
CGP4Matlab - A Cartesian Genetic
Programming MATLAB Toolbox for Audio and

Image Processing

Rolando Miragaia1, Gustavo Reis1, Francisco Fernandéz2, Tiago Inácio, and
Carlos Grilo1

1 School of Technology and Management,
Computer Science and Communications Research Centre,

Polytechnic Institute of Leiria, Portugal
{firstname.lastname}@ipleiria.pt,
2 University of Extremadura, Spain,

fcofdez@unex.es

Abstract. This paper presents and describes CGP4Matlab, a power-
ful toolbox that allows to run Cartesian Genetic Programming within
MATLAB. This toolbox is particularly suited for signal processing and
image processing problems. The implementation of CGP4Matlab, which
can be freely downloaded, is described. Some encouraging results on the
problem of pitch estimation of musical piano notes achieved using this
toolbox are also presented. Pitch estimation of audio signals is a very
hard problem with still no generic and robust solution found. Due to the
highly flexibility of CGP4Matlab, we managed to apply a new cartesian
genetic programming based approach to the problem of pitch estimation.
The obtained results are comparable with the state of the art algorithms.

Keywords: cartesian genetic programming, cgp, matlab toolbox, audio
processing, image processing, pitch estimation, automatic transcription
of music

1 Introduction

Cartesian Genetic Programming (CGP) has already demonstrated its capabil-
ities on synthesizing complex functions, extracting main features from images
and performing image segmentation [1].

Although there are a number of public domain genetic algorithm and ge-
netic programming toolboxes for MATLAB, there are no toolboxes for carte-
sian genetic programming. CGP4Matlab was developed as a contribution to the
community, providing a free toolbox that can be used and extended by other
researchers, allowing them to benefit from MATLAB’s great mathematical po-
tential on audio and image processing. Also, with this toolbox, researchers that
already work with genetic programming in MATLAB are now able to try the
cartesian version of genetic programming.



CGP4Matalb toolbox is generic and flexible enough to be applied in any
kind of audio or image processing problems. It is completely free and available
for download at https://github.com/tiagoinacio/CGP4Matlab. This toolbox
has already been useful on solving some simple problems such as linear regression,
and also on addressing the problem pitch estimation of piano music [2].

The next section describes the cartesian genetic programming process. Sec-
tion 3 describes the CGP4Matlab architecture and its implementation. In Section
4, we describe a new approach to the picth estimation problem using our toolbox
and show our experimental results. Finally, Section 5 presents our conclusions.

2 Cartesian Genetic Programming

Genetic Programming is a type of evolutionary algorithm based on Darwin’s
theory of evolution, where in each generation (iteration) exists a population
of possible solutions (candidate solutions) to the problem, which are referred
as individuals. During each iteration, all the individuals are evaluated by an
evaluation function, often referred to as fitness function. After the evaluation,
individuals are submitted to a process of selection, where the best are preferably
chosen. Those individuals can be recombined and suffer mutations. The resulting
individuals will constitute the next population in the new generation. Cartesian
Genetic Programming (CGP) grew out of the work of Miller et al. [3], as
a method of evolving digital circuits. However, the term ”Cartesian Genetic
Programming” appeared two years later in [4]. According to Miller [4], CGP is
more efficient than standard GP methods in learning Boolean functions.

CGP is Cartesian because it encodes programs as a two-dimensional grid of
nodes that are addressed in the Cartesian coordinate system (see Section 2.2).
In its classic form, it uses a very simple integer based genetic representation of
a program in the form of a directed graph instead of a tree. Graphs are very
useful program representations, more general than trees.

Program 
inputs

Computational 
nodes

Program
output

0

1

2

3

4

5

4

Fig. 1. Overall strucuture of a CGP program. Program inputs and computational nodes
are numbered sequentially. The program outputs can link to any computational node
or program input.

2.1 Programs

CGP programs have three major components: program inputs, computational
nodes and program outputs. Computational nodes are structures organized

https://github.com/tiagoinacio/CGP4Matlab


and composed by input connections and a function. The input connections of
a node have their origin in any program input or other precedent nodes. The
function is among the ones previously defined in a look-up table and it takes
as arguments the values received through the node’s inputs. The node itself is
indexed by an integer value so that it can be referenced by other node input con-
nections. The computational nodes, organized in a two-dimensional grid of nodes,
are numbered sequentially and linked directly between them in a feed-forward
manner (see Figure 1). A program can have several inputs, named program
inputs. Program outputs are indexes that link to some nodes. For example,
if the program’s output is the number 4, the result of the program is the value
computed by node 4’s function (see Figure 1). Program inputs and nodes are
referenced by sequential numbers. The idea is best explained with a simple ex-
ample. In Figure 1 we can see that the program has two inputs, four nodes and
one output.

2.2 Genotype

The genotype is the codification of a program as it is used and manipulated by
the CGP algorithm. It describes what are the programs inputs, computational
nodes, program outputs and how they are connected together. In general, it is
a list of genes where each gene is an integer. As we have seen earlier, program
inputs and nodes are referenced by their index. Since a node is a structure with
input connections and a function, each node has multiple genes (see Figure 2).
The genetic structure that encodes a node first references the function value and
then the values of the node’s connections sources. In Figure 2, the list of genes
to encode the node are: 2 3 4.

3

4

2 5

Node 
Index

Function
Gene

Node 
Inputs

Fig. 2. Example of a node that has two connection genes: node 3 and node 4. It
computes the function number 2 in the function-set. The node is referenced by the
number 5.

Each node has a function gene which is an address in a look-up table of func-
tions. Usually, all functions have as many inputs as the maximum function arity
and unused connections are ignored. This introduces an additional redundancy
into the genome. In the example of Figure 2, the node 5 has nodes 3 and 4 has
inputs and it applies the function number 2 defined previously. If function 2
represents a sum, node 5 would compute the following:



y = c1 + c2, (1)

where c1 is the value coming through the first connection and c2 is the value
coming through the second connection. If c1 = 2 and c2 = 1, the value of node
5 would be 2 + 1 = 3 (see Figure 3).

2

1

Sum 3

Node 5 = 2 + 1 = 3.

Values Function Result

Fig. 3. The result of node 5 will be 2 + 1 = 3.

There are a few number of parameters that we need to define in order to
encode a CGP program. The number of program inputs is given by ni and the
number of program outputs is given by no. Given that nodes are organized in a
tabular way, the number of columns is given by nc and the number of rows by
nr. For example, the program in Figure 4 has the following attributes: ni = 3,
no = 1, nc = 3, nr = 1 and the genotype is the following list of integers: 512
303 102 and 4. Knowing that ni = 3, the genotype encodes the first node at
index 3, since the first three indexes represent the program inputs and the first
index is 0. The first node in the genotype, node 3, computes function 5, and its
connections are the program input 1 and program input 2. Node 4 computes
function 3, and its connections are the program input 0 and the value of node
3. The output of that program is the value of node 4. We point that there are
no program outputs nor nodes whose input connections reference node 5. This
means that this node cannot influence the program output.

Fig. 4. CGP graph, where ni = 3 and no = 1. The grid has nc = 3 (columns) and
nr = 1 (row).

Table 1, enumerates a few parameters of the program illustrated in the above
figure.



Table 1. Parameters of the program illustrated in Figure 4

Parameter Value
Number of Inputs (ni) 3
Number of Outputs (no) 1
Number of Rows (nr) 1
Number of Columns (nc) 3
Inputs (ii) 0,1,2
Functions (fi) 5,3,1
Outputs (Oi) 4
Genotype 512 303 102 4
Phenotype 512 303 4

There are some allelic constrains, that the genotype must respect. The alleles
(values) of function genes fi must take valid address values in the look-up table
of primitive functions. Let nf represent the number of allowed functions. Then
fi must obey to the following range:

0 ≤ fi < nf. (2)

There is another parameter called levels-back l, which determines how many
previous columns of nodes may connect to a node in the current column. When
nr = 1 and l = nc, any node can have input connections coming from any
program input and any node on its left, which allows unrestricted connectivity.
However, if nr > 1, nodes cannot connect to other nodes in the same column.
Then, having a node in column j, and j ≥ l, node connections, Cij , must obey
to the following range:

ni+ (j − l)nr ≤ Cij ≤ ni+ j × nr. (3)

If j < l, then the following condition must be met:

0 ≤ Cij ≤ ni+ j × nr. (4)

Program output genes Oi can connect to any node or program input:

0 ≤ Oi < ni+ Ln, (5)

where Ln is the number of nodes in the genotype, computed by the following:

Ln = nr × nc. (6)

This representation is very simple, flexible and convenient for many problems.

2.3 Genotype-Phenotype

One of the key characteristics of CGP is the genotype-phenotype mapping. The
genotype is of fixed-length but the phenotype is not, due to the fact that the
genotype can have inactive genes. Thus, they are redundant because they cannot
influence the programs output. The corresponding genes are called non-coding
genes or inactive genes. This means that we can have a phenotype different



from the genotype because non-coding genes are not expressed in the phenotype,
that is, the program that will run in practice.

The output or outputs of the CGP are nodes that point to other nodes
(connection genes) and so on. Decoding the program is recursive in nature and
works from the program output genes first. To decode the program outputs, the
active nodes should be identified. The process begins by looking at which nodes
are directly connected to the output genes. Then, these nodes are examined to
find out which nodes are directly linked to them. Since non-coding genes are not
addressed, they present little computational overhead.

2.4 Algorithm

The evolutionary strategy widely used for CGP is a special case of the strategy
µ + λ [5] where µ = 1 (Algorithm 1). This means that, in this special case, the
population size is always one. At each iteration (generation), λ new offspring are
generated from the current one through mutation. Then, the best among the
current individual and the offspring becomes the current individual in the next
iteration. An offspring can become the current individual in the next iteration
when it has the same fitness as the current individual and there is no other
individual with a better fitness.

Algorithm 1 Algorithm ((1 + λ)EA)

1: t← 0;
2: Set current individual I0 as the best of λ individuals created randomly;
3: while a stop condition is not fulfilled, do
4: for i = 1 to λ do
5: Create a copy xi of current individual It;
6: Mutate each gene of xi with probability p;
7: end for
8: Set new current individual It+1 as the best of It ∪ {x1, . . . , xλ};
9: t← t+ 1;

10: end while

3 Cartesian Genetic Programming Toolbox

For the first step of our research on applying cartesian genetic programming
to sound processing, we decided to create a MATLAB Toolbox for audio pro-
cessing. The idea was to have a highly flexible toolbox, configurable throughout
parameters and function callbacks, so that, we could move and focus on the
problem of Pitch Estimation by applying and configuring the same toolbox to
our particular case.

The CGP4Maltab’s architecture will be introduced throughout this section.
Then, each component will be explained in detail.



3.1 Architecture

The CGP Toolbox is very simple to use and allows to quickly encode a problem.
The structure of classic CGP is reproduced in the toolbox. One of the main
goals was to have a generic toolbox that could help us to encode from smaller
to bigger problems. With that in mind, a few design decisions were made that
will be explained next. All the combinations of rows and columns are possible,
considering that nr > 0 and nc > 0 . The allelic constrains are generated dynam-
ically, depending on the cartesian representation of the nodes. Levels-back was
also taken into consideration. Additionally, the toolbox is prepared to use pa-
rameters in the genotype. There are no limits for the number of parameters. The
fitness function is any function provided by the user. The toolbox is prepared
to receive one or more program inputs of any types and values. The number of
program outputs can be one or more, in order to address different problem re-
quirements. The function-set is also provided by the user and the look-up table
is automatically generated. Furthermore, there is a system of callbacks which
is discussed later. The Evolutionary Algorithm (EA) used is the 1 + λ, referred
previously in Section 2.4. The goal is to have a toolbox as generic as possible, so
a few parameters for the evolutionary process were chosen to be configurable.

The number of offspring (λ) is defined by the user. This is useful because
there can be some problems that require a small number of offspring and others
that require a bigger number of offspring. The mutation rate (p) is also config-
urable. This is the mutation probability for each gene. The maximum number of
runs, mr, and maximum number of generations, mg, are also required param-
eters. Finally, the last parameter is the maximum or minimum fitness, f , for a
solution to be considered valid, depending if we want to maximize or minimize
the fitness function. The EA needs to know when a candidate solution can be
considered as a valid solution for the problem, in order to stop the evolutionary
process.

The toolbox is divided into several components (see Figure 5). Each one has
its purpose and special role. The first one is the CGP component. It exposes
all the functionality to encode an application built on top of the toolbox. This
component communicates with the EA and Structure components. The Struc-
ture is just an helper, which stores the positions of the genes according to the
type of gene (connection, function, program output and parameter). The EA
component is responsible for initializing the runs in the evolutionary algorithm.
It starts with a certain number of Offspring, created by the Genotype com-
ponent which, in turn, is composed by the Connection, Functions, Ouputs
and Fitness components. Run is connected to the Generation component, by
executing it multiple times. In each generation, Mutation can occur, which will
change the genotypes (using the Connection, Functions, Outputs and Fitness
components). Figure 5 shows the overall structure of the toolbox’s components.
Each component will be addressed in detail next.



CONNECTION

CGPSTRUCTURE

EA

OFFSPRING

RUN

GENOTYPE MUTATION

FUNCTION OUTPUT FITNESS

GENERATION

Fig. 5. Components that are part of the toolbox.

3.2 Classes

The toolbox was built using Object Oriented Programming methodology of
MATLAB (version R2016a). All the classes that compose the toolbox will be
introduced throughout this section. For some classes, a detailed explanation of
the most relevant properties and methods is also presented.

CGP The CGP class provides access to an API that lists all the features needed
to encode a program. It is the core of the toolbox and its primary component. The
CGP class lets the user add the program inputs, provide the fitness function, add
parameters and define the function-set. The constructor takes a configuration
object. This object will contain all the configuration necessary for the CGP and
for the EA.

For the CGP, the parameters are divided into: number of rows, number of
columns, number of levels back and number of program outputs. Since some
CGP approaches assume that the output node is the last node of the graph,
this option was also taken into consideration. So, if we pass the value last to
the output type, the last node of the genotype will be considered the program
output. This option only works when the number of program outputs is set to
1, otherwise it will be ignored. Having these parameters configurable, the user
has total control of the grid layout of the generated program (genotype).

For the EA, the parameters are: maximum number of generations, maximum
number of runs, number of offspring, mutation rate, the fitness threshold and the
fitness operator. The fitness threshold is the limit for which a candidate solution
is considered a valid solution to the problem. This allows the evolutionary process
to stop or skip to the next run. In some kind of problems, the goal is to minimize



an error rate, where 0 would be the best value for the fitness. Also, there are other
problems where the goal is to maximize the fitness function. The fitness solution
property covers that necessity. However, the operator to use in the comparison
between fitness values also needs to be configurable, because the optimization
of those values is different. The fitness operator, O, is the operator to use when
comparing the new fitness candidate solution with the parent’s fitness, and can
take the following values: ‘>’, ‘<’, ‘>=’and ‘<=’. For example, consider the
parent’s fitness as f0 and an offspring fitness as f1: if O = ‘>’, f0 = 0.5 and
f1 = 0.6, then the offspring will replace the parent in the new generation; if O =
‘<’, f0 = 0.5 and f1 = 0.6, the parent will remain as it has the best fitness. This
operator is also used for checking if a solution is a valid solution for the given
problem. Therefore, it is also used for comparison between a solution’s fitness
and the fitness solution value, also configurable. Table 2 describes every possible
field for the configuration.

Table 2. Configuration table with the fields that the structure should have, the type
of value and the description of each one.

Key Type Description
rows double number of rows
columns double number of columns
levels back double number of levels-back
outputs double number of outputs
output type string set the program output as the last node (last, random)
runs double number of runs
generations double number of generations
offspring double number of offspring
mutation double probability of mutation
fitness solution double fitness for a solution to be considered valid
fitness operator string fitness operator (>,<,>= or <=)

At the time of instantiaton, the CGP class verifies if all the required settings
were passed in the configuration object. This class also exposes the functionally
of adding program inputs. Each problem requires a specific set of program input
or inputs. Some may require one integer as input, others may require an array,
or even a complex type of object. To address this abstraction, the input provided
for the CGP toolbox is of type struct (structure). Each field in the structure
is a program input. Therefore, the program inputs can be of any type: integers,
strings, structs, arrays, matrix, etc. The number of fields present in the structure
indicates the number of inputs that the toolbox needs to set in the genotype,
which is dynamically set: there is no need to specify how many program inputs
the programs will have.

The fitness function is passed by callback (function pointer) to the program.
The toolbox reads the function set from a specific directory provided by the

user. This directory should have all the functions that could be used in the geno-
type. All the functions should receive as many inputs as the maximum function
arity. This is a requirement for the program to work. Besides the maximum func-
tion arity, if the user added parameters to the genotype, these should also be



passed to each function. This method iterates through all the MATLAB files in
the directory passed as argument, and it creates a function handle for each one.

Some specific signal processing functions might require special arguments like
ranges or constants to be executed (e.g.: a low pass filter needs to know which
percentage of the original signal will be attenuated). Those parameters might
need to evolve through time, because their best values for the contribution to
the solution of the problem is unknown beforehand. The genotype can encode
those parameters and add them to the evolutionary process. Parameters should
have integer or double values. Each parameter is encoded by a structure with
a name, a callback function for the initialization of the parameter value, and
another callback function for mutating the value. The initialization and mutation
functions should return an integer or a double. The mutation function should
also accept an argument, that is the value of the current parameter to mutate.
When running the algorithm, there are a number of events from the evolutionary
process that can be useful to handle, for running additional scripts or simply to
add some kind of report. In order to have that range of possibilities, the user is
able to pass optional callbacks, each of which, will fire at the following events:
the configuration has been set, a fittest solution is achieved after a run, a fittest
solution is achieved in a generation, a new solution is created, a new generation
starts, a new run starts and a genotype is mutated. After adding all the program
inputs, fitness function, parameters and callbacks, the configuration callback is
fired, with a few useful parameters about the configuration of the program.

Structure There are several components that need to know how many genes
are in the genotype, or if a specific gene is a function-gene or a connection gene.
Instead of having to determine those properties multiple times and at different
stages, this information is only computed once, in this class. The Structure class
serves as an helper throughout the entire evolutionary process. The main goal
is to classify each gene a priori, according to its type: connection, paremeter,
program output or function. For example, if we have 3 genes per computational
node and our genotype starts at number 1 (MATLAB does not accept zero-based
vectors), we know in advance that gene 1 represents a function and genes 2 and
3 both correspond to connections. Since this class is responsible for defining the
type of genes, it needs to know a few parameters, such as: the number of genes,
the number of genes per node, the connection genes per node, the number of
computational nodes and the number of parameters.

EA The EA class is responsible for starting the evolutionary process. It iterates
for the maximum number of runs, defined in the configuration of the CGP,
storing the fittest candidate solution of each one.

If the callback Run Ended is provided, it will be fired after each run, with a
few parameters, such as the genes of the fittest solution and their fitness.

Run The Run class is responsible for initializing a run. First, it generates a few
candidate solutions. Then, it will start the evolutionary loop over the genera-



tions. The class stores the best candidate solution, while evaluating if a solution
for the problem was found.

The Run class contains two callback events. The Fittest Solution occurs when
a candidate solution has better fitness than the previous stored solution. The
Generation Ended occurs each time a new generation ends.

Generations The Generation class is responsible for initializing a new genera-
tion. It starts with the previous fittest candidate solution (parent), and generates
a few mutated versions, according to the configuration provided. If the λ chosen
in the configuration phase is 4, it will generate four mutated versions of the
parent solution. All the new genotypes are evaluated, and the fittest solution is
stored.

The Generation class contains two callback events: New Solution In Gener-
ation and Fittest Solution Of Generation. The first, occurs every time a new
solution is generated. The last one, occurs each time a new solution is generated
and has a better fitness than the parent.

Offspring The Offspring class is responsible for the initialization of a specific
number of offspring, previously defined, at random, before iterating through the
generations. It initializes randomly different genotypes which are then evaluated.
The fittest solution is stored and used as the parent solution, for the generation
loop initialization.

Genotype The Genotype class is responsible for the creation of a genotype,
restricted to the configuration provided: number of columns, number of rows,
number of program inputs, parameters, and so on. First, the function genes are
added to the genotype. Then, the connection genes are randomly generated, as
well as the parameters and program outputs. After the genotype is created, the
active nodes are recursively found by analyzing the program outputs. For each
output, the connection nodes are retrieved and stored in an array. For each of
those, their connections are also saved in that array, and so on. This process
stops when there are no more nodes to analyze. Lastly, the fitness of this new
candidate solution is computed.

Connection The Connection class is responsible for generating a random and
valid connection for a specific node. It receives the connection gene index as
argument. The class first finds which node belongs the connection gene. This
is done by subtracting the number of program inputs from the gene index and
dividing that value by the number of genes per node. Then, it finds all the pos-
sible connections for that node. This is achieved by recursively iterating through
the previous nodes, taking into account that nodes in the same row cannot be
connected between each other, and also taking into account the number of levels-
back. Lastly, it randomly pick one connection from the possible connections.



Functions The Functions class is responsible for randomly generating the func-
tion genes for the genotypes. It takes into account the number of functions
present in the function-set, to be able to generate valid function genes. It can
generate one function gene at a time or multiple function genes. This is is useful,
because we find where all the function-genes are positionated in the genotype,
and call this class once, which returns function genes to all those positions. If
we have 10 nodes, we have to generate 10 function-genes in the genotype. If our
function-set is composed by 5 functions, this class generates 10 random values
between 1 and 5, each corresponding to a function-gene mapped to one of the
functions in the function-set.

Output The Output class is responsible for generating a valid program output.
Depending on the settings provided initially, this class can pick the last node to
be the program output, or randomly pick any program input or computational
node in the genotype.

Fitness The Fitness class is responsible for calling the fitness callback provided
in the configuration phase. A few properties are passed to that callback, such as
the genes in the genotype, active nodes, function-set, program inputs and others.
It has a validation of the type returned by the function, which should return an
integer or double value. The returned value, is stored and used as the fitness of
that particular candidate solution.

Mutation The Mutation class receives a genotype and iterates over its genes.
All the genes have the same mutation probability. For a gene being mutated,
we first find what type of gene it is: connection, function, parameter or program
output. If it is a program output, the Output class is used. If it is a connection
gene, the Connection class is used. If it is a function gene, the Functions class
is used. Recall that when we add parameters to the CGP, we must provide an
initialization function and a mutation function. If it is a parameter gene, the
mutation function provided is called.

After iterating all genes, the active nodes are found again, and the fitness
is recalculated. If the Genotype Mutated callback is provided, it will be called,
having as arguments the genes before the mutation, the genes after the mutation
and the index of the mutated genes.

4 Using CGP approach to pitch estimation on piano
notes

As mentioned before, the CG4Matlab toolbox has already proven to be useful
during our first approach on addressing the pitch estimation problem [2]. How-
ever, to better demonstrate the capabilities of the developed toolbox, we decided
to extend our previous work and propose a new approach. The problem of Pitch



estimation on sound signals, also known as F0 detection, is a very important
task of Automatic Music Transcription.

Music transcription is a very difficult problem from both musical and com-
putational points of view: although there has been much research devoted to
it, it still remains an unsolved problem. Over the years, there has been a lot
of research on Pitch Estimation [6,7,8,9,10]. However, to the best of our knowl-
edge, there are no Cartesian Genetic Programming approaches for addressing
this problem.

In our CGP approach to Pitch Estimation, we have multiple inputs and we
have only one row of graph nodes, one output (the result of the corresponding
classifier), and levels-back = nc. To perform pitch detection using CGP, we
developed a system where some important decisions and tasks were made besides
the CGP. We had to define what kind of inputs to use from the original piano
audio signal, through a preprocessing task. We also had to develop a process to
reach a binary output in order to perform our fitness function.

Fig. 6. System architecture.

The block diagram of our proposed system is much more than a simple CGP
process and is depicted in Figure 6. Our goal is to train 61 classifiers, each
one corresponding to one pitch or piano note: from C1 to C6. To train one
classifier, we first start with a set of learning cases: a group of audio signals
corresponding to the pitch that we want to identify and a group of audio signals
without that pitch. Those audio signals are pre-processed in order to extract
some important features that will be used as program inputs like, for example,
the magnitude spectrum. The computational nodes in the genotype have two
connection inputs, one function and two parameters. Each program is an evolved
mathematical function, which is applied to each of the learning cases. The output
of that function is compared to a triangular signal, where a threshold is applied,
for binary classification. After the binary classification of all learning cases, the
fitness function is applied.

The polyphonic audio signals of the piano notes were extracted from the
MAPS database [11]. This is a huge data-set with multiple piano samples, chords
and melodies in wave format.



4.1 Experiments and Results

Table 3 shows the values of the configurable parameters for our system. The
evolutionary process consisted of 30 runs with 5000 generations each, using 50
positive and 50 negative cases for each musical note. The number of computa-
tional nodes is 100. The classifiers were evaluated using the F-measure.

Table 3. List of parameters used in the experiments.

Parameter Value
Frame Size 4096
Fitness Threshold 0.5
Positive Test Cases 50
Negative Test Cases 50
Outputs 1
Rows 1
Columns 100
Levels Back 100
Offspring 4
Mutation Probability 5%
Runs 30
Generations 5000

After the training process, each classifier was tested with a different test
set. Each test set consisted in 144 negative notes (48 × 3) and 5 positive notes,
comprising a total of 149 piano sound samples. Table 4 shows our results. We
made a more complete set of tests then the preliminary results, and we trained
and tested 61 different classifiers. These results are very encouraging, since for
almost all notes we achieved a classifier with F-Measure values greater than 70%.

Table 4. Test results for 61 classifiers

classifier tp tn fp fn f-measure

24 5 138 6 0 0.63

25 5 127 17 0 0.37

26 5 127 17 0 0.37

27 5 127 17 0 0.37

28 5 127 17 0 0.37

29 5 124 20 0 0.33

30 4 122 22 1 0.26

31 5 108 36 0 0.22

32 5 132 12 0 0.46

33 4 138 6 1 0.53

34 5 111 33 0 0.23

35 5 139 5 0 0.66

36 5 140 4 0 0.71

37 5 121 23 0 0.30

38 5 140 4 0 0.71

39 5 113 31 0 0.24

40 4 130 14 1 0.35

41 4 138 6 1 0.53

42 4 124 20 1 0.28

43 4 138 6 1 0.53

classifier tp tn fp fn f-measure

44 5 112 32 0 0.24

45 5 135 9 0 0.53

46 3 138 6 2 0.43

47 4 119 25 1 0.24

48 5 135 9 0 0.53

49 5 136 8 0 0.55

50 5 140 4 0 0.71

51 5 127 17 0 0.37

52 5 138 6 0 0.63

53 5 142 2 0 0.83

54 5 128 16 0 0.39

55 5 138 6 0 0.63

56 5 128 16 0 0.39

57 5 139 5 0 0.67

58 5 139 5 0 0.67

59 5 137 7 0 0.59

60 5 142 2 0 0.83

61 4 142 2 1 0.73

62 4 144 0 1 0.88

63 4 144 0 1 0.88

classifier tp tn fp fn f-measure

64 5 138 6 0 0.63

65 5 141 3 0 0.77

66 5 139 5 0 0.67

67 5 141 3 0 0.77

68 5 141 3 0 0.77

69 5 141 3 0 0.77

70 5 142 2 0 0.83

71 5 142 2 0 0.83

72 5 142 2 0 0.83

73 5 144 3 0 0.77

74 5 146 1 0 0.91

75 5 142 5 0 0.66

76 5 142 5 0 0.66

77 5 146 1 0 0.91

78 5 143 4 0 0.71

79 5 144 3 0 0.77

80 5 143 4 0 0.71

81 5 147 0 0 1

82 5 147 0 0 1

83 5 146 1 0 0.91

84 5 145 2 0 0.83

The graph depicted in Figure 7 shows, besides F-measure, the error rate in
percentage for the data-set test with 96ms frames. Our pitch estimator using



cartesian genetic programming reaches the mean error rate of 6%. When com-
pared to the state of the art, these are very encouraging results. According to
Emiya [12], the three main monophonic pitch estimators are: Parametric F0 es-
timator, the Nonparametric F0 estimator and the YIN estimator [13] and those
estimators have mean error rates of 2.4%, 3.0% and 11.0% respectively. Our
CGP approach to F0 estimation reaches the mean error rate of 6%.

30 40 50 60 70 80

Evolved Classifiers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
ta

g
e

(%
)

Classifiers evaluation error rate and F-measure

F-measure (mean 60%)

error rate (mean 6%)

Fig. 7. Graph with 61 classifiers evaluation results in error rate and F-measure.

5 Conclusion

This paper presented the CGP4Matlab toolbox. This toolbox is generic and
flexible enough to be applied to any kind of signal or image processing problems.
Its internal architecture and modules were also presented and discussed.

A cartesian genetic programming strategy for addressing the pitch recogni-
tion of piano notes was also presented using our toolbox. The obtained results
show the feasibility of our approach. Also, the results accomplished with the CGP
technique are in line with the most popular algorithms for pitch recognition on
piano notes.

Planning ahead, we aim to continue our research on addressing of polyphonic
pitch estimation using cartesian genetic programming with our toolbox.

6 Acknowledgements

The authors would like to thank Spanish Ministry of Economy, Industry and
Competitiveness and European Regional Development Fund (FEDER) under
projects TIN2014-56494-C4-4-P (Ephemec) and TIN2017-85727-C4-4-P (Deep-
Bio); Junta de Extremadura FEDER, projects GR15068, GRU10029 IB16035



Regional Government of Extremadura, Consejeŕıa of Economy and Infrastruc-
ture, FEDER.

References

1. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image
processing. In: Genetic Programming Theory and Practice X, pp. 31–44. Springer
(2013)

2. Inácio, T., Miragaia, R., Reis, G., Grilo, C., Fernandéz, F.: Cartesian genetic pro-
gramming applied to pitch estimation of piano notes. In: Computational Intelli-
gence (SSCI), 2016 IEEE Symposium Series on. pp. 1–7. IEEE (2016)

3. Miller, J., Thomson, P., Fogarty, T.: Designing electronic circuits using evolution-
ary algorithms. arithmetic circuits: A case study 219 (1997), http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.27.7671

4. Miller, J.F.: An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In: Proceedings of the 1st Annual
Conference on Genetic and Evolutionary Computation - Volume 2. pp. 1135–1142.
GECCO’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999),
http://dl.acm.org/citation.cfm?id=2934046.2934074

5. Hansen, N., Arnold, D.V., Auger, A.: Evolution Strategies, pp. 871–898.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015), http://dx.doi.org/10.

1007/978-3-662-43505-2_44

6. Yeh, C., Roebel, A., Rodet, X.: Multiple fundamental frequency estimation and
polyphony inference of polyphonic music signals. Trans. Audio, Speech and Lang.
Proc. 18(6), 1116–1126 (Aug 2010), http://dx.doi.org/10.1109/TASL.2009.

2030006

7. Klapuri, A.P.: Multiple fundamental frequency estimation based on harmonicity
and spectral smoothness. IEEE Transactions on Speech and Audio Processing
11(6), 804–816 (Nov 2003)

8. Reis, G., Fernandéz de Vega, F., Ferreira, A.: Audio analysis and synthesis-
automatic transcription of polyphonic piano music using genetic algorithms, adap-
tive spectral envelope modeling, and dynamic noise level estimation. IEEE Trans-
actions on Audio Speech and LanguageProcessing 20(8), 2313 (2012)

9. Marolt, M.: A connectionist approach to automatic transcription of polyphonic
piano music. IEEE Transactions on Multimedia 6(3), 439–449 (June 2004)

10. Mueller, M., Wiering, F. (eds.): An efficient temporally-constrained probabilistic
model for multiple-instrument music transcription. ISMIR, Malaga, Spain (Octo-
ber 2015)

11. Emiya, V., Bertin, N., David, B., Badeau, R.: Maps-a piano database for multipitch
estimation and automatic transcription of music (2010)

12. Emiya, V., David, B., Badeau, R.: A parametric method for pitch estimation of
piano tones. In: 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing-ICASSP’07. vol. 1, pp. I–249. IEEE (2007)

13. De Cheveigné, A., Kawahara, H.: Yin, a fundamental frequency estimator for
speech and music. The Journal of the Acoustical Society of America 111(4), 1917–
1930 (2002)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.7671
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.7671
http://dl.acm.org/citation.cfm?id=2934046.2934074
http://dx.doi.org/10.1007/978-3-662-43505-2_44
http://dx.doi.org/10.1007/978-3-662-43505-2_44
http://dx.doi.org/10.1109/TASL.2009.2030006
http://dx.doi.org/10.1109/TASL.2009.2030006

	CGP4Matlab - A Cartesian Genetic Programming MATLAB Toolbox for Audio and Image Processing

