same ana-
lysis but considering each unique protein set, or even family shows
similar results. Also, it is interesting to note that for several proteins
that can be crystallized with disaccharides and trisaccharides, also
crystals with monosaccharide are available. Figure 1B shows how
many monomers (i.e., saccharide units) of the crystallized ligand
in complex with the protein are actually making contact with the pro-
tein (see the “Computational methods” section for definition of a con-
tacting monomer). Interestingly, for disaccharides average number is
<2 (close to 1.5), showing that in several cases only one monomer
binds to the protein. Moreover, tri- and larger ligands show that the
number of contacting units is between 1.5 and 2.5, thus most of the
binding and therefore the affinity and specificity in lectin–carbohy-
drate interactions seems to be given by 1–2 saccharides per units
and no more.

Since hydroxyl (and to a lesser extent carbonyls, acid and amide)
functional groups are mainly responsible for protein–carbohydrate
interactions, we analyzed how many of these polar groups make inter-
actions with the protein surface, in relation to the number of units in
contact. The results presented in Figure 1C show that when the ligand
is a monosaccharide ∼3 (sometimes 2) interactions are established,
which can be rationalized considering that common biological mono-
saccharides have between 6 and 7 potential polar interactions and they
bind with one face facing the protein and the other facing the solvent.
What is interesting that even when a disaccharide is in contact, the
number of interactions increases only slightly to approximately four
interactions, and even for ligands contacting the protein by a trisac-
charide no more than five interactions are established. Overall, as
shown in Figure 1D, ∼1 every three to four hydroxyl oxygens of the
ligand are in contact with the protein, with higher numbers (slightly
below half of them) for the monomers. In so far, the results thus
show that for lectins, the binding core of carbohydrate ligands is de-
termined by one or two monomers, presenting no more than two to
three interactions per subunit.

Amino acid composition analysis of the carbohydrate

recognition domain and CBS

We now focus our analysis on the carbohydrate recognition domain
(CRD), by looking which residues are found preferentially in the
CBS. For this sake, we first defined all unique protein CBS residues
as those residues that are in contact with the ligand in any of the avail-
able complex structures, and computed the relative frequency of ap-
pearance for each of the 20 amino acids in the CBS or as being part
of the whole CRD. The results presented in Figure 2A show that
while several residues are preferentially found in the CBS, others clear-
ly tend to be excluded. There is an enrichment of negatively charged
residues (Asp andGlu) as well as positively charged Arg andHis. Polar
Ans is also preferentially found in the CBS, as well as polar aromatic
Trp and Tyr. On the other hand, nonpolar residues such as Val, Ile,
Leu, Phe, Met and Pro as well as Cys tend to be excluded from the
CBS. To analyze the relative impact of aromatic–carbohydrate interac-
tions, we determined howmany monosaccharide units in contact with
the protein present these types of interactions. The results show that
∼70% of bound monosaccharide units show an aromatic residue in-
teracting with the carbohydrate aliphatic core, with Trp being the pre-
dominant (43% of the cases) followed by Tyr (33%) and Phe (24%).
Overall these results are consistent with previous observations from
our group and others (Asensio et al. 2000; Lütteke et al. 2005;

Guardia et al. 2011), which show that lectins bind their ligands com-
bining polar interactions with the ligand –OH group and an aromatic
(nonpolar) interactionwith the ligand aliphatic core (Guan et al. 2003;
Sujatha et al. 2004; Terraneo et al. 2007; Laughrey et al. 2008; Nishio
et al. 2014).

Analysis of crystallographic water sites in relation

with CBS and protein–carbohydrate complex

To analyze the solvent structure, we begin looking at which residues
of the CBS (or the whole protein domain) are preferentially found in
contact with a crystallographic water site (CWS), which is defined as
the average position where crystallographic water oxygens are
found across the several available apo structures of each unique
protein. In the case where only one crystal structure is available,
CWS corresponds unequivocally to crystallographic waters. The
resulting data, presented in Figure 2B, show as expected, that water
molecules are mostly found close to hydrophilic residues. Moreover,
there is a clear preference for finding water molecules associated to
those polar residues found in the CBS of the proteins (Arg, Asn,
Asp and Glu). Thus, and as expected, the results are similar to
those observed above, but excepting the preference for aromatic
residues.

To analyze now the relation between the CWS and the correspond-
ing lectin–carbohydrate complex, we first determined howmanyof the
–OH groups that are interacting with the protein in any of the studied
unique protein sets, show the presence of a CWS in the corresponding
apo-structure. To assess that a CWS is replaced by a carbohydrate
polar group, the apo- and ligand-bound structures are first aligned
and the minimum distance between the water oxygen and any ligand
oxygen atom is determined, this value is what we call Rmin. If it is
<1.2 Å, the crystallographic water is classified as replaced. Other
CWSs found inside the CBS, which are lost upon ligand binding,
but which are not replaced by ligand hydroxyl (or other polar
group) are termed as displaced CWSs. The results presented in
Figure 3A, for the whole protein set, show that ∼70% of all unique
protein–carbohydrate–OH interactions replace a CWS, and the results
are similar for different size ligands. Moreover, Figure 3B shows that
for the whole unique proteins analyzed, ∼40% of CWS inside the
binding site will be replaced by the ligand OH group. Interestingly,
the correspondence between CWS and ligand –OH groups is slightly
higher for proteins contacting monosaccharides, while in both ana-
lyses, the results are similar if unique proteins or protein families are
considered, showing the absence of any bias.

As a particular example, Figure 4 shows the CBS of the carbohy-
drate recognition domain of hSPD and Gal-9 (pdbids 3G83 (Crouch
et al. 2009) and 3NV4 (Yoshida et al. 2010), respectively), superim-
posing both the apo-structure showing the CWS and the complex
structure showing the bound ligand. The figure shows how some of
the CWSs (shown in red) are replaced by the ligand –OH groups
while others still close to the ligand (i.e., inside the CBS) are not,
being classified as displaced (shown in blue). In hSP-D bound to a
monosaccharide (Figure 4A), there are three replaced CWSs that per-
fectly superimpose on the ligand hydroxyls, while the displaced CWS
is in the middle of the carbohydrate ring. For Gal-9 (Figure 4B) bound
to a trisaccharide (Sialyllactose), there are three replaced CWSs that
match three ligand hydroxyls in the first two monomers, while there
is a fourth CWS, which is displaced by the third monomer. In sum-
mary, it is clear that CWS mimics to some significant extent the struc-
tural framework of the carbohydrate ligand hydroxyl groups, which
are responsible for ligand affinity and selectivity.
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Determination of CWS structural parameters

The data from the previous section show that CWS can be classified
into three groups according to whether they will be replaced or dis-
placed from the CBS when the ligand binds, and those outside the
CBS. We will now analyze several CWS properties in order to see if
there are any significant differences between the mentioned groups.
We analyzed six properties, which are (i) the average number of
polar interactions, i.e., hydrogen bonds, that each CWS establishes
with the protein; (ii) the closeness to protein, which is defined as the

nearest distance of the CWS to any protein heavy atom; (iii) the con-
tact surface between the crystallographic water oxygen and the pro-
tein; (iv) the mobility of the water molecules of the CWS, which is
related to the average B-factor of all oxygen atoms that define the
CWS in the different apo-structures if available; (v) the occupancy
of the water molecules, which is computed as the ratio of apo-crystal
structures where a crystallographic water is found, times the total
number of available apo-structures (or protein is an oligomer); (vi)
the occupancy of the water molecules, which is computed as the

Fig. 2. (A) Observed frequencies for each of the 20 different amino acid residues in: the whole carbohydrate recognition domain (black columns) and only the CBS

(gray columns) for all analyzed lectin–carbohydrate complexes. (B) Observed frequencies for each of the 20 amino acid residues in contact with: a CWS in thewhole

carbohydrate recognition domain (white columns), a CWS in the CBS (gray columns) a carbohydrate ligand oxygen atom (black columns).

Analysis and prediction of lectin–carbohydrate complex structures 185
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ratio of apo-crystal structures where a crystallographic water is found,
times the total number of available apo-structures (or protein is an
oligomer). The resulting histograms for the probability distribution
of all six properties for replaced, displaced and those CWS outside
the binding site are shown in Figure 5A–F.

First sight of Figure 5A clearly shows that replaced CWSs have on
average more polar (mostly hydrogen bond) interactions with the pro-
tein (usually 1 or 2) than the other CWSs that are only displaced by the
ligand from the CBS (0–1 contact with the protein). Interestingly,
those CWSs out of CBS, also show mostly none or one hydrogen
bond. Thus, the number of contacts with the protein, not only poten-
tially distinguishes those CWSs inside CBS that are in place where lig-
and polar groups will be found from the others, but also could point to
the CBS itself. Complementary analysis that helps to understand this
behavior is presented in Figure 5B, where the minimum distance of the
CWS to any protein atom is measured. The results clearly show that
while most of the replaced CWSs are in the first solvation shell (protein
CWS distance of ∼3 Å), those in the displaced group are farther from
the protein surface (4–5 Å) usually in the second solvation shell. A
third property related to the CWS interactions is the contact surfaces
analyzed in Figure 5C, where it is shown that replaced CWSs present a
more narrow distributionwith a slight tendency to enrichment in high-
er values. Concerning CWS mobility, the distribution of average
B-factors presented in Figure 5D shows that replaced CWSs have sig-
nificantly smaller B-factors than all the others. The out of CBS CWS
and displaced CWS shows broader distributions, probably corre-
sponding to background or random distribution. The next computed
property of the CWS is related to the variability observed for the

presence of a given crystallographic water in different apo-structures
(occupancy). The resulting values presented in Figure 5E again show
that displaced and out of CBS CWS show similar distributions with
peaks at 0.2, 0.5 (possibly reflecting cases where two crystals are avail-
able and the CWS is only present in one) and 1. On the other hand, the
replaced CWSs show all values close to 1, highlighting again their dif-
ferential properties. The last parameter, which is the number of CWS
neighbors presented in Figure 5F, shows similar distributions for all
types of CWSs, and thus bears little predictive value. In summary,
the above analyzed parameters, particularly the number of contacts
with the protein, the distance to the protein, the B-factor and the oc-
cupancy, are able to distinguish those CWSs from the CBSs that will be
replaced by ligand polar groups, from those that not and also from
other CWSs out of CBSs. Most important, except for the occupancy,
the other properties can be obtained from only one apo-structure, thus
adding significance to the resolution of lectin crystal structures even in
the absence of their ligands.

Predicting the replaced CWS using a Naive Bayes

classifier

Given that significant differences are observed between replaced CWS
properties and those of the displaced and out of CBS sites, we used the
data to build a Naive Bayes classifier (Maruyama 2013) that could
allow to determine the likelihood of any CWS of being replaced.
The method takes as input the six CWS characteristic values described
above and determines the probability of being replaced given those va-
lues (PR), and that of not being replaced given those values (Pnot), if

Fig. 3. (A) The percentage of ligand oxygens interacting with the protein that are replaced by CWS in unique proteins, and grouped by protein families. Results

are shown for all complexes and for monosaccharide and disaccharide units in contact with the protein separately. (B) The percentage of CWSs inside the CBS

that are replaced in the Protein–carbohydrate complex in unique proteins and grouped by protein families. Results are shown for all complexes and for mono-,

and disaccharides units in contact with the protein separately.
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PR > Pnot then the CWS is predicted as being replaced. Table I shows
the results of the prediction for all CWSs analyzed. The data show that
the method correctly predicts over 90% of those CWSs that are going
to be replaced, while wrongly assigning as potentially replaced about
one-fourth (28%) of the CWSs inside the binding site that are not. Al-
though this value may seem a little high, it is important to note that
replaced CWSs are determined depending on the available complex
structures. Thus there may well be other ligands that displace those,
thus bringing the percentage of wrong positives down. Also interest-
ingly, the classifier shows that most CWSs out of the CBSs are not pre-
dicted as replaced, an observation that is consistent with the idea that
CWSs inside the active site and specially those that are mimicking pro-
tein–ligand interactions have distinctive properties. The Naive Bayes
classifier yields along the mentioned probabilities for each CWS,
Gaussian-like distribution parameters (mean ± SD), for each property
in each set. As expected, and confirming the analysis of the previous
paragraph, those properties that show significant differences in their
mean distribution values between replaced and displaced CWSs are
those previously identified as potentially important for differentiating
the CWSs. Encouraged by our results we decided to test also another
Bayesian analysis, called Bayesian category interference (Green 1995;
Patil et al. 2010), which is similar to the Classifier but does not assume
that elements (i.e., the CWSs) are known to belong to different cat-
egories and instead automatically separates them. The results of this
strategy show, using all CWSs inside the CBS, that the method correct-
ly assigns 92% of Replaced CWSs and 72% of those not, and yields
for each property probability distributions that are similar to those ob-
tained with the NBC. These results confirm once again that replaced
CWSs have distinct properties in relation to their likelihood of being
replaced or not by the ligand polar groups in the corresponding lectin–
carbohydrate complex.

Last but not least, to highlight the utility of the predictive method
as shown in Figure 6 a lectin with all their CWSs are colored according
to their derived relative probabilities (PR/Pnot), computed with the
Naive Bayes classifier, and shown superimposed on the corresponding
complex structure. The figure nicely shows how the predicted replaced
CWSs (red spheres) tend to cluster in the CBS and are superimposed
on the ligand structure. Moreover, there are few waters predicted not
to be replaced (blue spheres) inside the CBS, thus highlighting the pre-
dictive capacity.

Improved protein–carbohydrate complex prediction

combining CWS information in a molecular docking

scheme

In a previous study from our group, we showed that using the water
sites, determined from explicit water MD simulations, resulted in sig-
nificant improvement of carbohydrate docking predictions (Gauto
et al. 2013). The use of the water site-derived information for docking
studies was rationalized based on still previous studies showing that
water sites found in the ligand-free receptor in the CBS, mimic the po-
sitions of the carbohydrate ligand hydroxyl groups in the correspond-
ing complex (Di Lella et al. 2007; Gauto et al. 2009). So far, in the
present work, we have shown that CWSs also, to some extent mimic
the carbohydrate hydroxyl positions, thus we decided to test whether
the information computed for the CWS could be used to improve
carbohydrate docking calculations. For this sake, we compared the
performance of the conventional (or unmodified) Autodock4 docking
method (CADM), with the same docking scheme and protocol
but using the information from the CWS, which we will call water
site biased docking method (WSBDM), see the “Computational
methods” section for details. We used as test cases 18 different

Fig. 4. The structure of the hSP-Dmannose complex (A) and structure of the Gal-9 C terminal sialyllactose (B) complex superimposed on the CWS positions relative

to the protein structure. Replaced CWSs are shown as red spheres and Displaced CWSs as blue spheres.
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lectin–carbohydrate complexes (derived from previous analysis),
which cover a wide range of protein and ligand types. In all cases,
the WSBDM was performed with only those CWSs that are replaced
by the ligand –OH groups (best case scenario) and for all CWSs found
inside the CBSs (no selection/filter scenario). The results for two se-
lected examples are shown in Figure 7.

The first case corresponds to docking of a monosaccharide to
hSPD. The population vs energy plot (Figure 7A) for the conventional
method shows that lowest energy-high population cluster has a very
high RMSD (3.8 Å), the ligand is placed upside down (Figure 7B)
and it is close in energy/population to many other clusters. Moreover,
the best cluster still has an RMSD of 2.9 Å and shows that the ligand is
wrongly placed. Thus, it can be considered a clear failure. On the other
hand both biased methods, that where only replaced (black) or all
(gray) CWSs are used to bias the scoring function show a clear outlier,

displaying high population and more negative-binding energy. Both
predictions are fairly accurate (Figure 7A), as shown by the very
small RMSD (<0.7 Å) and perfect fit compared with the reference
structure (Figure 7C). The second case corresponds to docking of a tri-
mannoside to Concanavalin A. The population vs energy plot (Fig-
ure 7D) for all obtained clusters with the conventional method
(white dots) shows no clear outlier in the upper-left corner (i.e., a
good candidate). Also both best energy and best population clusters
show huge (>7 Å) RMSD against the reference, thus correspond to
completely wrong predictions. This is clearly seen in Figure 7E,
where the best docked structure is superimposed on the crystal struc-
ture complex, and shows that only one of the monomers is correctly
placed, while the other two are not. The biased methods on the con-
trary show clear outliers, with small (<2 Å) RMSD against the refer-
ence and thus can be considered fairly good predictions. Indeed the

Fig. 5. Distribution histograms for: (A)The number of hydrogen bonds formed by each CWS, (B) Nearest distance to protein, (C) CWS contact surface, (D) Average

β-factor of the CWS, (E) CWS occupancy and (F) number of CWS neighbors. Replaced, displaced and out of CBS are shown in black, gray and white columns,

respectively.

188 C Modenutti et al.

 at U
niversidade de SÃ

¯Â
¿Â

½
o Paulo on A

pril 14, 2015
http://glycob.oxfordjournals.org/

D
ow

nloaded from
 

http://glycob.oxfordjournals.org/


docked structure is quite well superimposed on the reference complex
as shown in Figure 7F, particularly in the two terminal monomers,
which are contacting the protein.

Overall analysis: To perform an overall analysis of the compara-
tive docking results, we first characterized each docking calculation,
defined by the structure-ligand pair and chosen method, according
to the following parameters: (i) The RMSD to the reference (i.e., crys-
tal structure) of the lowest energy (or highest population) complex,
and (ii) the predicted complex with the lowest RMSD to the reference
structure, together with its ranking, binding energy and population.
To visualize this global analysis in Figure 8, we plotted the computed
RMSD against the reference complex for the highest ranked (i.e., low-
est energy) prediction.

The results from Figure 8 show some interesting trends and high-
light improved performance of the CWS-biased docking. For those
complexes where the CADM (white columns) fails to correctly predict
the right complex, i.e., those cases where the first-ranked complex dis-
plays a high RMSD (>3 Å), the CWBDM (dark gray and black bars)

dramatically improves the prediction yielding a correct structure
(RMSD <2 Å) in most cases and always reducing the RMSD. For
those cases where the CADM yields moderate (RMSD ∼3 Å) or
good results (RMSD <2 Å), both methods show similar performance,
with some cases showing lower RMSD with the biased method. Re-
sults also show that there is only a slight improvement selecting only
those CWSs that are replaced (compare dark gray and black bars). As
was observed previously (Gauto et al. 2013) the inclusion of addition-
al CWS that are known not to be replaced by the particular ligand,
does not affect the predicting capacity in a significant way.

In order to test whether a post-scoring selection of the CADM
obtained poses using the solvent structure constraints (i.e., the modi-
fied scoring function) also leads to better predictions, we re-scored for
all cases, all the obtained poses using the modified function. The re-
sulting RMSD against the reference for all cases for the re-scored
best pose is also shown in Figure 8 as light gray bars. The results
show that post-re-scoring of the CADM poses also significantly
improves the docking prediction (compare light gray and with white
bars). However, it seems that including the modified function in the
conformational search (dark gray and black bars) is able to find better
solutions in some cases (3G81 and 1ONA). In summary, these results
show that while AutoDock4 conformational search is able to find cor-
rect poses, the main problem lies in the scoring function. A similar re-
sult was obtained by (Nivedha et al. 2014) considering carbohydrate
ligand conformations showing that adding better score for the glyco-
sidic torsion angles, also improves docking results.

We now turn our attention to the method discriminating capa-
bility, which can be thought of a measure of its precision. For this
sake, we determined the differences in the predicted binding free
energy (ΔΔGB) and in the cluster population (ΔPop) of the best com-
plex (that with the lowest RMSD) and the best ranked of the remain-
ing complexes. A negative ΔΔGB value implies that best obtained

Table I. Prediction of replaced CWSs using Naive Bayes classifier

CWS type CWS Total
number in
set

Predicted to
be replaced

Predicted not
to be replaced

%
TP

%FP

Replaced 39 36 3 92% –
Displaced 88 21 67 – 28%
Out of
CBS

4078 1515 2563 – 38%

%TP is the % of true positive predictions, i.e., those CWSs predicted to be
replaced that are effectively replaced. %FP is the % of false-negative
predictions, i.e., those CWSs predicted to be replaced, which are not.

Fig. 6. Protein CWSs colored according on their relative likelihood of being replaced (PR/Pnot) superimposed on the Protein–ligand complex structure. Color code

goes from Red PR >> Pnot to Blue Pnot >> PR in a log scale.
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Fig. 7. Population vs binding energy plots for the docking with CADM andWSBDM. (A) Results for re-docking of mannose to the crystal structure of hSP-D (PDB ID

3G81) using CADM (B) or WSBDM (C). Population vs binding energy plots for the docking with CDM, CWSDMwith replaced CWS and CWSDMwith all CWSs in the

CBS (D). Results for re-docking of trimannoside to the crystal structure of ConA (PDB ID 1ONA) using CADM (E) or WSBDM (F). The values next to the dots represent

the ligand heavy atom RMSD between the predicted complex structure and the reference complex structure.
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complex has better binding energy than any other predicted comp-
lex, and the magnitude of ΔΔGB measures the difference in energy be-
tween the best obtained prediction and the first-ranked prediction,
while a positive ΔΔGB means that best complex is among false-
positives. Similar reasoning applies for ΔPop. Results located in the
upper-left corner of the plot correspond to those cases where the
best obtained complex is correctly ranked and if its RMSD against ref-
erence is small (<2 Å) it thus corresponds to successful prediction. The
corresponding results for all tested cases with both conventional and
biased docking methods, presented in Figure 9, show that, there is a
clear preference for the biased method results to be located in the
upper-left quadrant, while most results obtained with the CADM
are closer to the center or even in the lower right quadrant. This
means that the biased method has a significant higher discriminating
capacity between correct complex and false-positives, i.e., predictions
with lower energy or higher population that place the ligand in a
wrong way.

Discussion

The aim of the present work was to analyze the relationship between
the solvent structure adjacent to the protein surface as characterized by
the crystallographic waters, which define the CWS, and the structure
of the corresponding lectin–carbohydrate complexes. Our results
started from the analysis of lectin–ligand interactions focusing in the
sugar polar (mainly hydroxyl) groups, which establish tight hydrogen
bonds with the protein, followed by a characterization of the CWS
structure and their relation with the ligand polar groups. These results
clearly showed that the solvent structure mimics the structural frame-
work of the carbohydrate ligand hydroxyl groups, a fact that is in line
with several experimental crystallographic and binding studies (Li and
Lazaridis 2005; Kadirvelraj et al. 2008; Saraboji et al. 2012; Garcia-
Sosa 2013; Grant and Woods 2014) as well as previous works from
our group on the subject (Di Lella et al. 2007; Gauto et al.
2009;2013). Garcia-Sosa, for example, (Garcia-Sosa 2013) analyzed

Fig. 8. Heavy atom ligand RMSD for the first-ranked complex against the reference complex structure for the docking results obtained with the CADM (white bars),

WSBDM using all CBS CWSs (gray bars) and WSBDM using only the replaced CWSs (best case, black bars).

Fig. 9. ΔΔGB vs ΔPop plot for the docking calculations performed with the CADM (white dots) andWSBDM (black dots). For the definition of ΔΔGB and ΔPop see text.
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over 2000 hydrated and nonhydrated protein–ligand complexes and
found that although tightly bound, bridging water molecules may in
some cases be replaced and targeted as a strategy, sometimes keeping
them as bridges may be a better strategy.

Novel to the present study is our further characterization of each
CWS using several properties that can be derived directly from the
structure, like the CWS B-factor and its number of polar (hydrogen
bonds) contacts with the protein, whose results showed significant dif-
ferences in the displayed properties for those CWSs that will be re-
placed by a ligand polar group and those that not. These differences
were coded in a Naive Bayes classifier, which allows prediction of
which CWSs have highest probability of being replaced, and allows
when looking at all CWSs from a crystal structure, identify the poten-
tial ligand-binding site. The use of crystallographic water properties to
infer potential ligand-binding sites is well-documented in the literature
with a varied degree of success (García-Sosa et al. 2003; Barillari et al.
2007; Beuming et al. 2012) and the present results encourage the use
of these strategies. The novelty of the present approach in this context
lies in the specificity for lectins and the further use of the derived CWS
key properties in molecular docking calculations.

The use of solvent structure has been widely used for structural
predictions (Rarey et al. 1999; Forli and Olson 2012; Garcia-Sosa
2013). For example, Huang and Schoichet (2008) and Forli and
Olson (2012) developed force field for docking, which allows includ-
ing displaceable waters that bridge protein–ligand interactions( while
Lie et al. 2011) included discrete waters as part of the ligand for the
same aim. Other works analyzed as in the present work, the relation
of solvent structure adjacent to the protein surface to the protein’s lig-
and binding properties (García-Sosa et al. 2003; Barillari et al. 2007;
Beuming et al. 2012). In this context, it is important to remark that the
present improved docking method, is similar to our previous devel-
oped method using MD derived WS (Gauto et al. 2013), and is
based on the use of a biasing potential to guide the ligand –OH groups
to the position of those CWSs more likely to be replaced and with pre-
dicted tighter binding. The results clearly show that carbohydrate
docking is significantly improved both in its accuracy, measured as
the capacity to predict the complex structure close to the one obtained
by X-ray crystallography, and also its capacity for differentiating the
correct complex among wrong predictions (precision). The main dif-
ference between present and previous method is related to how water
sites are obtained. In the previous work, water sites were computed
using moderately long MD simulations and applying a statistic
thermodynamic-based analysis that requires expertise and is time-
consuming. On the other hand, present analysis based on the defin-
ition of CWS is straight forward once crystal structure is available.
Most important is that both methodologies show significant and simi-
lar improvement over conventional docking method. The improved
docking underscores the first conclusion of the present work that
CWSs mimic ligand hydroxyl group framework and provide a fast
and easily implemented methodology that allows better predictions
of protein–carbohydrate complexes.

Taking the results altogether, a nice picture emerges not only con-
cerning the predictive role of the solvent structure for the resulting
complex, but also in terms of how lectins recognize and select their li-
gands (Dam & Brewer 2010; Gabius et al. 2011). Our results show
that for monosaccharides, usually no more than three OH groups
are in contact with the protein, which is consistent with a binding
from “one side”; that most lectins recognize only one or twomonosac-
charide units, even if larger ligands can be accommodated and that the
total of contact groups is hardly more than 4. For instance, when talk-
ing of the sugar code, for a monosaccharide hexose recognition lectin,

16 possibilities are usually considered (alpha or beta, Glu, Man, Gal,
Ido, Tal, Alt and Gul), but if only three oxygens participate and one of
them is not quiral (i.e., C6–OH) half the possibilities remain for dis-
crimination. Similarly, if we consider β(1–4)-linked disaccharides, usu-
ally the number of possibilities can be estimated as N × 82, whereN is
the number of stable different conformations that the glycosidic bond
can adopt. However, if only four oxygens (two from each unit) are
contacting with the protein, the number reduces four times and even
more if one of the bound –OH groups is not chiral. Thus, although the
sugar code is still theoretically huge, the boundary conditions defined
by the nature of the recognition process, in terms of the number of
monosaccharide units and –OH groups that can be in contact with
the protein, significantly reduce this number. Moreover, given the in-
creasing evidence, as that presented here among other works (Li and
Lazaridis 2005; Kadirvelraj et al. 2008; Gauto et al. 2009; Saraboji
et al. 2012), of the tight relationship between solvent structure and lec-
tin–saccharide complex, a potential rationalization and predictive
method emerges for trimming down the sugar code complexity.

Conclusion

Analysis of the solvent structure adjacent to the binding sites of
carbohydrate-binding proteins as derived from the crystal structures
shows that (i) CWSs mimic the ligand hydroxyl structural framework
in the resulting protein–ligand complex, (ii) CWS properties allow pre-
dicting their likelihood of being replaced by a ligand polar group and
(iii) CWS properties can be used to bias and improve carbohydrate
docking calculations. The presented analysis framework thus provides
a powerful tool for the advancement in our basic understanding of
protein–carbohydrate complexes, and their interactions as well as
for the development of glycomimetic drugs. The results also highlight
key properties of lectin specificity and ligand recognition properties.

Computational methods

Lectin–carbohydrate complex data set

The working data set was built starting with all available structures in
the PDB (updated at April 2014), (Bernstein et al. 1977). We built a
curated list of all possible natural and nonmodified carbohydrate li-
gands and retained only those proteins, where a structure was found
bound to any of these. Proteins were compared on sequence basis and
those with over 95% identity and >80% coverage of the carbohydrate
recognition domain were considered as “the same”. Thus, all struc-
tures whose sequences are this similar comprise, and are joined in a
unique protein set. We further trimmed down the sets by keeping
only those corresponding to lectins and sets with at least one structure
in the presence, and one in the absence (i.e., apo-structure) of any
carbohydrate ligand. These filters result in a total of 19 unique lectin
sets, with a total of 167 structures of lectin–carbohydrate complexes
and 75 apo-structures. We also grouped unique sets in families, result-
ing in eight different families. All statistical analyses were performed
considering (whenever possible) each individual structure, each indi-
vidual set and an average value determined for each protein family.

Definition of the CBS

Each carbohydrate ligand was classified by its saccharide number
(monosaccharide, disaccharide etc.) computed by linking the chEBI
Ontologies database (Hastings et al. 2013) with each ligand name in
the protein data bank. To define the CBS of each individual protein set,
we decided that a residue is defined as forming the CBS if any of each
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heavy atoms, is found at less than 3 Å from any ligand heavy atom.
The combination of all the residues assigned to the CBS as derived
from all structures in the set, which are also present in all the struc-
tures, thus conforms to the arrangement of CBS residues. For each pro-
tein set, we finally aligned structurally all monomeric carbohydrate
recognition domains, using all the heavy atoms of the residues forming
the above defined CBS. If any structure(s) shows a >2 Å RMSD devi-
ation to most of the other structures, it is discarded. This is performed
to eliminate structures that show large conformational changes upon
ligand binding. The resulting aligned set of structures were used to
compute and analyze the following properties.

Determination of carbohydrate parameters

To analyze the protein–carbohydrate interactions we determined the
following structural parameters for each ligand. First we determined
the actual number of monomers (or saccharide units) that are in con-
tact with the protein. A monomer was defined as in contact with the
protein if there is at least one interaction, either hydrogen bond or non-
polar. For all ligand polar (N and O) atoms the number and nature of
hydrogen bonds with the protein were determined. A hydrogen bond
was defined as present whenever donor and acceptor heavy atoms
were closer than 3.5 Å. A nonpolar interaction was defined as present
whenever a carbon atom from the saccharide framework was found at
<5 Å than a protein nonpolar atom.

Determination of crystallographic water structural

parameters

To analyze the properties of the crystallographic waters, we first
defined the presence of specific CWS, in a similar way as that used
in our previous works, based on explicit water MD simulations
(Di Lella et al. 2007; Gauto et al. 2009;2013). CWSs are defined by
the presence of crystallographic waters in the available aligned struc-
tures. To defined CWSs across several structures, if any crystallograph-
ic waters from different structure are closer than 1.4 Å, they are
combined and then, CWS position is then defined by the center of
mass of all resulting oxygen atoms that define it.

For each identified CWS we computed the following parameters:
(i) The average number of polar interactions, as the number of hydro-
gen bonds that the CWS establishes with the protein (the presence of a
hydrogen bond was defined whenever the CWS was closer than 3.5 Å
from any protein hydrogen bond donor or acceptor atom); (ii) the mo-
bility of the water molecule computed as the average of the reported
B-factor from all oxygen atoms from crystallographic data belonging
to water molecules that define the CWS; (iii) the occupancy of water
molecules, which is what we can call the crystallographic water finding
probability, and is computed as the ratio between the number of struc-
tures from the set where a crystallographic water is found and the total
number of ligand-free structures in the set; (iv) the closeness between
the oxygen’s water molecules and the protein, which is defined as
the distance between the CWS and the nearest protein heavy atom;
(v) the contact of surface between the crystallographic water oxygen
and the protein and (vi) the average number of neighboring crystallo-
graphic water molecules to the CWS, looking how many crystallo-
graphic waters are closer than 2.8 Å of the selected CWS); (vii)
finally, we computed theRmin parameter, which compares the position
of the CWS with that of the ligand in the corresponding lectin–carbo-
hydrate complex. The Rmin is defined by the minimum distance be-
tween the CWS position and any ligand heavy atom. This distance
is determined after structurally aligning all the apo-structures that de-
fine the CWS position and the complex structures that define the

ligand position. Based on the value of Rmin, we classified all the iden-
tified CWS in three categories. Those CWSs, which have Rmin values
smaller than 1.2 Å to any polar heavy atom of the ligand, will be clas-
sified as replaced. In other words, these are the CWSs that are replaced
by ligand polar groups in the complex. The remaining CWSs inside the
CBS, which are missing in any of the complex structure, are classified
as displaced CWSs. This CWSs are those that either are displaced by
the ligand due to steric interactions, but are not replaced by a ligand
polar group. This definition also includes those CWSs that may be
missing in the complex crystal not due to directly steric hindrance of
the ligand but due to loss of key interactions. The remaining CWSs,
which are not affected by the presence of the ligand and are not in con-
tact with any of the residues defining the CBS are referred as out of
CBS CWS. A scheme showing the three types of CWS is presented
below (Scheme 1).

Conventional AutoDock4 docking method

To analyze the improvement on the carbohydrate docking process
using the information derived from the CWSs we compared, as in
our previous work, the performance of the Autodock4 program
using its usual parameters, which we will call the Conventional Auto-
Dock4 docking method (CADM), and a modified protocol that in-
cludes information derived from the CWSs, which we will call the
WSBDM.The CADMwas performedwith the AutoDock4.2 program
(Morris et al. 2009) using the same parameters and strategy as in our
previous work. Briefly, based solely on the protein receptor structure,
the energy grids for each ligand atom type, are computed. The grid size
and position were chosen so that they include thewhole CBS. This was
achieved by placing the grid center in the geometric center of the CBS,
and extending its size 20 Å (for the mono- and disaccharide-binding
proteins) and 25 Å (for the tri- and tetrasaccharide-binding proteins)
in each direction using a spacing of 0.375 Å. For each complex, 100
different docking runs were performed and the results were clustered
according to the ligand-heavy atom RMSD using a cut-off of 1.5 Å.
The genetic algorithm parameters for each conformational search
run were kept at their default values (150 for initial population size,
2.5 × 106 as the maximum number of energy evaluations and
2.7 × 104 as the maximum number of generations).

Water sites biased docking method

The present Water sites biased docking method (WSBDM) is based on
the method developed and thoroughly tested in our previous work
(Gauto et al. 2013). There, in order to take advantage of the fact
that carbohydrate –OH groups tend to occupy or replace the positions
of the MD derived water sites, and that there is a positive correlation
between the water site’s water finding probability and its possibility of
being replaced, and a negative correlation with its R90, we modified
the AutoDock4 energy function, adding an additional energy term
for each carbohydrate–ligand oxygen (OA atom type) to the original
function, whose deepness is proportional to the probability and size to
the R90. Analyses of many water sites derived from MD simulations
show that water finding probabilities lie in the 1–20 range, thus result-
ing in a 0–1.7 kcal/mol energy scale for the deepness of the OA atom
type energy well, while determined R90 values are in the range of
0.4–4.4. In the present work, and in order to perform a modification
of the scoring function in the same spirit, we used as key parameters
the number of polar interactions performed by the CWS with the pro-
tein, and the CWS β-factor, which is a measure of its dispersion.
The resulting modified scoring function is described then by the
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following equation:

ΔGM
O ¼ ΔGAD

O � RT
XN

i¼1

lnðPCPiÞ

e
�ððx� xWS;iÞ2 þ ðy� yWS;iÞ2 þ ðz� zWS;iÞ2Þ1=2

CWSD; i
:

ð1Þ

where ΔGM corresponds to the resulting “modified” scoring function,
ΔGAD corresponds to the original AutoDock4 scoring function, PCP is
the polar contact probability, x, y and z are grid point coordinates,
XWS, YWS and ZWS are the corresponding CWS position coordinates
and CWSD is the crystallographic water site dispersion. PCPi is com-
puted as number of possible polar interaction with the protein multi-
plied by scaling factor (11), which relates the number of polar
interactions derived from the analysis of the crystal structure, with
the water finding probability derived from explicit water MD, which
was used in our previous work. The CWSD is computed as
√(B-factor/4Π2) and similarly to the scaling factor applied to PCPi
allows obtaining values that are in the same scale as those found for
R90 values in the MD derived water sites.

In this modified function, each CWS considered provides thus an
interaction energy between the center of the CWS position and every
OA atom type (i.e., any carbohydrate oxygen), with a magnitude that
is proportional to the number of hydrogen bonds it can establish with
the protein and an amplitude that is related to the dispersion of the
CWS as measured by its β-factor. To the modified function, first the
receptor grid for all OA atom type is built using the Autogrid4 pro-
gram using the standard scoring function. Then, the OA atom type
grid is modified with a homemade script to include the bias potential.
The WSBDM is then employed in the same manner as the CADM but
by introducing the modified function computed with all (or a selected
number of ) CWS and their corresponding parameters. For strict

comparison purposes, all other docking parameters, were the same
as those used in the CADM. All scripts to analyze crystal structures,
determine and characterize the CWS and modify the Autodock4
grids are available under request.

CADM rescoring analysis based on CWS position

To re-score the results obtained with the CADM, we simply took all
poses obtained with the CADM and recomputed for all of them the
binding energy using the modified scoring function described above.
In this sense, the function is not used for the conformational search,
and only to sort the results.

Docking data analysis

To compare the conventional and biased dockingmethods, we consid-
ered two main issues: first, how close to the reference complex struc-
ture the method docks the corresponding ligand, thus resulting in a
measure of the method accuracy. This is computed as the ligand
heavy atoms RMSD of each predicted complex using each method,
with respect to the position of the ligand in the corresponding complex
crystal reference structure; secondly, what is the method capability to
distinguish the right complex from wrong predictions, a parameter
that may be thought of as the method precision. This in Autodock4
is done by looking at two parameters, the predicted binding free en-
ergy (ΔGB) derived from the original or modified scoring function,
and the population (%Pop), which is the percentage of individual
docking runs that resulted in the same binding mode for a particular
receptor structure ligand pair. Best possible results should give a high
population and low binding energy conformation, which also signifi-
cantly differs in both parameters from the others (assigned as false-
positives). As shown in the results section, this can be easily analyzed
by plotting population vs binding energy for all obtained predicted
complexes in the given docking calculation.

Scheme 1. CWS’s categories. Red for “O-replaced”, blue for “displaced”, green for “Outside CRD”. Dotted lines represent H-bonds (H atoms have been omitted for

clarity). All distances in angstroms.
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