Projections onto Hyperplanes in Banach Spaces

C. FRANCHETTI

Institute for Applied Mathematics,
University of Florence, 50139 Florence, Italy

Communicated by E. W. Cheney

Received November 27, 1981

1. INTRODUCTION AND NOTATION

In this paper X will always denote a real Banach space, X^* its norm dual, U, S (U^*, S^*) their unit balls and spheres. If V is a closed subspace of X, a projection onto V is a continuous linear operator $P: X \rightarrow V$ such that $Py = y$ if $y \in V$. A hyperplane in X is a subspace V of the form $V = f^{-1}(0)$, where $f \in S^*$. It is easy to see that any projection P onto the hyperplane $V = f^{-1}(0)$ is of the form $P = x - f(x)z$, with $z \in f^{-1}(1)$; this projection will be denoted by P_z.

We clearly have $1 \leq \|P_z\| \leq 1 + \|z\|$. Let $\varepsilon > 0$. Since $\exists z_\varepsilon \in f^{-1}(1)$ with $\|z_\varepsilon\| < 1 + \varepsilon$, we can always find a projection P with $\|P\| < 2 + \varepsilon$ and, when X is reflexive, with $\|P\| \leq 2$. The relative projection constant $\lambda(V, X)$ of V with respect to X is defined by: $\lambda(V, X) = \inf\{\|P\|: P$ projects X onto $V\}$; note that $1 \leq \lambda(V, X) \leq 2$; P is a minimal projection onto V if $\|P\| = \lambda(V, X)$. Reference [4] contains a very interesting and complete study of minimal projections and relative projection constants when X is one of the sequence spaces c_0, l_1.

The aim of this paper is to present some results related to the projections onto a hyperplane and to point out the relationships among the norms of the projections, the shape of the unit ball and the metric properties of the hyperplanes. Section 2 contains the main result (Theorem 3): it is proved that an upper bound for the number $\lambda(V, X)$ leads to the characterization of those hyperplanes which are range of a projection with norm strictly less than 2 (Theorem 4). In Section 3 an application of the previous results gives a substantial improvement of an inequality proved in [9] between the Jung constant J and the projection constants λ_1 of a Banach space (Theorem 6). In Section 4 a new parameter $F(X)$ of the Banach space X, depending on the collection of all hyperplanes of X, is considered and studied. Section 5 is devoted to a short investigation of the function ρ (defined below) and other functions related to the norm of the projections onto a given hyperplane.

We list now some other definitions and notations.
For any real a set $V_a = f^{-1}(a)$ (note that all the V_a are isometric with $V = V_0$). For $0 \leq a < 1$ set $C_a = U \cap V_a$, $A(a) = \frac{1}{2} \text{diam } C_a$ and

$$\rho(a) = \rho_r(a) = r_{v_a}(C_a) = r_v(C_a);$$

C_a is sometimes called a hypercircle, $A(a)$ is half the diameter of the set C_a and $\rho(a)$ is the (Chebyshev) radius of C_a relative to the set V_a, i.e., the number:

$$\rho(a) = \inf_{x \in V_a} \sup_{y \in C_a} \|x - y\|, \|x\| \leq 1, f(x) = a.$$

For $0 \leq \varepsilon$ set

$$E^e(a) = \{x \in V_a : \sup_{y \in C_a} \|x - y\| \leq \rho(a) + \varepsilon\};$$

for $\varepsilon = 0$, $E^0(a) = E(a)$ is the (possibly empty) set of the centers of C_a relative to V_a. (Note that if $\varepsilon > 0$, $E^e(a)$ is always non-empty.) C_a, $\rho(a)$ and $E^e(a)$ are studied, in a slightly different situation, in [7].

2. Main Result

Let us begin with the following:

Lemma 1. Assume that $0 \leq a < 1$, $\varepsilon > 0$.

(i) For $a \in V_a$ we have $c \in E^e(a)$ if and only if

$$\|c - y\| \leq \|y\| + \rho(a) - 1 + \varepsilon$$

for any $y \in C_a$.

(ii) $1 - a \leq \rho(a) \leq 1 + a$. (2.2)

(iii) $\|c\| \leq 2a + \rho(a) - 1 + \varepsilon$ (2.3)

for any $c \in E^e(a)$.

(iv) $A(a) \leq \rho(a) \leq (1 + a) A(a)$.

(2.4)

Proof. (i) and (ii) are essentially Theorems 2 and 3 in [8]; for the sake of completeness we give here a new proof.

(i) Let $c \in V_a$. If (2.1) holds then clearly $\sup_{y \in C_a} \|c - y\| \leq \rho(a) + \varepsilon$ which means that $c \in E^e(a)$. Assume now that $c \in E^e(a)$ and that $x \neq c$ is a point in the relative interior of C_a; the line $\lambda c + (1 - \lambda) x$ meets the relative boundary of C_a in two points $\xi_i = \lambda_i c + (1 - \lambda_i) x$, with $\|\xi_i\| = 1$.

One of the λ_i, say λ_1, is strictly negative. We have $c - \zeta_i = (1 - \lambda_i)(c - x)$, so
$$
(1 - \lambda_1)\|c - x\| \leq \rho(a) + \varepsilon = \rho(a) - 1 + \|\zeta_i\| + \varepsilon.
$$
Since $\|\zeta_i\| \leq \|x\| - \lambda_1\|x - c\|$ we get
$$
(1 - \lambda_1)\|c - x\| \leq \rho(a) - 1 + \|x\| - \lambda_1\|x - c\|.
$$
So $\|x - c\| \leq \|x\| + \rho(a) - 1$ and this last inequality holds also for points x in the relative boundary of C_a.

(ii) For $v \in V_a$ we have $\rho(a) \leq \sup\{|v - y|, y \in C_a\} \leq \|v\| + 1$ which implies $\rho(a) \leq 1 + a$ since $\inf\{|v|, v \in V_a\} = a$. For $c \in E^a(a)$, $y \in C_a$ by (2.1) we have $\rho(a) \geq 1 - \varepsilon + \|c - y\| - \|y\| \geq 1 - \varepsilon - \|y\|$. This implies $\rho(a) \geq 1 - a$. (Select z such that $\|z\| = 1, f(z) \geq 1 - \varepsilon$ and take $y = az/f(z)$.)

(iii) (2.3) is just a consequence of (2.1).

(iv) $\Delta(a) \leq \rho(a)$ is trivial. Let $x \in C_a$ with $\|x\| = 1$, $v \in V_a$ with $\|v\| < a + \varepsilon$; there exists a $\lambda < 0$ such that $\|\lambda x + (1 - \lambda)v\| = 1$. So we have
$$
1 \leq -\lambda + (1 - \lambda)(a + \varepsilon);
$$
therefore $1 - \lambda \geq 2/(1 + a + \varepsilon)$. $2\Delta(a) \geq \|x - (\lambda x + (1 - \lambda)v)\| = (1 - \lambda)\|x - v\|$. Taking sup on x we get $2\Delta(a) \geq (1 - \lambda)\rho(a) \geq 2\rho(a)/(1 + a + \varepsilon)$ which completes the proof of (2.4).

Let us define

$$
c = c_v = \sup\{\rho_v(a), 0 \leq a < 1\}.
$$

By (2.1) we have $1 \leq c_v \leq 2$. Define also $\gamma_\varepsilon : [0, 1) \to [0, \|P_z\|] \text{ by }$

$$
\gamma_\varepsilon(a) = \sup\{|x - az|, x \in C_a\} = \sup\{|P_zx|, x \in C_a\},
$$

where P_z is the usual projection defined by $P_zx = x - f(x)z$ ($f(z) = 1$). Clearly we have $\gamma_\varepsilon(0) = 1$, $\sup\{\gamma_\varepsilon(a), 0 \leq a < 1\} = \|P_z\|$; also, $\rho(a) = \inf_{\varepsilon \in V_a} \sup\{|x - v|, x \in C_a\} = \inf_{\varepsilon \in V_a} \sup\{|x - az|, x \in C_a\} = \inf_{\varepsilon \in V_a} \|P_z\| = \inf_{\varepsilon \in V_a} \sup_a \gamma_\varepsilon(a) \geq \inf_{\varepsilon} \sup_a \rho(a) = c_v = \inf_a \gamma_\varepsilon(a)$. We cannot in general interchange here inf sup with sup inf; i.e., in the inequalities

$$
1 \leq c_v \leq \lambda(V, X)
$$

it can happen that $c_v < \lambda(V, X)$. An example is given in Section 5. The parameter c_v is considered also in [9] but is defined differently; in [13] a related parameter $v(V)$ is studied. In order to make a comparison possible we note that, using the notations of [8, 9, 13] and the ones introduced here, we have the equivalences $\rho(a) = r(d/a)/(d/a)$, $r_i/s = \rho(d/s)$, where d is a fixed distance; see [8, 9, 13]. (This follows from the equality $C_i(s) = sC_1/(1)$, where $C_a(s) = sU \cap V_a$.) In particular, note that

$$
c_v = m(V, X) \quad [9, \text{Lemma, p. 42}],
$$

$$
\rho'_+(0) = v(V) = \bar{I}((V)/d) \quad [13, \text{p. 85}].
$$
here $\rho_1'(0) = \lim_{a \to 0^+} ((\rho(a) - \rho(0))/a) = \lim_{a \to 0^+} ((\rho(a) - 1)/a)$. (The right
derivative at the origin of ρ exists since the ratio $(\rho(a) - 1)/a$ is non-increasing; see Section 5.) It is consequently easy to prove (see [13]) that

$$\lambda(V, X) \leq 1 + \rho_1'(0) = 1 + \phi(V).$$

(2.8)

We now want to prove a lemma on projections.

Let $V = f^{-1}(0), f \in S^*_\alpha, 0 < a < 1$ and $\varepsilon > 0$; select $z_e \in f^{-1}(1)$ such that $\|z_e\| < 1 + \varepsilon$ and $c_a^\alpha \in E^\alpha(\alpha)$. We define the projections P_{z_e} and Q_a^ε onto V

by

$$P_{z_e} x = x - f(x) z_e, \quad Q_a^\varepsilon x = x - f(x) c_a^\alpha e_\alpha.$$

Set also $A = \{x \in S: a \leq f(x) \leq 1\}, B = \{x \in S: 0 \leq f(x) < a\}$.

Lemma 2. We have

$$\sup_{x \in A} \|P_{z_e} x\| < 2 + \varepsilon,$$

$$\sup_{x \in B} \|P_{z_e} x\| < 1 + \alpha + \varepsilon,$$

$$\|P_{z_e}\| < 2 + \varepsilon,$$

(2.9)

$$\sup_{x \in A} \|Q_a^\varepsilon x\| \leq 1 + (\rho(a) - 1)/a + \varepsilon,$$

$$\sup_{x \in B} \|Q_a^\varepsilon x\| \leq 2a + \rho(a) + \varepsilon,$$

$$\|Q_a^\varepsilon\| \leq \max(1 + (\rho(a) - 1)/a, 2a + \rho(a)) + \varepsilon.$$

(2.10)

Proof. (2.9) is trivial. Let us prove (2.10). If $x \in A$ then $ax/f(x) \in C_\alpha$; therefore

$$\|Q_a^\varepsilon x\| = \left\| \frac{f(x)}{a} \left[\frac{a}{f(x)} x - c_a^\alpha \right] \right\|.$$

Using (2.1) we obtain

$$\|Q_a^\varepsilon x\| \leq \frac{f(x)}{a} \left[\frac{a}{f(x)} \|x\| + \rho(a) - 1 + a\varepsilon \right]$$

$$\leq 1 + \frac{f(x)}{a} |\rho(a) - 1 + a\varepsilon|.$$

If $x \in B$, using (2.3) we obtain $\|Q_a^\varepsilon x\| \leq 1 + \|c_a^\alpha\| \leq 2a + \rho(a) + \varepsilon$. |

Let us consider for $0 < a < 1$ the function ψ defined by

$$\psi(a) = \left(1 + \frac{\rho(a) - 1}{a}\right) - (2a + \rho(a)) - \frac{(\rho(a) - 1)(1 - a)}{a} - 2a.$$

(2.11)
Since \(p(a) \leq 1 + a \) we have \(\psi(a) \leq 1 - 3a \); hence \(\psi(a) < 0 \) if \(a > \frac{1}{3} \). Also \(\psi(0) = p'_+(0) \). By (2.8) we have \(\psi(0) > 0 \) if \(\lambda(V, X) > 1 \); therefore in this case there exists a \(\beta \in (0, \frac{1}{3}) \) such that \(\psi(\beta) = 0 \). Recalling that \(c = \sup p(a) \) we also have \(\psi(a) \leq (c - 1)(1 - a)/a - 2a \). Assume that \(1 < c < 2 \); then \(\psi((c - 1)/c) \leq (8 - 6c - c^2)/2c \) and therefore \(\psi((c - 1)/c) < 0 \) if \(c > \sqrt{17} - 3 \approx 1.123 \). We shall use this last fact in proving Theorem 2.

Now consider the problem: when does a projection \(P: X \to V \) exist with \(\|P\| \leq 2 \)? If \(\lambda(V, X) < 2 \) this is obviously the case; when \(\lambda(V, X) = 2 \) this is still the case if \(X \) is reflexive. We shall prove a more general result.

Recall that it is said that a Banach space \(X \) admits centers if for every bounded subset \(A \) of \(X \) the set of the (absolute) centers of \(A \) is non-empty. Examples of such spaces are: dual (hence reflexive) spaces, \(L^1(\mu) \) (\(\mu \sigma \)-finite) and \(C(Q) \) (\(Q \) Hausdorff compact) but the class is wider; see [2] for new examples and a survey of the classical existence theorems.

Let us consider \(V \) as a Banach space in itself; noting that \(E(a) \) is the set of the centers of \(C_a \) in \(V \), which is isometric with \(V^* \), we see that \(E(a) \) is non-empty if \(V \) admits centers.

Theorem 1. If \(V \) admits centers there exists a projection \(P: X \to V \) such that \(\|P\| \leq 2 \).

Proof. Since \(V \) admits centers \(E(a) \) is non-empty for \(0 \leq a < 1 \); the projection \(Q^a \) considered in Lemma 2 is defined also for \(\varepsilon = 0 \) by any \(c_a \in E(a) \) \((Q^a x = x - c_a f(x)/a) \). Using (2.10) we get \(\|Q^a\| \leq \max(1 + (\rho(a) - 1)/a, 2a + \rho(a)) \). Since we may assume that \(\lambda(V, X) > 1 \) there exists a \(\beta \in (0, \frac{1}{3}) \) such that \(\psi(\beta) > 0 \). For this \(\beta \) we have \(\|Q^\beta\| \leq 1 + (\rho(\beta) - 1)/\beta \); hence \(\|Q^\beta\| \leq 2 \) since \(\rho(\beta) \leq 1 + \beta \). \(\square \)

Example 1. Take \(X = 1^1 \), \(V = f^{-1}(0) \), where \(f \in S^* \) is the element of \(1^\infty \) defined by \(f = (1/2, 2/3, \ldots, (n - 1)/n, \ldots) \). We have \(\lambda(V, X) = 2 \) (see [4, Corollary, p. 224]). On the other hand, it is easy to see that there is no norm 2 projection onto \(V \); therefore for any \(P: X \to V \) we have \(\|P\| > 2 \) (no projection is minimal). This counterexample is due to Grünbaum [15, p. 199]. By the preceding theorem \(V \) does not admit centers. For a similar negative example see [10, p. 41].

We now prove our main result.

Theorem 2. Let \(V = f^{-1}(0) \), \(f \in S^* \). For every \(\sigma > 0 \) there exists a projection \(P_\sigma : X \to V \) such that

\[
\|P_\sigma\| \leq g(c) + \sigma, \tag{2.12}
\]
where \(c \) is defined by (2.5) and \(g: [1, 2] \to [1, 2] \) by

\[
g(c) = 1 + \frac{1}{4} \left((c - 1) + \sqrt{(c - 1)^2 + 8(c - 1)} \right) \quad \text{if} \quad 1 \leq c \leq \sqrt{17} - 3
\]

\[
= 1 + \frac{8(c - 1)}{c^2 + 4(c - 1)} \quad \text{if} \quad \sqrt{17} - 3 < c \leq 2.
\]

\((2.13) \)

Proof: By (2.10) we have for the projection \(Q^a_\alpha \): \(\| Q^a_\alpha \| \leq \max(1 + (\rho(a) - 1)/a, 2a + \rho(a)) + \sigma \leq \max(1 + (c - 1)/a, 2a + c + \sigma). \)

Computing the optimal value for \(a \) we find a projection \(Q^a_\alpha \) such that \(\| Q^a_\alpha \| \leq 1 + \frac{1}{4} \left((c - 1) + \sqrt{(c - 1)^2 + 8(c - 1)} \right) + \sigma. \) (This computation was done in [9, Theorem 4]. We will give here a much better result when \(c > \sqrt{17} - 3. \))

Set \(P^\alpha_\lambda = \lambda P^\alpha_{z_1} + (1 - \lambda) Q^a_\alpha \). \(P^\alpha_\lambda \) is of course a projection and for \(0 \leq \lambda \leq 1, \) using Lemma 2, we have

\[
\| P^\alpha_\lambda x \| \leq \lambda \| P^\alpha_{z_1} x \| + (1 - \lambda) \| Q^a_\alpha x \|
\]

\[
\leq \lambda(2 + \sigma) + (1 - \lambda) \left(1 + \frac{\rho(a) - 1}{a} + \sigma \right) \quad \text{if} \quad x \in A
\]

\[
\leq \lambda(1 + a + \sigma) + (1 - \lambda)(2a + \rho(a) + \sigma) \quad \text{if} \quad x \in B
\]

hence we obtain

\[
\| P^\alpha_\lambda \| \leq \max \left(2\lambda + (1 - \lambda) \frac{a + \rho(a) - 1}{a}, (1 + a) \lambda + (1 - \lambda)(2a + \rho(a)) + \sigma \right).
\]

When \(\psi(a) < 0 \) (\(\psi \) is defined by (2.11)) a possible and optimal choice for \(\lambda \) in \([0, 1] \) is

\[
\lambda = \lambda_a = -\frac{\psi(a)}{(1 - \rho(a))/a + a + \rho(a)} = \frac{2a^2 (1 - a)/(1 - \rho(a))}{1 + a^2 - \rho(a)(1 - a)}.
\]

With such a choice we get

\[
\| P^\alpha_{z_1} \| \leq 1 + \frac{2a^2}{1 + a^2 - (1 - a) \rho(a)} \quad \| \sigma \| \leq 1 + \frac{2a^2}{1 + a^2 - (1 - a) c} \quad \| \sigma \|.
\]

We have seen that \(\psi((2c - 2)/c) < 0 \) if \(c > \sqrt{17} - 3; \) therefore the choice \(a = (2c - 2)/c \) is permitted if \(\sqrt{17} - 3 < c < 2 \) (it must be \(a < 1 \)) and we obtain a projection \(R^a \) such that \(\| R^a \| \leq 1 + 8(c - 1)/(c^2 + 4(c - 1)) + \sigma. \) Using \(Q^a \) and \(R^a \) the proof of this theorem is completed (note that when \(c = 2, \) \(g(c) = 2 \) and (2.12) holds).
Remark. The function g has the following properties: $g \in C^1(1, 2)$; $g(1) = 1$, $g(2) = 2$; $c \leq g(c)$; g is strictly increasing and concave; $g'(1) = \infty$, $g'(2) = 0$. In the point $c_0 = \sqrt{17} - 3$ we have $g(c_0) = (\sqrt{17} - 1)/2$, $g'(c_0) = (\sqrt{17} + 1)/2$.

Theorem 3. We have

$$1 \leq c_v \leq \lambda(V, X) \leq g(c_v) \leq 2,$$

(2.14)

where the function g is defined by (2.13).

Proof. This is (2.7) and an obvious consequence of Theorem 2.

Theorem 4. We have

$$\lambda(V, X) = 1 \iff c_v = 1 \iff \forall a \in (0, 1): \rho(a) \leq 1,$$

(2.15)

$$\lambda(V, X) < 2 \iff c_v < 2 \iff \exists a \in (0, 1): \rho(a) < 1 + a.$$

(2.16)

Proof. (2.15) follows from (2.14) since $g(1) = 1$. By (2.14) and the properties of g it follows that $c_v < 2 \Rightarrow \lambda(V, X) < 2$. Also, $c_v < 2 \Rightarrow \exists a: \rho(a) < 1 + a$. Assume now that for $a, \beta \in (0, 1)$ we have $\rho(\beta) < 1 + \beta$. If $\psi(\beta) > 0$ for σ small enough the projection Q_{α}^a used in Theorem 2 has norm $\|Q_{\alpha}^a\| < 2$ for $a = \beta$. If $\psi(\beta) < 0$ the projection $P_{\lambda, a}^\alpha$ (see Theorem 2) has norm $\|P_{\lambda, a}^\alpha\| \leq 1 + \beta^2 + \sigma$.

3. The Parameters J and λ_1

We first recall briefly some well known definitions and properties of certain projection constants. Assume that V is a real Banach space: we say that $V \in \mathcal{P}_\lambda$ ($\lambda \geq 1$) if for every subspace Z there is a projection $P: Z \to V$ such that $\|P\| \leq \lambda$. The (absolute) projection constant of V is $\lambda(V) = \inf \{r: V \in \mathcal{P}_r\}$. We say that $V \in E_\lambda$ ($\lambda \geq 1$) if for every subspace Z with $\dim Z/V = 1$ there is a projection $P: Z \to V$ such that $\|P\| \leq \lambda$. The constant $\lambda_1(V)$ is defined by $\lambda_1(V) = \inf \{r: V \in E_r\}$.

Note that $\lambda(V) = \sup \{\lambda(V, Z): V \subset Z\}$ and

$$\lambda_1(V) = \sup \{\lambda(V, Z): V \subset Z, \dim Z/V = 1\}.$$

(3.1)

It is easily seen that $1 \leq \lambda_1(V) \leq \lambda(V) \leq \infty$, $\lambda_1(V) \leq 2$. We recall also the definition of the Jung constant of V, $J(V)$:

$$J(V) = \sup \{r(A)/A(A), A \subset V, A \text{ bounded}\};$$

here $r(A)$ is the (absolute Chebyshev) radius of A and $A(A) = \frac{1}{2} \text{diam}(A)$.
Clearly $1 \leq J(V) \leq 2$. References on all these parameters are found in [9] where especially the relationship between J and λ_1 is investigated.

We now give some applications of the results of Section 2.

We note that when V is a hyperplane in X, for greater precision one should write $c(V, X)$ instead of c_V or c and $\rho_{V, X}(a)$ instead of $\rho_V(a)$ or $\rho(a).

Theorem 3 in [9] can be stated as:

Theorem 5 (see [9]).

$$J(V) = \sup \{c(V, X), \ V \subset X, \ \dim X/V = 1 \}. \quad (3.2)$$

The following is the main application, in this context, of Theorem 3.

Theorem 6. We have

$$1 \leq J(V) \leq \lambda_1(V) \leq g(J(V)) \leq 2. \quad (3.3)$$

Proof. In (2.14) take $\dim X/V = 1$, use (3.1), (3.2) and the fact that g is strictly increasing. \[\]

Corollary (see [7]).

$$J(V) = 1 \iff \lambda_1(V) = 1.$$

This was first proved in [7]; see [9] for other equivalences and references. Theorem 7 follows immediately from Theorem 6.

Theorem 7. $J(V) = 2 \iff \lambda_1(V) = 2.$

This is a new result. This theorem has motivations in Banach space theory; see, for example, Theorem 8. The interest in describing situations where the Jung constant and the projection constant λ_1 have the same value goes back to Grünbaum (see [14, 15]).

We remark that Theorem 6 is a substantial improvement of Theorem 4 (formula (4)) in [9] since the new bound $\lambda_1(V) \leq g(J(V))$ is now significant for every value of $J(V)$. This fact gives a parallel improvement of Theorem 5 in [9]. In fact we have:

Theorem 8. Let $C(Q)$ be the space of real continuous functions on the compact Q with the usual sup norm. We have

$$J(C(Q)) < 2 \iff C(Q) \in \mathcal{F}_1.$$

Proof. If $J(C(Q)) < 2$ by (3.3), $\lambda_1(C(Q)) < 2$ and this implies that $C(Q) \in \mathcal{F}_1$ by a theorem of Amir; see [1]. \[\]
This last result has been proved independently by Professor Amir who communicated it at the 1981 meeting on Approximation Theory in Oberwolfach.

Note that $C(Q) \in \mathcal{P}_1$ if and only if Q is stonian.

4. THE PARAMETER F

We now discuss the relevance of the previous results from a different point of view. For a given (real) Banach space X let us define

$$F(X) = \sup \{ \lambda(V, X), \text{ } V \text{ is a hyperplane in } X \}.$$

If $\dim X = 1$, $F(X) = 0$ and if $\dim X = 2$, $F(X) = 1$. To avoid trivialities we assume in this section that $\dim X > 2$.

F is a parameter of the space which satisfies $1 \leq F(X) \leq 2$. If X is a Hilbert space of course $F(X) = 1$. For the converse observe that the classical Kakutani's theorem (X is Hilbert if and only if every hyperplane V in X is range of a norm one projection) is not applicable here since the condition $\lambda(V, X) = 1$ does not imply, in general, the existence of a norm one projection onto V; however, still the condition $F(X) = 1$ implies that X is a Hilbert space. This fact was pointed out to me by Professor Amir and can be proved using the Garkavi-Klee characterization of Hilbert spaces via Chebyshev centers.

How to evaluate $F(X)$? Again Theorem 3 turns out to be useful. Define

$$C(X) = \sup \{ c_v, \text{ } V \text{ is a hyperplane of } X \}.$$

We easily obtain the analog of Theorems 3 and 4, namely.

Theorem 9. For the Banach space X we have:

$$1 \leq C(X) \leq F(X) \leq g(C(X)) \leq 2, \quad (4.1)$$

$$F(X) = 1 \Leftrightarrow C(X) = 1, \quad (4.2)$$

$$F(X) < 2 \Leftrightarrow C(X) < 2. \quad (4.3)$$

We give now, in a particular case, a more precise evaluation. Recall that in a Banach space X the modulus of convexity of X is the function $\delta_X : [0, 2] \to [0, 1]$ defined by $\delta_X(\varepsilon) = \inf \{ 1 - \| x + y \|/2 : x, y \in S, \| x - y \| \geq \varepsilon \}$. X is uniformly convex (u.c.) if and only if $\delta_X(\varepsilon) > 0$ for $\varepsilon > 0$; in this case δ_X is invertible and we denote by η_X the inverse function. Assume
that X is u.c., $V=f^{-1}(0)$, $f \in S^*$, $0 \leq a \leq 1$ and set $\Gamma_a = \{ x \in S : f(x) \geq a \} \supset C_a$. We have the following simple result:

$$\Delta(a) \leq \text{diam } \Gamma_a / 2 \leq \eta_X (1 - a)/2. \quad (4.4)$$

In fact, assume that $x, y \in \Gamma_a \cap S$; then $\|x + y\|/2 \leq 1 - \delta_X(\|x - y\|)$, that is, $\delta_X(\|x - y\|) \leq 1 - \|x + y\|/2 \leq 1 - a$; hence $\delta_X(\text{diam } \Gamma_a) \leq 1 - a$ which implies (4.4).

Theorem 10. If V is a hyperplane in a u.c. space X we have

$$\rho_V(a) \leq \eta_X (1 - a)(1 + a)/2. \quad (4.5)$$

Consequently

$$C(X) \leq \sup_a \eta_X (1 - a)(1 + a)/2 = D(X) < 2, \quad (4.6)$$

$$F(X) \leq g(D(X)) < 2.$$

Proof. (4.5) follows from (2.4) and (4.4), then observe that the right hand side of (4.5) does not depend on V; hence (4.6) follows immediately using Theorem 3. \[\Box\]

Note that from (4.4) it follows the well known fact that in a u.c. space we have $\lim_{a \to 1^-} \rho(a) = \lim_{a \to 1^-} \Delta(a) = 0$.

The fact that $F(X) < 2$ in a u.c. space X is contained in a more general result that we will prove in Theorem 12. We need first to recall some other facts on Banach spaces.

A Banach space X is uniformly non-square (u.n.s.) if there exists an $\varepsilon > 0$ such that $\min(\|x + y\|, \|x - y\|) \leq 2 - \varepsilon$ for $x, y \in U$. It is easily seen that if X is u.c. then X is u.n.s.

The radial projection $R : X \to U$ is defined by

$$Rx = x \quad \text{if } x \in U$$
$$= x/\|x\| \quad \text{if } x \notin U.$$

The radial constant $k(X)$ of the real Banach space X is defined by

$$k(X) = \sup \left\{ \frac{\|Rx - R_y\|}{\|x - y\|}, \quad x, y \in X, x \neq y \right\}.$$

It is well known that $1 \leq k(X) \leq 2$; see, for example, [11] where other properties of k are also described. Thiele proved in [18] the interesting fact that $k(X) < 2 \iff X$ is u.n.s.
Smith introduced in [16] the metric projection bound \(MPB(X) \) of the space \(X \) by \(MPB(X) = \sup \{ \| P_M \|, M \text{ is a proximinal subspace of } X \} \), where \(P_M(x) \subset M \) is the set of best approximations of \(x \) in \(M \) (non-empty by definition when \(M \) is proximinal) and \(\| P_M \| = \sup \{ \| y \|, y \in P_M(x), \| x \| \leq 1 \} \).

Baronti proved in [3] that \(MPB(X) = k(X) \).

Collecting all these facts we are able to prove:

Theorem 11. For any real Banach space \(X \) we have

\[
F(X) \leq k(X).
\] (4.7)

Proof. Set \(MPB(X) = \sup \{ \| P_V \| : \text{dim } X/V = 1, V \text{ proximinal} \} \). Obviously \(MPB(X) \leq MPB(X) \). (4.7) will be proved showing that \(F(X) \leq MPB(X) \). First note that u.n.s. Banach spaces are reflexive (this is a well known result due to R. C. James) so that the condition \(k(X) < 2 \) implies reflexivity: (4.7) is therefore trivially true if \(X \) is not reflexive since \(k(X) = 2 \).

Assume that \(X \) is reflexive and consequently that any hyperplane \(V \) is proximinal in \(X \): the (multivalued) best approximation operator \(P_V \) admits always a continuous linear selection which is therefore a projection. The inequality \(F(X) \leq MPB(X) \) will follow from the definitions of \(MPB(X) \) and of \(k(X) \).

We recall now a useful result of Bohnenblust (see [5]): let \(V \) be a hyperplane in an \(n \)-dimensional space \(X \). There always exists a projection \(P : X \to V \) such that \(\| P \| \leq 2(n - 1)/n \). This means that

\[
\text{dim } X = n \Rightarrow F(X) \leq 2 - 2/\text{dim } X.
\] (4.8)

Combining (4.7), (4.8) and Thiele's theorem already mentioned we get:

Theorem 12. We have \(F(X) < 2 \) in the following cases: \(X \) is finite dimensional, \(X \) is uniformly non square.

5. The Functions \(\rho, \gamma, \text{ and } \Delta \)

Let the hyperplane \(V = f^{-1}(0) \) be fixed in \(X \), \(z \in f^{-1}(1) \), \(P_z : X \to V \) defined by \(P_z x = x - f(x) z \) and \(0 \leq a < 1 \). This section is devoted to a short study of the following functions:

\[
\rho(a) = \inf_{v \in V_a} \sup_{x \in C_a} \| x - v \| : x \in C_a = r_{V_a}(C_a) = r_{V}(C_a),
\]

\[
\gamma_z(a) = \sup \{ \| x - az \| : x \in C_a \},
\]

\[
\Delta(a) = \frac{1}{2} \sup \{ \| x - y \| : x, y \in C_a \} = \frac{1}{2} \text{ diam}(C_a).
\]
Recall that
\[\Delta(a) \leq \rho(a) = \inf_{x \in V_i} \gamma_x(a); \quad \|P_x\| = \sup_{a} \gamma_x(a). \]

Denote now by \(\phi \) any of the functions \(\rho, \gamma_x, \Delta \). We shall prove below that \(a \rightarrow \phi(a)/a \) is non-increasing in \((0, 1)\); therefore we can define \(\phi(1) = \lim_{a \rightarrow 1} \phi(a) \).

From now on we will consider \(\phi \) as defined in the closed interval \([0, 1]\).
Note that \(\phi(0) = 1 \) and that when \(X \) is u.c. \(\phi(1) = 0 \) (see (4.4)). Let us prove:

Theorem 13. For \(\alpha \leq \beta, \alpha \neq 1, \) we have
\[-\frac{\alpha}{1 - \alpha} (\beta - \alpha) \leq \phi(\beta) - \phi(\alpha) \leq \frac{\alpha - 1}{\alpha} (\beta - \alpha). \]

Moreover the function \(\phi \) is continuous in \([0, 1]\) and Lipschitz in every interval \([0, 1 - \varepsilon]\) with \(\varepsilon > 0 \).

Proof. For \(s > 0 \) set \(C_a^s = V_a \cap sU \). We generalize the functions \(\phi \) by putting \(\phi^s(a) = \phi(C_a^s) \) (to be defined in the natural way). Note that \(\phi^1 = \phi \). It is easy to see that for \(h > 0 \) we have
\[\phi^{1 + h}(a) \geq \phi^1(a) + h. \]

Let \(T \) be the map \(x \rightarrow a/\beta x; \) then \(TC_a^1 \subseteq C_a^{a/\beta} \) since \(\|Tx - Ty\| - a/\beta \|x - y\| \). Using (5.2) we get \(\alpha/\beta \phi^1(\beta) \leq \phi^{a/\beta}(\alpha) \leq \phi^1(\alpha) - (1 - \alpha/\beta), \) that is, \(\phi(a) \geq (1 - \alpha/\beta) + \alpha/\beta \phi(\beta) \) which is the right hand side of (5.1). Let \(Z \) be the map \(x \rightarrow \lambda x + (1 - \lambda) z, \lambda \in [0, 1], f(z) = 1 \). We have \(ZC_a^1 \subseteq C_{a + (1 - \lambda)}^1 \) and, taking the infimum on the \(z \) with \(f(z) = 1 \), also \(ZC_a^1 \subseteq C_{\lambda a + (1 - \lambda)} \). Since \(\|Zx - Zy\| = \lambda \|x - y\| \) we obtain \(\lambda \phi(a) \leq \phi(\lambda a + (1 - \lambda)) \) which gives, for \(\beta = \lambda a + (1 - \lambda), ((1 - \beta)/(1 - \alpha)) \phi(\alpha) \leq \phi(\beta) \) which is the left hand side of (5.1).

The other conclusions of the theorem follow immediately from (5.1). [\(\square \)]

Remarks. The right hand side of (5.1) may be written \(\phi(a) \geq (1 - \alpha/\beta) + \alpha/\beta \phi(\beta) \) which in particular means that the hypograph of \(\phi \) is convex with respect to the point \((0, \phi(0)) = (0, 1)\): we will say that \(\phi \) is concave with respect to \(0 \).

We also have \(\phi(a)/a - \phi(\beta)/\beta \geq (\beta - \alpha)/a\beta, \) i.e., \(\alpha \rightarrow \phi(\alpha)/a \) is non-increasing, and, more significantly, we also have
\[\frac{\phi(a) - 1}{\alpha} - \frac{\phi(\beta) - 1}{\beta} \geq -\frac{1}{\alpha} + \frac{1}{\beta} + \frac{\beta - \alpha}{a\beta} = 0. \]
i.e., \(a \to (\varphi(a) - 1)/a = (\varphi(a) - \varphi(0))/a \) is non-increasing, or equivalently

\[
\frac{\varphi(\beta) - \varphi(\alpha)}{\beta - \alpha} \leq \frac{\varphi(\alpha) - 1}{\alpha} \quad \text{for} \quad \alpha \leq \beta.
\]

We set \(\lim_{\alpha \to 0^+} ((\varphi(\alpha) - 1)/\alpha) = \varphi'_+(0) \). Note that \((\varphi(\beta) - 1)/\beta \leq \varphi'_+(0) \), i.e., \(\varphi(\beta) \leq \varphi'_+(0) \beta + 1 \) and \(\varphi(\beta) - \varphi(\alpha) \leq (\beta - \alpha) \varphi'_+(0) \). We can also see from (5.1) that \(a \to \varphi(a)/(1 - a) \) is non-decreasing, that \(\varphi \) is concave with respect to 1 if \(\varphi(1) = 0 \) (for example, when \(X \) is u.c.) and finally that \(\varphi \) is non-increasing in the set \(\{ x \in [0, 1]: \varphi(x) \leq 1 \} \) and \(\varphi(x) \geq 1 \) in \([0, \xi], \varphi(x) < 1 \) in \((\xi, 1] \), where \(\xi = \sup \{ x: \varphi(x) \geq 1 \} \).

For \(a = 1 \) the set \(C_1 = \{ x \in S: f(x) = 1 \} \) may of course be empty (for this reason the functions \(\varphi \) where defined originally only in \([0, 1) \)). If we assume that \(C_1 \neq \emptyset \) we can define \(\varphi_1 = \varphi(C_1) \). It is easy to see that \(\varphi_1 \leq \varphi(1) \). We give an example where the inequality is strict.

Example 2. Let \(X \) be \(l^1 \), \(V_p = f_p^{-1}(0) \) with

\[
f_p = (1, 1, ..., 1, 1/2, 2/3, ..., (n - 1)/n,).
\]

By [4, Corollary, p. 224], we have \(\lambda(V_p, X) = 2 \); consequently by (2.16) \(\sup \rho(a) = 2 \) and \(\rho(1) = 2 \). However, one can see that \(\rho_1 = 0 \) for \(p = 1 \) and \(\rho_1^p \leq 1 \) for \(p = 2 \); here \(\rho_1 = r_{V_p}(C_1) \).

It could be asked whether the functions \(\varphi \) are concave. We will show with an example that this is not the case when \(\varphi = \gamma_\varepsilon \). It is, in general, difficult to compute explicitly the functions \(\varphi \); however, when \(X \) is a space of continuous functions, this is sometimes possible using an interesting and useful formula due to Smith and Ward [17].

Theorem 14 (see [12, 17]).

Let \(T \) be a topological space, \(Y \) a subset of \(C(T) \), and \(A \) a bounded subset of \(C(T) \). Then

\[
r_Y(A) = r(A) + d(Y, E(A)).
\]

Here \(r(A) \), \(r_Y(A) \) are, respectively, the absolute radius and the radius with respect to \(Y \) of the set \(A \), \(d(Y, E(A)) \) is the distance from \(Y \) of the (non-empty) set of the absolute centers of \(A \).

The formula (5.3) was proved by Smith and Ward for \(T \) paracompact; the extension to any topological \(T \) is given in [12], where also a different proof and several applications of this formula are given. For the classical formulas
for \(r(A) \) and \(E(A) \) in \(C(T) \) see, for example, [12]. Note that for \(Y = V = f^{-1}(0), A = C_a, 0 \leq a \leq 1 \), we have

\[
\rho(a) = r(C_a) + d(V_a, E(C_a)).
\] (5.4)

Example 3. Let \(X = l^\infty(3), V = f^{-1}(0), f = (\frac{1}{3}, \frac{1}{4}, \frac{1}{5}) \). One can see that

\[
d(V_a, E(C_a)) = a \quad \text{for} \quad 0 < a < \frac{1}{2}
\]

\[
= \frac{1}{2} - a \quad \text{for} \quad \frac{1}{2} < a \leq \frac{1}{4}
\]

\[
= 0 \quad \text{for} \quad \frac{1}{2} < a \leq 1,
\]

\[
r(C_a) = 1 \quad \text{for} \quad 0 \leq a \leq \frac{1}{4}
\]

\[
= 2 - 2a \quad \text{for} \quad \frac{1}{2} < a \leq 1.
\]

By (5.4) we obtain

\[
\rho(a) = 1 + a \quad \text{for} \quad 0 \leq a \leq \frac{1}{4}
\]

\[
= \frac{1}{2} - a \quad \text{for} \quad \frac{1}{4} < a \leq \frac{1}{2}
\]

\[
= 2 - 2a \quad \text{for} \quad \frac{1}{2} < a \leq 1;
\]

hence \(\sup \rho(a) = c_r = \rho(1/4) = 5/4 \).

On the other hand, we have (see [4, Theorem 2], also [6, Theorem 3]): \(\lambda(V, X) = 9/7 \), so this is a case of strict inequality in (2.7). Note that in this example the function \(\rho \) is concave.

We consider now a minimal projection: let \(z = (8/7, 4/7, 8/7) \) (note that \(\|z\| = 8/7 > 1 \)). The projection \(P_x P_x = x - f(x)z \) is minimal since \(\|P_x\| = \sup_a \gamma_x(a) = 9/7 \). In fact: \(\gamma_x(a) = \sup \{\|x - az\|, f(x) = a, \|x\| \leq 1 \} \). Letting \(x = (x_1, x_2, x_3) \) we have \(x - az = (x_1 - a8/7, x_2 - a4/7, x_3 - a8/7) \) with the conditions \(|x_1| \leq 1, 3x_1 + 2x_2 + 3x_3 = 8a \). For \(0 \leq a \leq 1/4 \) choosing \(x = (-1, 4a, 1) \) we get \(\gamma_x(a) = 1 + a8/7 \); for \(a = 1/2 \) choosing \(x = (1, -1, 1) \) we get \(\gamma_x(1/2) = 9/7 \). Also \(\gamma_x(1) = 3/7 \). Finally note that \(x - az = 1/14(8x_1 - 4x_2 - 6x_3, -3x_1 + 12x_2 - 3x_3, -6x_1 - 4x_2 + 8x_3) \); therefore \(\gamma_x(a) \leq 9/7 \) and equality is possible only for \(x \) of the form \(\pm (1, -1, -1), \pm (-1, 1, -1), \pm (-1, 1, 1) \). Since \(8a \geq 0 \) the choice reduces to \((-1, 1, 1), (1, -1, -1), (1, 1, -1) \) corresponding to the values \(1/4, 1/2, 1/4 \) for \(a \). We conclude that \(\gamma_x(a) < 9/7 \) if \(a \notin \{1/4, 1/2\} \). We have shown that the function \(\gamma_x \) cannot be concave.

References