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Abstract. The formulation of a consistent thermohydrodynamics with a discrete
model of the Boltzmann equation requires the representation of the velocity
moments up to the fourth order. Space-filling discrete sets of velocities with
increasing accuracy were obtained using a systematic approach in accordance
with a quadrature method based on prescribed abscissas (Philippi et al., Phys.
Rev. E, 73 (5), n. 056702, 2006). These sets of velocities are suitable for collision-
propagation schemes, where the discrete velocity and physical spaces are coupled
and the Courant number is unitary. The space-filling requirement leads to sets of
discrete velocities which can be large in thermal models. In this work, although
the discrete sets of velocities are also obtained with a quadrature method based
on prescribed abscissas, the lattices are not required to be space-filling. This leads
to a reduced number of discrete velocities for the same approximation order but
requires the use of an alternative numerical scheme. The use of finite difference
schemes for the advection term in the continuous Boltzmann equation has shown
to have some advantages with respect to the collision-propagation LBM method
by freeing the Courant number from its unitary value and reducing the discretiza-
tion error. In this work, a second order Runge-Kutta method was used for the
simulation of the Sod’s shock tube problem, the Couette flow and the Lid-driven
cavity flow. Boundary conditions without velocity slip and temperature jumps
were written for these discrete Boltzmann equation by splitting the velocity dis-
tribution function into an equilibrium and a non-equilibrium part. The equilibrium
part was set using the local velocity and temperature at the wall and the non-
equilibrium part by extrapolating the non-equilibrium moments to the wall sites.

1 Introduction

The lattice Boltzmann (LB) BGK method [1], is a phase space discretization of the Boltzmann
equation with a BGK collision operator [2]. In this method, the discretization of the velocity
space is coupled with the spatial and temporal discretizations by a unitary Courant number,
i.e., the sets of velocities or lattices are space-filling.
In a thermohydrodynamical problem, the mass density, velocity and temperature are the

variables of interest. A Chapman-Enskog (CE) analysis shows that, in order to correctly repre-
sent the transport of these quantities up to the first order in Knudsen number (Kn), the second,
third and fourth order moments of the equilibrium distribution must be exactly retrieved [3]. It
can also be shown that when the analysis is performed considering a higher order in Kn, higher
order moments are also required to be exactly retrieved [4].
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The first attempts to discretize this equation in the velocity space had led to LB equations
that presented numerical instabilities or deviations from the Navier-Stokes-Fourier equations
[3,5,6]. Recently, Philippi et al. (2006) [7], employed a quadrature method based on prescribed
abscissas to derive space-filling lattices suitable to LB simulations. These lattices were used to
simulate the diffusion of velocity and temperature steps, giving very promising results [8,9].
It was earlier recognized that an increasing in the moment order recovered by the quadra-

ture, which increases often the lattice isotropy, could improve the stability of the algorithm
used. Therefore high order isotropic non-space-filling lattices were derived [10,11], with the
objective of increasing the algorithm stability. Although these lattices proved to be suitable for
thermohydrodynamic problems, there is no formal connection between the equilibrium distribu-
tion found in Refs. [10,11] and the continuous Maxwell-Boltzmann equilibrium distribution, see
[7]. Furthermore, these lattices are computationally expensive, specially in three dimensional
simulations.
An alternative to the LB method to solve the Boltzmann transport equation could be the

use of numerical methods based on finite volumes, elements or differences. These options should
be considered: a) when the error due to the spatial and time discretizations must be reduced
through high order algorithms; b) when adaptative meshes need to be used; c) in simulating
mixtures, since, in these cases, the collision-propagation schemes has shown to have quite narrow
stability limits [12].
When the spatial-temporal discretization is performed without any coupling with the

velocity space discretization, the Courant number becomes free from its unitary value. Al-
though the numerical algorithm often increases in complexity, non-space-filling lattices need a
lower number of discrete velocities than space-filling ones.
In this paper, non-space-filling lattices are obtained with the quadrature method based on

prescribed abscissas of Philippi et al. (2006). Some of the lattices found are very similar to
those cited in [13] and references therein. A second order Runge-Kutta method was applied to
the temporal term and the resulting discrete Boltzmann equation was used for the simulation
of the Sod’s shock tube problem [14], the Couette flow and the Lid-driven cavity flow. Bound-
ary conditions without velocity slip and temperature jumps were written for these discrete
Boltzmann equation by splitting the velocity distribution function into an equilibrium and a
non-equilibrium part. The equilibrium part was set using the local velocity and temperature on
the wall and the non-equilibrium part was set by extrapolating the non-equilibrium moments
of the fluid sites to the wall sites.

2 Quadrature based on prescribed abscissas

Considering the Boltzmann transport equation with a BGK collision operator [1], and the
following change of variables: x = Lx∗, t = Tt∗, ξ = lξ∗/τ , where L and T are a character-
istic macroscopic length and time, and l e τ are a characteristic microscopic length and time,
respectively. The Boltzmann equation becomes:

Kn (∂t∗f + ξ
∗
α∂α∗f) = f

eq − f, (1)

where Kn = l/L ≈ τ/T is the Knudsen number (Kn) [15].

Considering the following expansions in the Kn: f = f (0) +Kn1f (1) +Kn2f (2) + . . . and
∂t = ∂t0+Kn

1∂t1+Kn
2∂t2+. . . , the Boltzmann equation can be collected in Kn orders leading

to an asymptotic CE analysis. At each Kn order, the mass, momentum and energy equations
can be obtained by multiplying the resulting equations by 1, ξ∗α and ξ∗

2, integrating them in
the velocity space and recomposing the time derivative. Although these equations are not easily
obtained when the Kn order is high and considering that the CE analysis has its own drawbacks
when the Kn increases [15], this analysis can be used to determine the minimal requirements
for a proper discretization of the velocity space [4].
It was shown that the necessary condition for the discrete counterparts of the Boltzmann

equation to retain its macroscopic features is that the integrals of the equilibrium distribution
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are correctly calculated by the following quadrature [4,7],∫
feqψ(ξ)dξ =

∑
i

wif
eq
i ψ(ξi), (2)

for all equilibrium moments of interest, ψ(ξ). In the above equation wi is a weight related to the
discrete velocity ξi. In this manner, when the mass, momentum and energy balances must be
accurate up to the Navier-Stokes-Fourier limit, this quadrature must be exact for the moments:
1, ξα, ξαξβ , ξαξβξγ and ξ

2ξαξβ .
Using a reference temperature To and expanding the equilibrium distribution function, f

eq,
and the moments, ψ(ξ), in Hermite polinomials, H , the following orthogonality relations are
obtained [9],

1

2π

∫
e−ξ

2
o/2H (j)

rj
(ξo)H

(n)
rn
(ξo)dξo =

∑
i

WiH
(j)
rj
(ξoi)H

(n)
rn
(ξoi). (3)

All Hermite polynomials up to the desired moment order must be orthogonal in relation to the

discrete product defined by the above equation with weight Wi = wi
m

2πkTo
e−ξ

2
oi/2 and abscissas

ξoi = ξi/
√
kTo/m. Philippi et al. (2006) showed that when a lattice is invariant under π/2

rotations and reflections about the x and y axis, the preservation of the norm of each Hermite
polynomial in the discrete space assure the orthogonality of these polynomials in this space.
In Philippi et al. [7,8], space-filling lattices were obtained by adding space-filling sets of same

magnitude velocities one after another, until the quadrature problem had a closed solution up
to the sixth order. In the present work, non-space-filling velocity sets were used. The velocity
magnitudes and, in some cases, the orientation of each sub-lattice were set as free parameters to
be determined a posteriori. For each order of the quadrature equations, this procedure increases
the number of unknowns for a given number of equations and enables a closed solution with a
smaller number of discrete velocities in the set.
Table 1 shows some deduced space-filling and non-space-filling lattices suitable for simula-

tions in one dimension. Non-space-filling lattices are always denoted with an ‘n’. Some of the
lattices found in this work have been found before by other authors. When that is the case, the
source is cited in the table. Although one-dimensional problems are very limited and have not
great practical usage, the study of these lattices can shed some light on important issues related
to the construction of discrete velocity sets by quadrature and on the effect of the inclusion of
high order moments in the equilibrium distribution.
One dimensional minimal non-space-filling lattices were found by Chikatamarla and Karlin

(2006) using a Gauss-Hermite quadrature. In the same work, these authors reported several
different solutions for the problem of finding a lattice with five different velocities, realizing
that the lattice formed by the velocities {0,±1,±2} do not have a solution with real and
positive weights Wi.
In the present work, the method of prescribed abscissas was applied to find a third order

lattice formed by the velocities {0,±a,±b}. The results are summarized in the Table 4. The
weights and the speed a obtained depend only on the parameter b. They must be non-negative
and real if the lattice is valid as a solution of the quadrature problem. Therefore the parameter b

is restricted to be larger than or equal to
√
3 +

√
6. The ratio between the two non-zero speeds

can be written as b/a = b
√
(b2 − 3)/√3(b2 − 5).

Table 1. One dimensional lattices, see Chikatamarla [16] and Tables 4 and 5 for further details.

Moment Lattices Moment Lattices

ξ2 D1Q3 ξ6 D1V11, D1V7n
ξ3 D1V5, D1V4n ξ7 D1V13, D1V8n
ξ4 D1V7, D1V5n ξ8 D1V15, D1V9n
ξ5 D1V9, D1V6n
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This function has a minimum (b/a ≈ 2.107) when b =
√
5 +

√
10. This means that the

ratio between a and b must be at least larger than 2.107 in order to the system have a valuable
solution. There are two possible solutions to the quadrature problem when the ratio between
the two speeds is smaller than

√
2+

√
3 and only one possible solution when the ratio is larger

than that, Table 4. If the parameter b is chosen so as to retrieve the fourth order moment, the
D1V5n lattice is obtained. When the parameter b is chosen so as to make the weight W0 = 0,
the D1V4n lattice is obtained [16].
In the Table 2 two dimensional lattices obtained by using the quadrature method with

prescribed abscissas are shown, including the references where these lattices were also found
by different authors. It can be seen that when the quadrature order is small there is almost
no difference between the number of velocities in the space-filling and in the non-space-filling
lattices, but when the quadrature order increases, the number of velocities in the non space-
filling lattices can be significantly smaller. This tendency is specially prominent in three
dimensional sets of velocities, as shown in the Table 3.
Considering two dimensional lattices, although second order sets of velocities, such as the

hexagonal lattice, can be built with less than nine directions, they are not of common practical
usage, because the D2Q9 lattice is very simple indeed.
Third order lattices can be constructed with twelve velocities without any rest distribution

function. These lattices are very simple to handle and can be employed on the simulation of
isothermal hydrodynamic problems up to the first Kn order. The D2V12n can be alternatively
constructed using a) two sub-lattices with 04-velocities aligned along the main directions and
a third one aligned along the diagonals or b) with two sub-lattices aligned along the diagonals
and and a third one aligned along the main directions. The solution for the weights and speeds
is unique for each one of these lattices.
If a rest distribution function is included in the set of velocities, the system will have a

free parameter that can be used to adjust the lattice. In that case, considering, e.g., the first
lattice above mentioned, the ratio between the speeds relating the two sub-lattices aligned along
the main direction is b/a = b

√
(b2 − 3)/√3(b2 − 6).

The free parameter b has restrictions and properties similar to those of the one dimensional
D1V5 lattice and the function b/a has a minimum value at 1 +

√
2. No set of speeds with

integer ratios between each other is a possible solution of the quadrature problem, i.e., there is
no space-filling lattice with thirteen velocities that retains moments up to the third order using
this formulation.
In accordance with a CE analysis, sets of velocities that are able to retrieve all the third order

moments and the ξ2ξαξβ moment can be used to simulate full thermohydrodynamic problems

Table 2. Two dimensional lattices.

Moment Space-filling Non-space-filling

ξαξβ D2Q9 [4,7] D2Q7n [4]
ξαξβξγ D2V17 [4,7] D2V12n [4,17]
ξ2ξαξβ D2V25 [7] D2V17n Table 6
ξαξβξγξδ D2V37 [7] D2V19n, D2V20n, D2V21n [17–19], Tables 7–9
ξαξβξγξδξε D2V53 [8], Table 11 D2V28n [19], Table 10

Table 3. Three dimensional lattices.

Moment Space-filling Non-space-filling

ξαξβ D3Q15 [4] D3V13n [4,19]
ξαξβξγ D3V39 [4,19] D3V27n [4,19]
ξ2ξαξβ D3V59 Table 13 D3V33n Table 12
ξαξβξγξδ D3V107 Table 15 D3V52n, D3V53n [19,20], Table 14
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up to the first Kn order, as the D2V17n lattice. This lattice has a free parameter that could not
be applied to lower the number of velocities or increase the number of moments retrieved and
mantain all the weights and velocities real and positive at same time, so this free parameter
was set to make the set of velocities as compact as possible. The degree of compactness of a
lattice is here defined as the ratio between the higher and the lower speeds in the velocity set.
Considering now the LB equation that are built by imposing the orthogonality and norm

preservation of all the fourth order equilibrium moments. The smaller velocity set that was
found is formed by the zero velocity and three hexagonal sets of velocities. As this lattice is not
easy to handle and not symmetric with respect to the x and y axis, other lattices with more
velocities were searched. A symmetrical lattice that can be useful is the D2V20n lattice, Table 8.
If a rest distribution function is added to this lattice, there is more freedom to choose the shape
of the lattice. The D2V21n lattice shown in Table 9 is more compact than the D2V20n lattice,
which is important if a algorithm with differents Courant numbers in each direction is used.
Fifth order lattices were also derived in the present work, considering their potential use in

problems with high Kn or with two relaxation times [9]. The D2V28n lattice is shown in the
Table 10. This lattice is much smaller and compact than the D2V53 lattice, Table 11.
Historically, the most common three-dimensional lattices used in the LB method are the

D3Q15 and D3Q19. Although it was found a lattice with thirteen velocities that is suitable to
simulate moments up to the second order, this lattice is not easy to handle and has little practical
value when compared to the formers.
A fourth order lattice with 33 velocities was found in this work using the prescribed abscissas

method [7]. The D3V33n lattice which weights are shown in Table 12, can be a useful lattice
for simulating thermohydrodynamic problems. In addition, it is a lattice of very easy practical
implementation. Furthermore, the number of velocities is significantly lower than its space-filling
counterpart (the D3V59 lattice, Table 13) and the 77-velocities lattice proposed by Watari [11].
In order to recover all the moments up to the fourth order, a space-filling lattice composed

by 107 velocities have to be constructed, Table 15. This velocity set is computational expensive
and requires to improve the boundary conditions rules for assuring non-slip and temperature
continuity at the solid surfaces that bound the flow domain. Its non-space-filling lattice counter-
part, a lattice composed by 52 velocities, Table 3, halves the memory occupied and, considering
methods that involves the derivative calculation based only on the information of the two
nearest neighbours, this lattice does not increases the complexity of the algorithm used. Nev-
ertheless, the D3V52n lattice is not compact, i.e., the ratio between the lower non-zero speed
and the higher speed equals ≈ 7.518. The D3V53n, in contrast, is much more compact, e.g.,
the ratio between the lower and the higher speed is ≈ 3.317.

3 Results

A finite difference scheme was used for the streaming term of the continuous Boltzmann equa-
tion, trying to reduce the errors related to the mesh spacing dx and time step dt. Therefore, the
discretization of the time derivative was performed using a second order Runge-Kutta scheme
and the spatial derivative was calculated with a third order upwind scheme using points aligned
with the direction of the velocity ξi whenever there were points of the spatial mesh along this
same direction. When that was not the case, an interpolation scheme was used considering the
points that were nearest to the ξi direction. For writing the boundary conditions, the distrib-
utions fi were expanded in Hermite polynomials up to the quadrature order N splitting this
expansion into an equilibrium and a non-equilibrium part:

fi = f
eq
i + f

neq
i =

N∑
n=0

1

n!
aeqn (ρ, uα, T )Hn(ξoi) +

∞∑
n=2

1

n!
aneqn (ταβ , qα, . . .)Hn(ξoi). (4)

The known moments on the boundary, i.e., the velocity and the temperature, were imposed for
establishing the coefficients aeqn . The non-equilibrium-moments and the density were approxi-
mated by an extrapolation from the nearby fluid sites, see [3].
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Although this scheme has an important drawback since it is impossible to warrant the mass
preservation, the error that was found in the simulations was below 1% in the most of the
sample cases that were analyzed.

3.1 Sod’s shock tube

The Sod’s shock tube problem [14], was simulated for comparing some of the one dimensional
lattices exposed in Section 2 (D1V4n, D1V5n, D1V7n and D1V9n). The main purpose was to
evaluate the effect of including higher order moments in the discrete equilibrium distribution
function and the effect of the temporal and spatial discretization in the solution.

The Sod’s shock tube problem consists in a domain with a diaphragm separating a region
of high pressure, where the density equals 8 and temperature equals 1.00, on the left from
a region of low pressure, density equals 1 and temperature equals 0.75, on the right. When
the diaphragma is broken a compression wave propagates to the right and an expansion wave
propagates to the left. The pressure ratio between the two sides equals 10.

The Figure 1(a) shows the pressure distribution in two different simulations, using two
different temporal-spatial discretizations: the first discretization, which results are shown in
Figures 1(a), 1(b) and 1(c), is four times coarser than the second one, shown in Figures 1(d),
1(e) and 1(f).

In the Figure 1(a) some instabilities can be observed, what can be caused either by the spatial
and temporal discretization or the failure of representing correctly the equilibrium distribution
and the velocity space discretization associated with this. Analysing the expansion wave with
details, 1, it can be observed that all the velocity space discretizations, from the third to the
eighth order, presented the same results, suggesting that what causes the instabilities is not the
velocity space discretization. When the time and spatial steps were diminished, Figure 1(e),
this expectation was confirmed by the disappearing of the instabilities, both in the expansion
and in the compression waves, compare Figure 1(c) and Figure 1(f). The difference between
the ideal gas solution and the Boltzmann equation solution is due both to physical aspects,
i.e., heat diffusion and high Kn effects, and to errors of the algorithm, i.e., numerical diffusion.
Nevertheless, the results are in very good agreement with each other and the algorithm is very
stable up to pressure ratios of fifty, as long as the temperature is lowered, the thermal diffusivity
is increased to avoid instabilities and the time step is diminished.

Fig. 1. Sod’s shock tube.
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It can be also observed that the D1V4n is not able to simulate this problem due essentially to
the inexact calculation of the fourth order moments, which is a necessary condition to represent
all the thermohydrodynamics up to the first Kn order [7].

3.2 Couette flow

Using the boundary conditions that were described in the beginning of Section 3, the Couette
flow between two infinite plates at different temperatures and velocities were simulated using
the D2V17n lattice. The Eckert number is given by Ec = U2/cvΔT , where U is the velocity
on the east wall, cv is the constant volume specific-heat and ΔT is the temperature difference
between the walls. The velocity was set to zero on the west wall and, in accordance with the
Eckert number, different from zero on the east wall. On the west wall the temperature was
set to 0.99 and on the east one to 1.01. The simulations were performed using Eckert numbers
from 1 to 32 and the results are summarized on Figure 2(a) and 2(b). There is a very good
agreement with the exact solutions for all the Eckert numbers tested, even when the number of
points in the mesh is very low and the Mach number is high. No velocity slip or temperature
jump were reported.

3.3 Lid-driven cavity flow

In the lid-driven cavity flow a non-zero velocity is imposed on the top surface of a closed square
cavity. Simulations were performed using the D2V17n lattice and an isothermal equilibrium
distribution. The purpose was to find the stability limits of the method and its ability to simulate
this hydrodynamic problem. The Figures 3(a) and 3(b) show the ux(x = 0.5, y) component
along the median axis x = 0.5 and the uy(x, y = 0.5) component along the median axis y = 0.5,
when the Reynolds number is 1000.
Although these results are to be considered as very good when compared with the work of

Ghia et al. [21], they have only been obtained with a small mesh size, and, consequently, with
a very small time-step, requiring a significantly high number of time steps until convergence.
In the LB method collision-propagation simulation there is always an anti-diffusive effect

brought out by the factor −δ/2 [22]. This effect is absorbed into the viscosity and thermal
diffusivity, enabling the simulation of the same Reynolds number flows with larger time steps
when compared with present high-order finite difference scheme, since the over-relaxation of
the collision term leads to viscosities that can be very low when compared with the present
ones.

4 Conclusions

In this work, non-space-filling lattices suitable for solving the Boltzmann equation using finite
diference and, although not tested, finite element and finite volume methods were derived using

Fig. 2. Couette flow. The temperature a) and velocity b) are compared with the Navier-Stokes-Fourier
equation solution. The simulation results are the dots and the lines are the analytical solutions.
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Fig. 3. Lid-driven cavity flow, Re = 1000.

the quadrature based on prescribed abscissas. The sets of velocities found are smaller and more
compact than theirs space-filling counterparts, what can be specially important when more
equilibrium distribution moments must be retrieved and tridimensional lattices are used.

Although the lattices found proved to be able to simulate the complete set of equations of
the thermohydrodynamics up to the Navier-Stokes level, more tests with tridimensional lattices,
adaptative meshes, different algorithms and different boundary conditions are still on course
and will be reported elsewhere. The numerical diffusion seems to be a great problem when finite
difference schemes are used, limiting the application of these methods to large domains.

The authors want to acknowledge the support provided by the CNPq (The National Council for Scien-
tific and Technological Development), Finep (Research and Projects Financing) and Petrobras (Petróleo
Brasileiro S/A).

A Lattices

Table 4. Possible choices for D1V5.

W0 W1 W2 a

{0,±a,±2a} no solution
{0,±a,±3a} 7.446420× 10−2 4.185854× 10−1 4.418248× 10−2 7.826711× 10−1
{0,±a,±3a} 6.366469× 10−1 1.814146× 10−1 2.619607× 10−4 1.649472
{0,±a,±4a} 6.513812× 10−1 1.742737× 10−1 3.575170× 10−5 1.691054

{0,±a,±b} 2(b4−6b2+3)
3b2(b2−5)

(b2−3)3
6(b6−11b4+45b2−75)

3
b2(b4−6b2+15)

√
3 + 6

3−b2

Table 5. One dimensional lattices.

D1V7 D1V9 D1V11 D1V13 D1V15

cs 1.447018 2.554632 1.785604 2.832466 2.069553
W0 4.766699× 10−1 1.672402× 10−1 3.869382× 10−1 2.092777× 10−1 3.338809× 10−1
W1 2.339147× 10−1 3.031542× 10−1 2.417834× 10−1 2.331246× 10−1 2.352338× 10−1
W2 2.693819× 10−2 5.330294× 10−2 5.892246× 10−2 9.405107× 10−2 8.226164× 10−2
W3 8.121295× 10−4 5.792153× 10−2 5.615255× 10−3 5.692338× 10−2 1.428014× 10−2
W4 2.065248× 10−4 7.500768× 10−3 1.230146× 10−3
W5 2.001260× 10−3 3.274472× 10−6 3.700559× 10−3 5.267663× 10−5
W6 1.106671× 10−6
W7 6.078434× 10−5 1.294923× 10−8
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Table 6. D2V17n.

ξi i Wi

(0, 0) 1 2.91120705068934× 10−1
(±a, 0) 4 1.17544259079499× 10−1
(±a,±a) 4 4.99848074155116× 10−2
(±b, 0) 4 7.38568353112397× 10−3
(±c,±c) 4 2.30507370663218× 10−3

a = 1.36967763379
b = 2.98493018050
c = 2.38098279882.

Table 7. D2V19n.

ξi i Wi

(0, 0) 1 31
96

a(sin(πi/3), cos(πi/3)) 6 605+151
√
15

11520

b(sin(πi/3 + π/6), cos(πi/3 + π/6)) 6 1
128

c(sin(πi/3), cos(πi/3)) 6 605−151√15
11520

a = 2

√
2
7

(
6−√15), b = 2√2, c = 2√ 2

7

(
6 +

√
15

)
.

Table 8. D2V20n.

ξi i Wi

(±a,±a) 4 1.88925845284202× 10−1
(±b, 0) 4 3.93820098682627× 10−2
(±c,±c) 4 2.08333333333333× 10−2
(±d,±e) 8 4.29405757101158× 10−4

a = 0.68125003863 d = 1.3665853546
b = 2.17532774716 e = 3.6873494659.
c = 1.73205080757

Table 9. D2V21n.

ξi i Wi

(0, 0) 1 2.05660006833783× 10−1
(±a,±a) 8 1.40509662171466× 10−1
(±b, 0) 4 4.38226426701393× 10−2
(±c,±c) 4 1.24095396776270× 10−2
(±3d,±d) 8 9.21576886161059× 10−4

a = 0.84919384991 c = 1.8616199350
b = 2.06813606112 d = 1.1386549808.

Table 10. D2V28n.

ξi i Wi

(±a,±a) 4 1.65178143204339× 10−1
(±b, 0) 4 4.76436948919026× 10−2
(±c,±c) 4 3.13893609813488× 10−2
(±2d,±d) 8 2.60416666666667× 10−3
(±e, 0) 4 5.66775193567500× 10−4
(±f,±f) 4 1.36923955088259× 10−5

a = 0.60908304548 d = 1.4142135623
b = 1.96450120032 e = 3.6707040697
c = 1.45841718745 f = 3.4441308266.

Table 11. D2V53, a = 1.12787327020759509.

ξi i Wi

(0, 0) 1 2.05255299930058× 10−1
(±a, 0) 4 1.04840518201578× 10−1
(±a,±a) 4 5.86865864166755× 10−2
(±2a, 0) 4 1.67906473563003× 10−2
(±2a,±a) 8 7.65724340287832× 10−3
(±2a,±2a) 4 1.54868631971367× 10−3
(±3a, 0) 4 5.24980317084264× 10−4
(±3a,±a) 8 4.77912601004212× 10−4
(±4a,±a) 8 6.07479146296177× 10−6
(±3a,±3a) 4 1.19642275835789× 10−5
(±5a, 0) 4 3.30587859576316× 10−7

Table 12. D3V33n.

ξi i Wi

(0, 0, 0) 1 1.69544317872168× 10−1
(±a, 0, 0) 6 7.53752058968985× 10−2
(±b,±b,±b) 8 3.90045337112442× 10−2
(±c, 0, 0) 6 6.86518217744201× 10−3
(±d,±d, 0) 12 2.08142366598628× 10−3

a = 1.07182071542885 c = 2.92338002226218
b = 1.21422495340964 d = 2.49326392161601.

Table 13. D3V59, a = 1.20288512331026.

ξi i Wi

(0, 0, 0) 1 9.58789162377528× 10−2
(±a, 0, 0) 6 7.31047082129148× 10−2
(±a,±a, 0) 12 3.46588971093380× 10−3
(±a,±a,±a) 8 3.66108082044515× 10−2
(±2a, 0, 0) 6 1.59235232232060× 10−2
(±2a,±2a, 0) 12 2.52480845105094× 10−3
(±2a,±2a,±2a) 8 7.26968662515159× 10−5
(±3a, 0, 0) 6 7.65879439346840× 10−4
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Table 14. D3V53n.

ξi i Wi

(0, 0, 0) 1 1.60453547343974× 10−1
(±a, 0, 0) 6 7.17493485726724× 10−2
(±b,±b,±b) 8 3.85210759331158× 10−2
(±c,±d, 0) 24 4.11522633744856× 10−3
(±e,±e,±e) 8 2.44958972443801× 10−4
(±f, 0, 0) 6 2.61083127915713× 10−5

a = 1.45239166695403 d = 2.66422150193135
b = 1.12267801869052 e = 2.40894358132745
c = 1.37910253014295 f = 4.81788716265490.

Table 15. D3V107, a = 1.07182071542885.

ξi i Wi

(0, 0, 0) 1 7.57516860965017× 10−2
(±a, 0, 0) 6 6.00912802747447× 10−2
(±a,±a, 0) 12 3.13606906699535× 10−3
(±a,±a,±a) 8 3.63392812078012× 10−2
(±2a, 0, 0) 6 1.32169332731492× 10−2
(±2a,±a, 0) 24 4.48492851172950× 10−3
(±2a,±2a, 0) 12 2.48755775808342× 10−3
(±3a,±a,±a) 24 6.07432754970149× 10−4
(±2a,±2a,±2a) 8 4.64179164402822× 10−4
(±4a, 0, 0) 6 4.51928894609872× 10−5
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