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Chapter 1

Preface and general overview

The study of light-matter interaction processes at the atomic level has already a long tradition as
an area of Physics [1]. More than one hundred years ago (more precisely in 1886 and 1887), Hertz
realized that light could influence matter, observing that an electron discharge could be enhanced by
ultraviolet light. At the beginning of this century, Albert Einstein proposed the existence of photons,
and even raised the possibility that multiphoton processes might exist [2]. The first systematic studies
of these processes, by Maria Goppert-Mayer, date from 1931 [3]. In the sixties, with the advent of
laser sources, the external fields involved in the optical processes achieved higher intensities, and
n wide range of new possibilities was opened. As a very important example, in 1961 Franken et
al. [4] found that a ruby laser beam incident in crystalline quartz generates a very weak beam
of UV radiation, its frequency being twice that of the ruby laser. Almost simultaneously, Kaiser
and Garret reported a very similar experimental observation [5]. This was a clear sign that a
medium can respond nonlinearly to external laser fields. Since then, nonlinear optics has evolved
from a laboratory curiosity to a very important area in Physics, with applications in innumerous
lields of science and technology, as diverse as, for instance, laser fusion, biomedical instrumentation
or femtosecond spectroscopy [6]. Moreover, the development of laser sources made the study of
multiphoton ionization possible [7], which has attracted the attention of several groups in the last
three decades.

Up to one decade ago, all external fields involved either in these nonlinear interactions or in ioniza-
{ion processes were much weaker than the typical atomic binding forces. Thus, phenomena occurring
in the context of the interaction of atoms and radiation were well described by perturbation theory
in the external laser field. As a direct consequence, our whole physical intuition concerning such
problems has been strongly influenced by this “perturbative viewpoint”. Within the past decade,
liowever, laser sources with peak intensities of the order of 10" /em? have become experimentally
{easible. In this intensity regime, the external laser field is comparable to the binding energies of
(he electrons, and therefore it can no longer be treated as a perturbation [8]. The inadequacy of
{his theory has also been confirmed by several experimental observations concerning high-intensity
oplical phenomena, whose description require alternative theoretical methods 1. Therefore, this
intensity regime poses now a great challenge to both theoretical and experimental physicists, such
(hat this field of research constitutes one of the most active areas within atomic physics. Apart from
the understanding of the main effects like high-harmonic generation and ionization in strong laser
lields, one expects possible applications for instance to plasma physics [10] (in particular fusion),

"In fact, experiments have shown that standard perturbation the
10/ W /em?. This is possibly related to the fact that, for these int
lecome comparable to the photon energy, for typical frequencies used [9].

v already fails for fields of the order of
ties, the stark shifts of the atomic levels

7



8 CHAPTER 1. PREFACE AND GENERAL OVERVIEW

particle physics [11], XUV [12] and X-Ray sources [13].

Moreover, for laser intensities of the order of 1018W'/cm2, for typical frequencies, the kinetic
energy transferred to the atomic system by the field is of the order of the rest mass of the electron
[14)2. This means that the laser-atom interaction needs a relativistic treatment [11, 15].

This thesis addresses mainly two high-intensity effects: high-harmonic generation (Part I) and
atomic stabilization (Part II). These phenomena occur within the same physical framework, which
is discussed in detail in Chapter 2.

High-harmonic generation (HHG) is a high-intensity phenomenon in which matter responds
nonlinearly to an external laser field, emitting harmonics (i.e. coherent light whose frequency is a
multiple of the frequency of the external field) up to more than the 100-th order. This effect was
first observed independently in the late eighties, at the University of Illinois, Chicago [16], and in
Saclay [17], in experiments related to harmonic generation in gaseous media subject to external
fields of the order of 10!3 — 10'W/cm?. The emission spectra in these experiments presented very
particular features, which turned out to be independent of the atomic species in question and can
not be described by taking the field as a perturbation. In Chapter 3 these features, as well as our
“perturbative expectations”, are discussed in detail. Chapter 4 presents some of the widely used
theoretical approaches to the problem, which will be useful in the subsequent chapters of Part I.
These are concerned with a detailed investigation of the validity and limitations of such models, for
monochromatic (Chapters 5 and 6) and bichromatic (Chapter 7) driving fields.

Roughly speaking, atomic stabilization means that atomic bound states become resistant to
jonization in ultra-intense laser fields. This strong-field effect is a very controversial theoretical ob-
servation, and the first studies suggesting its existence reported strong deviations of ionization rates
from the predictions of Fermi’s golden rule [18, 19]. These rates started to decrease with the exter-
nal field strength, provided the field intensity and frequency are high enough. Alternatively, several
groups refer to a decrease in the ionization probability 3. The existence or not of this phenomenon is
not settled yet, since experimental measurements in the required intensity and frequency domain do
not exist!. In Part II, analytical methods for investigating the absence or existence of stabilization
with respect to the pulse shape are proposed and several examples are presented. In particular, in
Chapter 9 a new mathematical method in this context is discussed and applied to the Hydrogen
atom. In Chapter 10 , we investigate the connection between the absence or existence of this phe-
nomenon and the total classical momentum transfer and displacement caused on the electron by the
external field. Particularly in Sec. 10.2 this discussion is extended to a specific example, namely the
one-dimensional delta potential. The computations of Part II were performed in collaboration with
Dr. A. Fring and Prof. Dr. R. Schrader, of the theory group of the Free University Berlin.

In both parts, we concentrate on the single atom- field interaction. Effects such as the prop-
agation of the harmonics in the gaseous medium [22, 23] or the interaction between strong fields
and more complex systems, as for instance molecules [24, 25, 26], are not discussed in this work.
Furthermore, we consider the atom to have only a single electron, assumption known as the Single
Active Electron (SAE) approximation. Multielectronic effects such as electron-electron correlation
or double ionization have been addressed, for instance, in [27, 28].

Part 111 is somehow different from Parts I and II . Therein, a nonlinear optical process involving
much lower intensities is discussed: Second harmonic generation. For strictly monochromatic driving
fields, this phenomenon is well-understood and can be found in every textbook on nonlinear optics.
For short pulses, however, it is still an open problem to a very large extent (see e.g. [6, 29] for reviews

2Relativistic lasers already exist at the Lawrence Livermore Laboratory (USA), the University of Rochester (USA),
Laboratoire d’Optique Appliquée (Paris), the Lund Laser Center (Sweden) and the Max-Born-Institut (Berlin).

3In Sec. 8.2, we provide a pr » definition of stabilization, which is used throughout this work. One must note,
however, that a unified definition of this phenomenon, within the se ntific community, seems not yet to exist.

4Experimental evidence for some sort of stabilization is given in [20, 21}, but these experiments do not deal with
the “ultra-intense” regime for which the theoretical predictions are made.

on the subject). We present a general, nonstationary and analytical solution for the SHG problem,
valid for a fundamental incident wave of arbitrary pulse shape, provided both fundamental and
second harmonic waves are amplitude-modulated. This investigation is of interest in the context of
ihe present work, since, under experimental conditions, high-intensity fields are only achieved using
jhort-pulsed laser radiation. As a first approximation, high-intensity phenomena are investigated
using strictly periodic fields. For instance, in Part I we address HHG using monochromatic and
hichromatic driving fields, namely a high-intensity field of frequency w and its second harmonic.
Ilowever, in order to describe experiments quantitatively, one must use short pulses whose shapes
are well determined. For bichromatic w — 2w driving fields, for instance, realistic driving pulse shapes
can be obtained using the results of Part III. This part also differs from Parts I and II in the sense
{hat, instead of considering the response of a single atom to an external field, we look at the pulse
propagation in the medium.This work was a result of a collaboration with the group ‘Nichtklassische
Strahlung’ of the Humboldt University Berlin.

The appendices provide information of either complementary or technical nature, related to
the main parts of this thesis. Appendix A presents the definition of the atomic units, which are
used throughout. Harmonic generation and ionization within the weak-field regime are discussed in
Appendix B, with emphasis on which aspects cease to be valid for high intensities. In Appendix
(' an important formula concerning ionization rates within the context of static fields, which is
iseful in Part I, is briefly recalled. The subsequent appendices concern the numerical methods used
(Appendix D) and technical details of the derivations performed in Part I (Appendices E and F).
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Chapter 2

Physical framework

I'he object of our investigations is an atom in the presence of a sufficiently intense ! laser field, which
iy be described in the non-relativistic regime by the time-dependent Schroédinger equation in the
dipole approximation

O[¥(t)

LTl H () [¥(2) - (2.1)

We use atomic units throughout. The time-dependent external electric field will be treated classically
il is assumed to be linearly polarized (i.e. E(t) = E(t)é,, where &, denotes the unit vector in
(le x-direction), of the general form E(t) = Eof(t), with Ep being the field amplitude and f(t)
e arbitrary function which equals zero for t < 0 and ¢ > 7, such that 7 defines the pulse length.
epending on the context it is convenient to express the Hamiltonian in equation (2.1) in different
paupes. These gauge-equivalent Hamiltonians are connected by unitary transformations, which will
I recalled below and are extensively used in this thesis, particularly in Part IL-

2.1 Gauge equivalent Hamiltonians

Inking, Aj.4(t) to be a one parameter family of unitary operators, we may construct the gauge
ivalent Hamiltonian H; (t) from Hj (t) by the usual gauge transformation

Hilt) = 0y () A1) + A (O Hy (DAL (). (2.2)

g1 j i

(‘hoosing the most conventional gauge, the so-called length gauge, the Hamiltonian to describe the
ihove mentioned physical situation is the Stark Hamiltonian

HS(t) = H + V(F) +7 Et). (2.3)

I () is the atomic potential and HY = p?/2 denotes the Hamilton operator of the free particle. We
introduced here sub-and superscripts in order to keep track of the particular gauge we are in and to
ilentify a specific Hamiltonian, respectively. In our conventions p and  denote operators, whilst 7
wil 1 are elements in R3. Other commonly used Hamiltonians are the one in the velocity gauge

H(1) = 58— b)) +V () (24)

cal treatment of the laser field. For very weak fields, a quantum-
s for instance [30] for a discussion of physical effects related to the

“Hulliciently” refers to the validity of a clas
Srechinienl treatment is sometimes necessary (se
St mechanical nature of the external field).

11




12 CHAPTER 2. PHYSICAL FRAMEWORK

and the one in the Kramers-Henneberger (KH) frame [31]
Hy(t) = HY + V(F — c(t)és). (2.5)

These Hamiltonians may be obtained from each other by using

Apy(t) = 0%, (2:6)
Avegu(t) = et gic(t)ps )
Ko el = emia(t) = ib(t)x ic(t)ps (2.8)

in (2.2). p, is the component of the momentum operator in the x-direction. We have employed the
important quantities

1

bt) = / dsE(s), (2.9)

o] = /dsb(s), (2.10)

o

—

=
I

%/dsbz (s), (2.11)

0

which are the classical momentum transfer, the classical displacement and the classical energy trans-
fer, respectively. These quantities have a slightly different physical meaning from the vector potential
A(t), its indefinite integral F(t) and the indefinite integral [ dsA%(s), which are also used, within the
atom physics community?, in the transformations (2.6)-(2.8) and the Hamiltonians (2.4) and (2.5).
By taking definite integrals in (2.9)-(2.11) we are fixing initial conditions for the physical problem.
In other words, we impose that, at t=0, the momentum transfer, the classical displacement and the
energy transfer caused on the atom by the field are zero. This makes physically sense, since at t =0
no electric field is yet present. This condition is not always fulfilled by the vector potential A(t). For
instance, for an instantaneously switched-on monochromatic field, E(t) = Egpsinwt, A(0) = Eo/w.
In Part I, these details are not relevant to the physical discussion. First, this problem does not
appear since we take, in all computations (see, Chapter 4, specifically Sec.4.3), A(t) to be smoothly
switched-on, such that in this particular case b(t) = —A(t). Second?, the phenomenon we are
investigating is mainly originated by the periodic character of the field, instead of its turn on and
off. To emphasize this, we use (and refer to) A(t) in all Hamiltonians and gauge transformations
therein. In Part II, however, these distinctions will become important, since the total momentum
transfer and the classical displacement at the end of the pulse, b(7) and c¢(7), are the crucial
parameters for the description of the phenomenon we are going to discuss?. These parameters
are highly dependent on how the pulse is switched on and off. For several pulse shapes, it is not
only necessary to guarantee that no momentum transfer has occurred at ¢ = 0, but also that this
momentum transfer takes place continuously in time. In some particular cases, the use of A(t) may
artificially introduce “kicks” in the electron at the end of the turn-on, or extra time-dependent terms

2The notations presented here are, however, extensively used within Mathematical Physics, for the reasons discussed
in this chapter (sce also [32] ).

3For HHG involving ultrashort pulses, these parameters may have a larger influence. Studies on this subject have
been recently initiated in [33].

1The ¢l nsfer a(t) is not a crucial quantity since it enters all expressions only as a phase and will
therefore cancel in all relevant physical expressions.

al energy t
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i the classical displacement, and yield misleading results ®. Some artificial results obtained by these
dincontinuities are discussed, for instance, in [34], within the context of atomic stabilization.
I our considerations we will also need the Hamiltonians

HA®)=HY +V(¥), HEY(t)=H)+=xE() (2.12)

which describe an electron in the atomic potential or in the electric field, respectively. Of course
(liese Hamiltonians may also be transformed into the other gauges by (2.6)-(2.8). Notice that
HRY () = HP.

Another useful unitary transformation, related to the elimination of the purely time-dependent
term in the Hamiltonian (2.4), is given by

Agy(t) = e, (2.13)

Il transformation is used for instance in Sec. 4.3.

o mntnnee, for a trapezoidal (i.e. linearly switched on and off) electric field, there is a discontinuity for the
¢ potentind at the end of the switch-on ramp, in case the switch-on time differs from an integer number of half
Al e field. This discontinuity does not exist for b(t).
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Part I

High-harmonic generation
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Chapter 3

Introduction

Ilnrmonic generation owes its existence to the nonlinear response of the time-dependent atomic
dipole moment to an external laser field. The emission spectrum is proportional to the modulus
quare of the Fourier transform of this quantity, taken in its length (r(2))or acceleration form (7 (t)).
I'or weak fields, it is a standard and well-understood problem, well-explained by taking the electric
licld as a perturbation. However, in the experiments reported in [16, 17}, after the expected decrease
ol the low-order harmonics, the spectra presented a long frequency range with harmonics of roughly
(lie snme intensities, the so-called “platean”, followed by an abrupt decrease in the harmonic yield,
the so-called “cutoff”. Intuitively, one would expect a monotonic decrease in the harmonic intensity
with harmonic order. Surprisingly, a computation performed in [35] using perturbative methods
oncerning the field prediets a “mountain” (i.e. too strong harmonic yields) for the higher harmonics,
ilter this initial decrease. As an illustration, Fig. 3.1 shows measurements of the harmonic intensity
o function of the harmonic wavelength in the plateau and cutoff regions, obtained experimentally
[ Neon at the Max Born Institute [36], with a Ti:Sa laser system. The harmonic orders are also
minrked in the figure. One clearly sees an emission spectrum constituted of odd harmonics !, with a
lirp intensity decrease after H53.

Heveral experiments of the same type confirmed that these features are independent of the gaseous
pecies involved [37, 38, 39]. Detailed investigations showed the decrease of the cutoff energy for
liijsher frequencies and its increase with the intensity of the external field and the ionization potential?
ol the atomic species in question [38]. These results already suggested the existence of a simple,
cupheit and universal cutoff law. Several models, such as the three-step model [40, 41, 42], a driven
twolevel atom [43, 44, 45, 46], the fully numerical solution of the time-dependent Schrédinger
cuntion (TDSE) [47, 48, 49, 50], and the Floquet approach [51], were concerned not only with
(he obtention of this law, but with the description and understanding of the mechanisms involved
i high-harmonic generation altogether. Particularly the three first theoretical approaches will be
dincunsed in detail in Chapter 4.

I'he cutoff law which showed the best agreement with the experiments was first obtained em-
pineally in 1992 after detailed theoretical studies based on a TDSE computation [49], for several
one and three-dimensional model atoms, including rare gases, Hydrogen, and various short- and
Iy, range potentials. According to this law, the maximal harmonic photon energy is given by

leo| + 3.17Up. Here g is the field-free binding energy of the ground state and U, the
jwmderomotive energy of an electron in the laser field. This latter quantity is proportional to the

"o nopgas, due to symmetry considerations, even harmonics are absent. For more details we refer to [6] and
Appendix B
Il pases for which HHG experiments were most efficiently performed turned out to be rare gases, for which this
panntity i particularly high.

17
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Figure 3.1: Harmonic spectrum for Neon, for a Ti:Sa laser system with peak intensity of the order
of 101°W/cm? and wavelength of 795nm. The measurement was performed by G. Sommerer et. al.
at the Max Born Institute, Berlin.
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(riving laser field intensity (defined as the energy flux per unit area) and inversely proportional to the
quare of its frequency. The same cutoff law is not only recovered, but also explained by the three-
tep model, which was an extremely important step towards the understanding of high-harmonic

peneration. The original idea for this model was given in [40], and its full quantum-mechanical

development was achieved in the early nineties [41, 42]3. Since then, the three-step model has been
checked and confirmed by several other methods, like the TDSE [50] and time-frequency analysis
|2, 53, 54, 55, 56, 57], with good agreement both for the spectral and temporal profiles of the har-
monics. This is one of the reasons why the three-step model has become the current paradigm for
deseribing HHG. The other reason is its simplicity: until its development, the TDSE provided the
closest reproduction of the experimental results [47, 49]. However, for a realistic, three-dimensional
model-atom, the fully numerical solution is extremely demanding in terms of computer time. In

[net, in order to reproduce experiments accurately, one must take into account a gaussian beam

mteracting with an atomic ensemble. Therefore, the single-atom response computation must be

performed in each point of the gaseous sample, and these results must be propagated in the gaseous
inedium using Maxwell’s equations [22, 23]. Only the study of these collective effects already requires
considerable numerical efforts (in order to give an idea of the complexity of these computations we

ioler, for instance, to [58]).

In this work, only the single-atom response will be discussed. However, one should keep in mind
that propagation may strongly affect the harmonic signal. In order to achieve a good conversion
iliciency, the harmonics generated in each point of the medium must be phase-matched, i.e., they
it be in phase, such that the corresponding electric fields do not interfere destructively. Several

ollective effects may be detrimental to phase matching. For instance, the phase of the emitted
lintmonics, with respect to the driving field, is extremely intensity-dependent [59]. Since the incident
lor beam has a gaussian intensity distribution, harmonics emitted by atoms in different points of the
medinm have in principle different phases. Phase-matching is also influenced by the spatial change
| the peometrical phase of the laser beam, which may lead to a substantial spectral, temporal and
pmtinl broadening of the harmonic signal [60]. Moreover, ionization introduces dispersion in the
iedinm, through depletion (which introduces a time dependence in the atomic density) and the
ielense of free electrons. This dispersion influences the propagation velocity of the harmonics. Other
jopnpation-related effects are for instance the enhancement or suppression of groups of harmonics

il the shift of the cutoff towards lower energies. Furthermore, phase-matching effects in HHG can

i principle be used in the production of attosecond pulses (61, 62].

Iipzh-harmonic generation has also attracted a lot of attention in the last few years due to a

il range of possible applications. For instance, the fact that the plateau may extend to very high

liequencies ( see, e.g., [39], in which the observation of the 169th harmonic of an 800nm laser, i.e., 4.7
i, hns been reported; in average, nowadays frequencies up to the order of 7Tnm have been reached

Iy noveral groups [38] ) makes HHG very attractive as XUV and soft X-Ray sources. The advantage
[ liph-order harmonics over more traditional sources of XUV radiation? is that it preserves the
linincteristics of the driving laser field, i.e., of short pulse duration, coherent and narrowband.

I'urt 1 is outlined as follows: in Chapter 4, we discuss the three-step model (Sec. 4.1), the two-
ol ntom (Sec. 4.2), the TDSE (Sec. 4.3), and the time-frequency or wavelet analysis (Sec. 4.4),
providing the necessary theoretical and methodical background for understanding our results. In
1o to make this background complete, especially for Secs. 4.3 and 4.4, we discuss some aspects
Ll have so far received little or no attention in the current literature. The main results of Part

I wie presented in Chapters 5, 6 and 7. In Chapter 5, we perform a comparison between the TDSE

onphly speaking, the three-step model states that high-harmonic generation is mainly a consequence of the
wilinntion of an electron driven by the external laser field with its parent ion. A more precise definition will be
o See. 4.1

I cunples of “traditional XUV sources” are synchroton radiation [63], X-ray lasers [64], or the radiation from
i produced plasmas [10].
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and the three-step model using time-frequency analysis, with the objective of identifying the main
contribution to HHG within a field cycle. The influence of the excited bound states in harmonic
generation is discussed in Chapter 6, in which, among other studies, we compare the TDSE to a
two-level atom. Chapter 7 addresses HHG by bichromatic driving fields, with emphasis on the time
profile of harmonic generation (Sec. 7.1) and the investigation of an explicit cutoff law (Sec. 7.2).
These studies required a high degree of numerical analysis, with the development of computer codes
for each theoretical approach of Chapter 4. The numerical methods used are discussed in Appendix
D.

Chapter 4

Theoretical approaches

1.1 Three-step model

Il most successful model for describing HHG, the so-called “three-step model” is based on a very
iniple idea: As the “first step”, the atom ionizes through tunneling or multiphoton ionization, at the
(1t time to. The newly-freed electron is then accelerated by the external field (the “second step”)
i, depending on its time of ionization, may be driven back towards the ionic core to recombine
vith the ground state at the return time ¢, generating harmonics in this process (the “third step”).
During the electron’s excursion in the continuum, the influence of the potential is neglected. This is
onsonable for intense laser fields and should clearly work better for shorter-range potentials. Thus,
(e atom acts simply as a source for the electrons, for the first “step” and as a nonlinear interaction
{on the third “step”, while the atomic internal structure, notably its excited states, play no important
(ol in the process. The cutoff in the harmonic spectra corresponds to the maximal kinetic energy
ol the electron upon return.
‘The ionization mechanism is determined by the important parameter

15()'
e 4.1
v 2Up7 ( )

connecting the field-free ground state energy eo! to the ponderomotive energy Uy( given by the
(ime average of the square of the vector potential), whose origin is related to the work of Keldysh
concerning ionization processes in strong fields [65]. The Keldysh parameter separates regions of
(ifferent physical behavior: for v < 1, tunneling takes place, whereas for v > 1, multiphoton
tion occurs. For typical field frequencies and intensities related to the observation of HHG,
(le first step is predominantly a tunneling process. Intuitively, this also explains part of the success
ol the three-step model for describing experimental results, since, for v > 1, atom-laser resonances
(nnd therefore the atomic internal structure) should play a relatively important role. In a tunneling
process, the external field considerably distorts the atomic potential, such that the electron, in order
{0 leave the atom, must tunnel through the resulting time-dependent potential barrier, given by

Vess = V(r) — 7 E(2). (42)

[y

[sing this physical picture (i.e., of a distorted effective potential), one can also interpret the Keldysh
pirameter as being roughly the ratio of the tunneling time (i.e., the width of the barrier divided by

IStrictly speaking, v may be defined with respect to any field-free bound-state, of energy en. For our purpose, we
ke the ground state.

21
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the electron velocity) to the period of the driving field. If the field frequency is very low (7 < 1), there
is enough time for the the electron to tunnel through the barrier, such that, to good approximation,
the field is considered as being static. In the opposite regime (y > 1) the atom is driven back
and forth by the field too rapidly for tunneling to occur. Thus, ionization takes only place due
to multiphoton processes. Strictly speaking, in most cases an “intermediate” behavior is observed,
which, depending on v, presents features which are either characteristic of tunneling or multiphoton
ionization. The larger or smaller v, the more “tunneling-” or “multiphoton-like” the ionization

process.
Figures 4.1 and 4.2 present schematic illustrations of the three-step model. In Fig. 4.1, we con-

centrate on the three-steps, i.e., ionization (S)), propagation (S2) and recombination (S3), whereas
in Fig. 4.2 we emphasize the tunneling process through the effective potential barrier, as well as the
relation between the kinetic energy of the electron and the emitted harmonic frequencies.

Laser Polarization Direction

Atom

E()

Time

Figure 4.1: Schematic illustration of the three-step model. The electron, given by the wave packet
in the figure, leaves the atom at to, when the atom is strongly distorted by the field, being driven
back at ¢;, emitting harmonics. The first, second and third steps are given, respectively, by 51, Sa
and S3.

Another important point concerning the multiphoton or tunneling regime is related to the in-
jection of the electron in the continuum: The emission rate for an electronic wave packet in the
tunneling regime (y < 1) is proportional to exp [—C/|E (t)|] [66], where the constant C' depends on
the potential barrier in question. In the multiphoton regime, the emission of the electron in the

continuum is equally probable for all times.
In the next subsections, the semiclassical [40] (also known as “simpleman’s model”) and quantum

mechanical approaches [41, 42] to this model will be discussed.

4.1.1 Semiclassical description and graphical method

The “simpleman’s model” mixes quantum-mechanical effects, such as tunneling or multiphoton
ionization and recombination (the first and third “steps”), with the propagation of a classical particle
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I'ipire 4.2: One-dimensional illustration of the tunneling and recombination processes in the three-
(p model. The undistorted and distorted potential are given, respectively, by the dashed and solid
[l The frequency of the harmonic photon corresponds to sum of the kinetic energy of the electron
il the energy gained by the recombination, i.e., |eo|, and is denoted by Q5. The upgoing arrows
(oprosent the harmonic generation process, and the curve connecting the “steps” S; and S3 is an
wicilinry construction, illustrating the electron trajectory in the continuum.

i the time-dependent continuum. Already within this framework, some of the most important
[atures concerning HHG, like the cutoff law, are already recovered, as shown below.
1o us consider a classical electron, assumed to be released in a time-dependent laser field at
I, with zero velocity. Since the field is taken to be linearly polarized, all the ensuing motion
tulen place in its direction, to which we shall mainly refer. Classically, the electron propagates in
he continuum according to the equation of motion

i (t) = —dV () /do + E(t). (4.3)

Lo the intensities involved, the first term on the right-hand side of (4.3) can be neglected. Being
(et just to the laser field, it returns at t = ¢ to the site of its release (the position of its
wont ion, at @ = 0) recombining with the potential and emitting harmonics. In the whole process,
wonieal momentum is conserved, so that the electron velocity and its coordinate x as functions of
e nre piven respectively by

v (t) = A(£) — Ato) (4.4)
il
a(t) = (¢~ to) Alto) — / ds A(s), 5)

i1 A (1) being the vector potential. At a certain time t the electron will therefore have the kinetic
Wiy Fan (%) = %[A t)— A(to)]z, which corresponds to a harmonic photon with frequency

[ "ol I Eyin (t1,t0). A pair (t1,t) for which Eun (£1,%0) is extremal will correspond to a cutoff
foquency. These emission and return times can be found by means of a simple graphical method,
Il has been successfully used in the context of high-harmonic generation and above-threshold
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ionization” with bichromatic fields [67, 57 (see also Chapter 7). The advantage of the graphical
method is that it allows to qualitatively understand, check, and predict such results on the back of
an envelope, for arbitrary field configurations, provided only that the polarization is linear.

The return condition z(¢1) = 0 yields

F(t) = F(to) + (t1 — to) F'(to), (4.6)

t
with F(t) = [dsA(s) and F’ = dF/dt. This means that, for a given emission time ¢, the return
time t; (t1 >19) is determined by the intersection of F(t) with its tangent at ¢ =tq for ¢ >t,. For
the cutoff, using the condition 9By, (t1,%0) /Oto = 0, where ¢; and ¢ are connected by the return
condition (4.6), one can write

Alto) = A(t1) — (o —t1) E(t1), (4.7)

which, this time, asks to find the intersection of A(t) with its tangent at ¢ = ¢; for ¢ < ¢;. Equations
(4.6) and (4.7) determine pairs (t3,%p) of emission and return times which yield extremal kinetic
energies upon return.There is always an infinity of solutions to equations (4.7) and (4.6). The
various tg and ¢; depend on the time-dependence of the electric field.

For a monochromatic field of amplitude Fy and frequency w, i.e.,

E(t) = Eysin(wt), (4.8)

this method yields one pair of maximal-energy emission and return times, ¢y ~ 0.37 and ¢; ~ 0.95T,
which corresponds to the well-known cutoff energy

Emax = |€0] + 3.17U,. (4.9)

The ponderomotive energy U, is defined as the time-average of the square of the vector poten-
tial within a field cycle T' = 27/w, and, for the specific case of a monochromatic field given by
U, = E23/4w®. A quick inspection of the cutoff expression (4.9) confirms all results observed ex-
perimentally, i.e., that the plateau should reach higher harmonic orders for higher intensities and
ionization potentials and lower frequencies. An illustration of the graphical method concerning the
cutoff en,ax is presented in Fig. 4.3(a). In part (b) of the same figure, we show how this method can
be extended to bichromatic fields, finding a cutoff trajectory for a driving field which is a superpo-
sition of (4.8) with its second harmonic. The two straight lines in both parts satisfy the conditions
of equations (4.7) and (4.6), respectively, and thus determine a pair of emission and return times.

Equations (4.6) and (4.7) can also be solved analytically in the specific case of a monochromatic
field using an adequate change of variables [42]. Therein, another simple argument concerning the
cutoff law is presented: the time average of Ei;, (t,to) for a monochromatic field is given by

(Buin (t,%0)) = Up (1 + 2cos? L:Jt(]) . (4.10)

Clearly, its maximum as a function of to, 3U,, roughly corresponds to the harmonic photon given
by (4.9).

Apart from the well-known cutoff energy ey, additional cutoffs which correspond to longer
excursion times of the electron in the continuum also exist. With the restriction ¢ —ty < 2T, these
cutoffs are at €1 max = |eo| + 1.54U, and e2max = |eo| + 2.4U,. For the former cutoff, ionization
and recombination take place at, respectively, tg ~ 0.3T and ¢; ~ 1.5, whereas for €9 max the free-
electron “born” at the same time returns at ¢; o~ 27". These cutoffs do not contribute significantly to
harmonic generation, due to the spreading of the electronic wave packet. This effect is of quantum-
mechanical nature and will be discussed in more detail in the following subsection.

2“Above-threshold ionization” is a strong-field phenomenon in which an atom absorbs more photons that are
actually ne ary for it to ionize; see e.g. [8] for a review on the subject.
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ivure 1.3: Graphical method for a monochromatic field of the form (4.8)(Part (a)), with Ey =

(1 ., and a bichromatic field of the form E(t) = Ep(sin(wt)-+sin(2wt)), with Ey = 0.04 a.u.(Part

l'or both fields, w = 0.05 a.u. The thin straight lines in both parts yield the return and the

(ol conditions, given respectively by Eq. (4.6) and (4.7). The emission and return times, given by

pectively to and #; in the figure, yield Egn(t1,to) = 3.17Up(Part (a)) and Eyin(t1,20) = 4.86U,
141 (1h)). One should note that wF(t) and E(t)/w overlap for the monochromatic case.
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4.1.2 Quantum mechanical description

The semiclassical description explains very well the cutoff law and the emission and return times
for an electron in a field, which, within the three-step model framework, correspond to the main
contributions to HHG within a field cycle T. However, it does not take into account important
quantum-mechanical effects, such as the quantum diffusion of the electronic wave packet and the
interference of two or more semiclassical trajectories for the returning electron. Throughout this
thesis, it will become clear that such effects play a very important role in high-harmonic generation.
Their study requires a fully quantum-mechanical three-step model. Two closely related theoretical
approaches exist, both of them keeping the physical transparency of the “simpleman’s model” and
being of relatively easy numerical implementation: The model by Becker et. al. [42], which calculates
HHG for a zero-range potential atom-model, and the approach by Lewenstein et. al. [41], which
considers an arbitrary potential, but takes into account only the ground state and the continuum,
using a series of approximations. Both models can be solved analytically up to a quadrature: In
the former case, due to the mathematical properties of the delta potential, and in the latter case,
due to a saddle-point approximation, through which most integrations are performed. A detailed
discussion of their differences and similarities can be found in [68]. Here, the approach of Lewenstein
et.al.[41] will be briefly discussed.

We start from the time-dependent Schrodinger equation (2.1) for a one-electron atom subject to
a linearly polarized electric field in the length gauge (H = H, [S ), considering the following approxi-
mations:

1. The contribution of all excited bound states to the evolution of the system is negligible (we
consider a single-bound-state atom).

2. In the continuum, the potential V'(r) has practically no effect on the motion of the electronic
wave packet.

3. The depletion of the ground state can be neglected.

4. Contributions to HHG from transitions between continuum states (the so-called “continuum-
continuum transitions”) can be neglected®.

Assumption 1 is expected to be reasonable for the tunneling ionization regime. Its validity and
the role of the atomic excited bound states in HHG will be discussed in more detail in Chapter 6.
Assumption 2 clearly holds for short-range potentials and is also reasonable for hydrogenlike atoms
in case U, > |eg|- Assumption 3 is valid provided it takes many cycles of the driving field for
the atomic ground state to ionize completely, which is the case for typical field strengths used in
HHG experiments. Assumption 4 has been extensively investigated in [68] and has proven to hold

reasonably well. With assumptions 1 and 2, the time-dependent wave function can be written as a

superposition of the ground-state |0) and continuum states |7),

I (1)) = ool <Co(t) 10y + / G, (7,1) m) , (4.11)

where the ground-state and continuum amplitudes are given respectively by Co(t) ~ 1 (assumption
3) and C,(7,t). For the amplitude C,(¥,t), the Schrédinger equation can be solved analytically and

3One of the main differences between the models [41] and [42] concerns the neglect of these transitions. Concerning
the physical predictions of [41] and [42], discrepancies in the behavior of plateau harmonics with the ellipticity of the
driving field were observed [68].

11 I'HREE-STEP MODEL s 27

folid

(1) = / dboE(to)dy(5+ A(t) — A(to)) exp { —i / di” [(m ff(t)—/i(to))2/z+|eof] . (412)

0 to

i thin derivation, also assumption 4 was taken into account. Equation (4.12) shows that all the
I pendence on the potential lies in the matrix element d () = (7] x|0). The choice of this matrix
loiient may affect the harmonic spectra quantitatively [41], as well as the time profile of some
(o of harmonics (see e.g. Chapter 5 of this thesis and [55]). In this work, we will adopt a 1D

(e ntep model, for which 2(t), written in terms of the canonical momentum p = v + A(%), is given

() = / dto / dpE(to)da (p — A (t0)) &% (p — A (1)) exp[—iS (bt o)) +c.c,  (413)
0

il the time-dependent action

p ANy
S (p,t,tg) = /dt”(p;AQ(t—)L + leol - (4.14)

to

Iuation (4.13) has a simple physical interpretation: at ¢ = tg, the electron makes a bound-
At transition with probability amplitude E(fo)ds (p — A (to))- It is then propagated from
10, with the time-dependent phase exp[—iS(p,t,to)] and recombines with the ground state at
il the probability amplitude d% (p — A(t)). The oscillatory behavior of the time-dependent
lle moment is mainly determined by S(p, t,%p), and the major contribution to x (¢) comes from
i+ stntionary points. These points correspond to

V,5 (p,t,to) = (£) — 7 (to) = 0. (4.15)

I"liysically, the condition (4.15) means that the main contributions to HHG come from an electron
(ol a1, returning to the origin at ¢, which is exactly the rescattering condition of Sec. 4.1.1.
{1 11 not a coincidence: in classical mechanics, the equations of motion are determined by the
wilition that the classical action be extremal [69]. With respect to the momentum p, there is a
(i point sy which satisfies this condition. One can perform the integral in momentum space in
[ 1) very casily expanding the action around pg;:

1 5028 (4.16)
S(p,t,to) 2 S(psts t:t0) + 5P — Pst) Fr lp=pac - -

i1 momentum and time-dependent dipole moment at the stationary point are given respectively

t
e - 1t /A(t")dt” (4.17)
—to
to

" 172 L
x(t) = limd <;+—l/m> O/dt do (p— Alto)) d (p — A (D), (4.18)
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where the constant € was introduced such that (4.18) does not diverge for ¢ = #;. The term
multiplying the integral on the right hand side of (4.18) corresponds to the spreading of the electron
wave packet. From its form, it is obvious that the larger the time difference between emission and
return times, the smaller the contributions to HHG. For a 3D model [41], the saddle point integration
yields an exponent 3/2 instead of 1/2 in (4.18). Physically, this difference is related to the transverse
spreading of the wave packet. For the one-dimensional model, the higher-order returns to the origin,
with longer excursion times for the electron, tend to be enhanced in probability. Consequently, their
contributions to HHG are more pronounced in this case.

Equation (4.18) was calculated imposing an extremal condition in S (p, ¢, {o)only with respect to
p. According to the principle of the minimal action, a classical electron would follow a trajectory
satisfying (4.15), and the additional conditions

dS (p,t,to)
EBLH) o, (4.19)
a8 (p,t,te)
=4 (4.20)

which are fulfilled by several pairs (t,tp). Thus, equation (4.18) for the time-dependent dipole
moment in fact comprises several classical trajectories. More details on the saddle point method
can be found in [41]. As an illustration, in Fig. 4.4 we present the emission and return times (t1,to)
for a classical electron in a monochromatic external field as a function of its kinetic energy upon
return, By, (t1,%0) - Fkin is plotted on the horizontal axis in units of the ponderomotive potential,
and the associated values of the emission and return times ¢y and ¢; are given in the lower and the
upper part of the figure, respectively. The diagram was obtained from the numerical integration of
the classical equation of motion (4.3) using a fourth-order Runge-Kutta method. The influence of
the binding potential was neglected in this calculation. Each triplet (to, t1, Exin(t1,%0)) is associated
with a classical trajectory for the returning electron. A similar diagram is also presented in [54]. The
extremal energies, marked with arrows, correspond to the cutoff trajectories emax = |0 + 3.17Up,
€1max = |€0| + 1.54U, and €3 max = |eo| + 2.4U,. Each of these maximal-energy trajectories splits
into two, corresponding to a shorter and a longer excursion time for the electron in the continuum.
Thus, for a given Fiin (t1,%0), there may be many possible trajectories for the returning electron.
Quantum-mechanically, the probability amplitudes related to the electron following each of these
trajectories interfere. For the most energetic cutoff, the single pair (¢1, %) mentioned in Sec. 4.1.1 can
be clearly seen. The shorter and longer excursion times resulting from the splitting of the maximal-
energy trajectory emax, denoted by respectively 7; and 79, are also shown in the figure, marked by
thick arrows.The corresponding two return times have recently been observed in experiments [70];
see also Ref. [23, 59, 60].
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1o 14: Emission and return times for an electron in a monochromatic field, as functions of

I inetic energy upon return. The upper and lower parts of the figure yield respectively the

i nnd emission times, given in field cycles. The kinetic energy Eiin(t1,%0) is given in terms

I ponderomotive energy. The emission and return times corresponding to the cutoff energies

e and €1 maxare marked with thin arrows. The splitting of the emission and return times

. the most energetic cutoff into a shorter (1 —to = 71) and longer (t; —to = T9) excursion times
liown with thick dashed arrows. All trajectories are periodic within T'/2.
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Energies (a.u.)
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Figure 4.5: Periodic level crossings for a two-level atom in a monochromatic field E(t) =
0.8sin(0.05t).The dressed states [0p),|1p) and the avoided crossings are shown respectively by
the solid and dotted lines. The maximal harmonic energy, which represents the cutoff in this model,
is marked with a thick arrow.

4.2 Two-level atom

Harmonic spectra can also be described within a completely different physical picture, namely a
driven two-level atom [43, 44], for which bound-continuum transitions do not exist. This model
also yields a plateau and a cutoff for the harmonic spectra. However, the plateau comprises a much
narrower frequency range in this case than in the three-step model, the cutoff being proportional
to the field amplitude Fy. Recently, the introduction of ionization rates within this model resulted
in a considerable extension of this plateau towards higher energies [44]. Within the two-level atom
picture, the plateau and cutoff of the harmonic spectra are related to periodic level crossings of the
time-dependent dressed states, which occur at every half cycle of the driving field, close to minimal
field. An illustration is given in Fig. 4.5 for a monochromatic driving field of the form (4.8). One
clearly sees that the time-dependent dressed states follow the field adiabatically, except close to the
avoided crossing. This originates a highly nonlinear behavior in the time-dependent atomic dipole
moment for this temporal region.We refer to [46] for a detailed discussion of this mechanism.

‘We shall address now the driven two-level atom case in detail, with and without ionization. A
comparison between this model and results from a TDSE computation will be presented in Chapter
6. For a “closed” (non-ionizing) two-level atom in an external field E(t), the time-dependent wave
function and Hamiltonian are given by, respectively [71],

19 (£)) = Co(£)0) + C1(2) |1) (4.21)

and

H=H,4+ Hj. (422)
The amplitudes Cy,(t), n = 0,1 are Cp(t) = (n|1)(t)). The indices 0 and 1 relate to respectively the
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round and excited state. The atomic Hamiltonian is
Ha=[0)eo (0] +[1)e1 (1] , (4.23)

ith +, the field-free energies, such that H4 |n) = &, |n). The atom-field interaction is represented

Hp = —a10 B(t) (J1{0] + 0){1]), (4.24)

1 being the matrix element (1]x]0). The dipole moment and acceleration operators are given
capectively by

xrr = 210 (1) (0] +|0) (1]) (4.25)

xrp= —wigxrr, + 2wio T3 E() (10) (0] - [1) (1)), (4.26)

ith the energy difference wip = €1 — €o. The amplitudes C,(¢) are the solution of the following
tem of coupled differential equations

#(&) = (Bam 270)(&), '

Iitioducing now ionization [44, 72], we choose an atom with a ground state in the tunneling ionization
opime and the excited state in the over-the-barrier ionization regime, with time-dependent jonization
aten respectively vo(t) and 4 (t). The ground-state ionization rate was chosen as the quasi-static
tunneling formula [66] for the one-dimensional case

Yo(t) = D1 exp(=D2/|E@®))), (4.28)

lire Dy and Dy are positive real parameters (see Appendix C for the derivation of this formula).
I the excited state we took
7(8) = D3 exp(~Da/|E()), (4.29)
lire Dy and Dy are adapted as discussed in Sec. 6.2.1. The equations (4.27) will now be solved
it1 the energies e, replaced by the complex quantities €, = £, —%7,(t)/2. The energies of the time-
pendent dressed states are obtained by diagonalizing the Hamiltonian (4.22). The instantaneous
rnnation frequency between these dressed levels is given by

worp(t) = {leo — &1 — i(vo(t) — 1))/ + dzdo E(1)*} /2. (4.30)

i e cutoff frequency is the maximal value of Relwgp(t)]. For very high intensities, this cutoff is
jioportional to the Rabi frequency Qg = 2z10Ep. The energy width introduced by ionization in
piinciple can cause an increase in the cutoff frequency. Furthermore, harmonics can be generated
I (he nonlinearity introduced by the functional forms of v, and ,.

i.3  Fully numerical solution of the time-dependent Schriédinger
equation

\ third and widely used approach consists in solving the time-dependent Schrodinger equation (2.1)
filly numerically (TDSE). Within the context of atoms in strong laser fields, this method was first
il in the late seventies [47]. Since then, it has been applied to a wide range of strong-field optical
Jcnomena, including high-harmonic generation [48, 49, 50]. The main advantage of the TDSE is
linl 1l encompasses ell time-dependent physical effects arising from the time-propagation of the
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Schrodinger Hamiltonian. Moreover, it can in principle be applied to an external field and binding
potentials of arbitrary shape. Its main drawback is of practical nature: For quantitatively describing
realistic systems, at least a two-dimensional computation must be performed?. This already involves
considerable numerical efforts, and is extremely time-consuming. Furthermore, the multitude of
coupled physical effects involved may sometimes be detrimental to the physical interpretation of a
particular phenomenon.

Particularly concerning high-harmonic generation, this approach takes into account not only the
physical mechanisms discussed in Sec. 4.1 and 4.2, but also effects like bound-state depletions,
ionization and continuum-continuum transitions. Therefore, it will be taken as the full, “bench-
mark” solution in the subsequent Chapters of Part I, against which all other approaches will be
tested. We solve the Schrodinger equation for a one-dimensional model atom in a time-dependent
external laser field. The one-dimensional case is particularly interesting and widely used for model-
ing harmonic generation in linear polarization [50], since it requires much less computer time than
three-dimensional computations, being therefore amenable to an expedient, yet accurate numerical
solution.

We consider an “atom” in a box of length L, with arbitrary potential V (). In all computations
presented in this thesis involving the TDSE, we take as initial condition the atom in the ground
state, i.e., [t (t = 0)) = |0). The initial atomic wave function is calculated fully numerically using
the inverse iteration method. The time-propagation is performed in the velocity gauge, using the
standard finite-difference Crank-Nicolson method. The time-dependent Hamiltonian is

p?

H=5 —pag+v),

(4.31)
obtained from the velocity-gauge Hamiltonian H(t) of Sec. 2.1 through the unitary transformation
(2.13), As—» = exp[—i [ A%(t)dt]. In order to minimize numerical transient effects, the vector
potential A(t) must be switched on smoothly. An important technical detail concerns the reflection
of the time-dependent wave function |¢ (¢)) on two hard walls at the edges of the box, artificially
introduced by its finite size. These reflections may lead to unphysical effects, as for instance spurious
high-frequency harmonics, and therefore must be minimized. This can be done by:

1. Choosing the box several times larger than the classical excursion length of the electron wave
packet in the continuum, defined as the time average ag = (F(t)), F(t) defined in Sec. 4.1.1.
This way we assure that just very little of the propagating wave packet will reach the boundary.

2. Introducing a function close to the boundaries, which “absorbs” part of the reflecting wave
function. In our calculation, we multiply | (t)) by a mask function f(z), introduced from an
arbitrary point x = xo until x = L, such that f(+L) =0 and f(+zo) = 1. In all simulations
presented in Part I, we take

1, |"d < t'xo‘

He)= { cos? [% (ﬁf)] Vx> zo| 7

which, for our parameters, has proven to yield the best results.

Specifically for calculating harmonic spectra, the above-stated conditions sometimes are not
enough to prevent spurious effects. In this case, one must additionally take the dipole acceleration

4For linearly and circularly polarized light, this is possible using symmetry properties of the electric field and
atomic potential. For elliptically polarized light, however, the whole 3D problem must be solved.

i
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()(1)] % |1p(t)) instead of the dipole length @(t) = ((t)| x| (t)). The dipole acceleration

pwinton is caleulated using Ehrenfest’s theorem (73, 74], and is given by

iy

iy

i

= J”;i") + E(f).

(4.33)

(untion above already provides some information about the high harmonics: the second term

(1 ripht-hand side of (4.33) only contributes to the fundamental, since it oscillates with the field
ioncy. The high harmonics are originated by the quantum average of the operator —dV (x) /da.

i the dipole length, TDSE computations yield the appearance of a large background and

o high-frequency harmonics, as intense as those of the plateau, provided there is appreciable

ition. A simple argument concerning the appearance of this background, which we will briefly

Al was presented in [73]: Let us consider a time-dependent dipole moment, induced by an
il field switched on and off at respectively ¢ = 0 and ¢ = 7. The Fourier transform of the

vr(0)

Tt

lenpth and acceleration are related by
#(t) exp[—iwt] dt = [2(T) — twz(7)] exp|—iwT] — wz/m(t) exp|—iwt] dt,
0 0

(4.34)

#(0) = 0. The first term on the right hand side of (4.34) is responsible for the background
| 'T'his term is particularly large in case there is significant ionization, since this implies large
il (7). Otherwise, it is negligible and the power spectra of the dipole length and acceleration

(uivalent, apart from a factor w*. A detailed investigation of this background based on the TDSE

ippested that it might be related to the influence of excited bound states on HHG [74].
li peneration of spurious harmonics for the x(t) spectra is the consequence of the reflection
fime-dependent wave function at the boundaries. Their absence for the power spectra of
o1y casily explained: The dipole acceleration weights the time-dependent wave function in

I w wiy that the contributions of (1(t)| ¥ li(¢)) from points far away from the atomic core are

ile For instance, for a one-dimensional soft Coulormb potential V(z) = —a/+/(z/p)? + 1,

i1 extensively used in the literature, the dipole acceleration according to (4.33) is given by

X

(4.35)

(O] x [()) ~ ()] 37 [P(0) + E@®).

[/8)* +1]

liorl range potentials, the corresponding matrix element decays even more rapidly with the

sehinnte x

Time-frequency analysis

i determine in which frequency an atom responds to an external laser field by taking the

Il nquared of the Fourier transform of the time-dependent induced atomic dipole. However,

A ulnting the power spectra, all the temporal information about harmonic generation is lost.
i1 lentures of harmonic generation, which yield considerable information on its physical mech-
ich as the semiclassical return times in the three-step model [54], or the time-dependent
(nings in the two-level atom [46, 56|, can only be revealed by a time-frequency or wavelet

i (heoretical method has been first proposed by Gabor in 1946 [75] and has been extended and
tulivedd by innumerous groups in the subsequent decades. Since then, it has been used in several
[ onearch, as diverse as for instance image processing, acoustical phenomena, or medicine

I"nrticularly with respect to high-intensity optical phenomena, several groups {52, 53, 55, 56,
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57] have employed time-resolved spectra for analyzing the time-dependence of harmonic generation.
These spectra are obtained by performing a Fourier transform with a temporally restricted envelope®,
defined, for an arbitrary function f(t), as
+o0
W(t,Q,0) = / dt’ f(t') W, t',Q,0).

—00

(4.36)

In (4.36), o and © denote respectively the time width and the center of the window function. These
parameters, as well as the shape of the window function W (¢,t,,0) must be chosen according
to the problem at hand [77]. Clearly, by introducing time resolution, as a direct consequence of
the uncertainty principle® we lose frequency information. The frequency width o, of the window
function can be found by performing its Fourier transform, and is related to o by
0,0 >1/2. (4.37)
In the subsequent chapters of this thesis, we perform a wavelet transform with a Gaussian window
function (Gabor transform), which is given by
Wel(t, t',Q,0) = exp[—(t —t')?/0?] exp[-iQ'] (4.38)
of width o and centered at a harmonic frequency 2 = Nw. For this choice of window function, the
temporal width o corresponds to a frequency bandwidth o, = 2 /o. The usual Fourier transform,
in which all temporal information is lost, is obtained for o — oco.

We choose the time width of the window function narrower than a period of the external laser
field. The center of the window function is then “moved” in time such that at least one period of
the laser field is taken into account. The Gabor yield, given by

Gy = IW(t,2,0)%, (4.39)
is then calculated for each timestep within this interval. In this way the contribution from a particular
group of harmonics to the emitted radiation can be determined as peaks in the time-dependent
spectra. This procedure differs slightly from the time-frequency analysis performed by most groups
[52, 53], which take this width larger than the laser period T"in order to investigate the time profile
of a single specific harmonic.

In principle, the harmonic generation process is almost periodic, with the period of the driving
laser frequency, or with half this period, depending on the field in question’. For instance, within
the three-step model framework, for a monochromatic field, one expects, in the cutoff region, a single
peak at t; = 0.95 T mod T/2 . At the end of the plateau, this peak splits into two, as discussed
in Sec. (4.1.2), corresponding to a shorter and longer return times. Depending on the time width
o, these substructures may or may not be resolved. This is illustrated in Fig. 4.6, where the return
times predicted by the three-step model as functions of Eyin (t1,to) are shown, together with the
time-frequency regions delimited by the generic window functions Wy and Wy. The window function
W, for instance, can not resolve the splitting of the cutoff return times, but includes harmonics
only in the cutoff region. Only in regions where the two return times are further apart, i.e., for

5Some authors adopt a more restrictive definition of wavelet according to the time resolution of the window function,
which must be variable in order to contain a constant number of oscillations {76].

6This principle states that the energy spread of a function and its Fourier transform can not be simultancously
arbitrarily small.

7For instance, for monochromatic fields and bichromatic fields consisting of a monochromatic driving wave and its
(2n+1)-th harmonic, this periodicity is reduced to T'/2.
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luie 1.6: Areas defined in the time-frequency plane by the window functions W, and Wha, together

(1 the returning times ¢; as functions of the kinetic energy Fiin (t1,t0) predicted by the three-step
lol lor an electron in a monochromatic field. We give ¢; in terms of the field cycle T, such that
' and Eyin(t1,t0) in terms of the ponderomotive energy. Wy is shown in the cutoff and high

v [requency region.

i harmonic frequencies, this would be possible. Another possibility is using W2, but then a
ol hroader frequency range is taken into account. In fact, for this latter window function, one
mnch complex pattern for the time-resolved spectra than the two return times seen in Fig.
Il is clear, since the semiclassical trajectories corresponding to this whole frequency region
nply interfere. Moreover, longer return times may also contribute to the Gabor yield. However,
(o wave packet spreading, the peaks corresponding to these trajectories are not expected to be
ninent in the time profile.
[ the results that follow, sometimes the wavelet yield is only approzimately periodic in T or T'/2.
i related to effects, such as, for instance, turn-on transients and ionization. This is the case
the [ully numerical solution of the Schrodinger equation and, in Subsec. 6.2.1, for the two-level
with lonization.
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('hapter 5

(‘omparison between the TDSE
and the three-step model

iling to the three-step model, the main contributions to HHG within a field cycle correspond
i cemiclagsical return times of an electron to its parent ion. Concerning the plateau and cutoff
winen, this model yields clear predictions related to the time profile of HHG:

« A the cutoffy a single return time for the recombining electron is present.

« Al the end of the plateau, this return time splits into two, corresponding to a longer and a
liorter excursion time for the electron in the continuum, denoted respectively by 72 and 71.

= I the plateau as a whole, there are several possible trajectories for the returning electron,
it the ones related to 79 and 79 are dominant. As the harmonic energy decreases, these
roturn times get further and further apart.

oo features can be clearly seen in Figs. 4.4 and 4.6, and were investigated in detail within
(e step physical picture using a time-frequency analysis by Antoine et al. [54]. Clearly, if
e stated temporal behavior can be extracted from both the three-step model and the fully
wrionl solution of the Schrodinger equation, the same physical mechanisms are responsible for
HHC i both models. This comparison, using the Gabor transform discussed in Sec. 4.4, is the
concern of this Chapter (see also [55]). In this investigation, we used, as numerical methods,
1l Nicolson scheme and the six-point integration, both discussed in Appendix D.
o tent the quantum-mechanical three step inodel against a one-dimensional TDSE computation,
cidering a monochromatic field (4.8) of angular frequency w = 0.05 and amplitude Ey = 0.08.
{1 conesponding vector potential is turned on smoothly within two cycles of the driving field. For
ot models, we caleulate the wavelet yield of the dipole acceleration Z(t).
I the fully numerical time-dependent computation, we consider a short-range potential of the

V(z) = —0.76 exp(—z/1.76), (5.1)

o anple field-free bound state, denoted |0), at energy g = —0.401. Thus, we exclude any
e mfluence of the excited bound states in the process, concentrating on the ground-state-
St transitions, and expect a negligible influence of V(z), as soon as the electron is outside
iinpe of the potential. This potential choice is therefore a very adequate test case for the
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three-step model (see approximations 1-3 in Subsec. 4.1.2). Within this latter framework, for the
monochromatic field (4.8), the stationary action (4.16) is given by

1 13
Sult,7) =rleol - oAt + 5 [ ara) (52)

t—r

while the stationary momentum (4.17) is given by

B0 gin(wt) — sin(wt — wr)]. (5.3)

pst(tv‘r) = Wit

In equations (5.2) and (5.3), with respect to Subsec. 4.1.2, we introduced the change of variable
T =1t —tg (not to be confused with the pulse length 7 used in the previous chapters), which yields
the electron excursion time. These expressions are then inserted in (4.18), which gives the time-
dependent dipole moment for the three-step model, within the stationary phase approximation.
Equation (4.18) has a clear physical interpretation: the dipole at time t receives contributions from
all trajectories that started at the origin a time 7 earlier, “picked up” the action Sy and returned to
the origin at ¢, which for a free classical evolution is possible only for a definite average momentum,
Dst-

In order to compute the Gabor transform of the dipole acceleration from the three-step model
dipole length z(t), one must use the formula ’

/dt ) Walt, ¥, 00) = /dt w(t) Wolt, t',2,0), (5.4)

where
Welt, t',Q,0) = {(=2/02) + [iQ — 2(t — ') Jo? 2} Wg(t, ', Q,0), (5.5)

Wa(t,t',Q, o) being defined in (4.38). This is obtained by partial integration, noting that W and
its derivatives vanish at the integration endpoints.

Figure 5.1 presents the results from the time-frequency analysis over one cycle; we show the
square of the magnitude of the Gabor transform of the dipole acceleration, for ¢’ varying from 5.77T
t0 6.7 T. The dashed lines in the figure correspond to the results obtained using the three-step model
[41], while the solid lines are the results of the fully numerical solution.

Peaks in the harmonic time-frequency spectrum Gy arise from classical trajectories returning to
the origin, leading to strong nonlinear response within the range of the potential. These classical
return time peaks are clearly visible in the harmonic response centered on the cutoff harmonics
(2 = 49w, 0 = 0.1T), for both the TDSE and the three-step model, shown in part (a). This has
been observed before in [52]. When more plateau harmonics are included, as in Fig. 5.1L.b, (2 = 45w,
o = 0.055T) the single peak splits into two, whose temporal positions correspond approximately to
the two (semi-) classical shortest return times, 71 and 75 (see Fig. 3 in [54] and Figs. 4.4 and 4.6 in
this thesis). It is however apparent that the two peaks are farther apart for the full solution than
for the three-step model. Furthermore, the 7;-peak has gained additional substructure in the full
solution.

When most of the plateau harmonics are included, in Fig. 5.1.c, there are still two dominant
peaks; the “shortest classical return” peak (denoted by 71) is composed of many sub-peaks since
many harmonics are included. In fact, the shorter return time varies more rapidly with harmonic
energy. The return peak T2 is prominent in both sets of results. This is comparable to the case
considered in [54], Fig. 2.

Our results show that the three-step model contains the essential physics leading to high-harmonic
generation in a linearly polarized laser field. The multiple peak structure of [54] is reproduced in
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Figure 5.2: Dipole matrix elements dx(p). Dotted line : exact; dashed line plane-wave continuum
approximation; short-dashed line : “gaussian” approximation.

qualitatively similar fashion in both results, with peaks at similar positions and of similar magnitude.

However, the agreement is good only for a special choice of the “atomic dipole” function d(p) =
(p|z|0), namely d,(p) ~ pe=°?" | with o = 1, shown as the short-dashed line in Fig. 5.2. This
“gaussian dipole” approximation to the dipole matrix element corresponds to a gaussian ground
state wave function in position-space and plane-wave continuum wave functions. If we take for d, (p)
the “exact” dipole matrix element between the bound state and the continuum state at energy p?/2,
calculated fully numerically for the gaussian potential (5.1), (given as the dotted line in Fig. 5.2)
we obtain the dotted line in figure 5.1.c, exhibiting a strong spurious peak near E(t) = Eg. This
spurious peak appears generally in the stationary phase approximation when the width (in p-space)
of d;(p) is made so small that the contribution near the “zero-time” trajectory is strongly peaked:
physically this would correspond to contributions near the origin from parts of the wave function
that are being ‘accelerated’ by the field within the range of the potential. It is evident from the fully
numerical solution (solid line) that this is not an important mechanism of harmonic generation in
the present case. Furthermore, for such a peaked d,(p), the stationary phase approximation starts
to become invalid.

In the actual physical process of high-harmonic generation at low laser frequency the “rescat-
tering” wave packet appears through a tunnel ionization process and thus it is not astonishing that
the modeling through a dipole matrix element is not adequate. On the other hand, for the second
interaction in equation (4.18), which “generates the harmonics”, the dipole matrix element should
be quite appropriate.

Our time-profile from the full solution is only approximately symmetric under a shift of 0.57".
This is clear since in our full time-dependent case there is strong ionization and thus the dipole
moment decays in time, in addition to other explicitly time-dependent effects. Finally, although
we are probing the harmonic response over times shorter than the laser field period, the harmonic
generation process must happen over several cycles of the laser field in a quasi-periodic fashion [78].
In fact, when calculating the time profile of a single harmonic, one must take a window function
several times larger than the period of the driving field [53]. The mathematical reason for this choice
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I already been discussed in Sec. 4.4.
Concluding, the general plateau harmonic generation spectra, with the expected cutoff energy z.a‘t
|eo| +3.17U,, are reproduced by a wide variety of choices of the matrix element d(p) within
tlie three-step model framework. But the time-dependence of the harmonic generation is a much
imore differential and thus sensitive measure, in which not simply the magnitudes but the relative
phises of all contributing harmonics are involved. When only cutoff harmonics are involved, as shown
i g, 5.1.a, the time of harmonic generation is just 0.45 and 0.95 in units of the laser period, that is,
jnt hefore the field minimum. This result again is not very sensitive towards changes in d,(p): most
liices for the dipole matrix element correctly predict the time-dependence of the cutoff harmonics.
I1ofh results are in agreement with the observations in |41, 54] concerning the independence of the
cutoll spectral and temporal behavior with respect to d,(p). However, when more and more of the
lilcau harmonics are superposed, a much more complex time-behavior emerges, which this time
depends on the matrix element chosen. From the full time-dependent solution, it is clear that the
thieestep picture which predicts two dominant shortest return time peaks is qualitatively correct,
llown by the solid line with the peaks 71 and 75 in Figs. 5.1.b and c¢. The exact shapes and
ubitructure of these peaks is however not quantitatively reproduced by the three-step model. First,
¢ lound that a spurious peak can appear at E(t) = Ey when d,(p) is chosen too peaked in t.he
tlirce step model. Second, the shortest-return time 71 peak splits into several peaks with comparab.]e
minpnitude. The three-step model indicates that one of these is dominant, which is not the case in
I full solution. Third, the longer-return time 7o peak is narrower in the full solution. Despite
line quantitative differences, the results obtained with the TDSE computation can be traced to
the semiclassical return times predicted by the three-step model, strongly suggesting a common

nechanism for HHG in both cases.



42

CHAPTER 5. COMPARISON BETWEEN THE TDSE AND THE THREE-STEP MODEL

Chapter 6

Influence of excited bound states
on high-harmonic generation

I'lic three-step model and the two-level atom describe HHG as a result of completely different
hiysical mechanisms: the former states that this phenomenon is due to free-bound transitions of an
“lectronic wave packet, whereas the latter relates HHG to bound-bound transitions. In the previous
chapter (see also [55]), we considered the case of an atom with a single bound state. We used
(ime-frequency analysis in order to compare the fully time-dependent solution of the Schrodinger
cuation with the three-step model [41]. The time profiles of the plateau and cutoff harmonics
vore qualitatively similar for both models, corresponding to the semiclassical return times for the
lectronic wave packet. However, for an atom with more than one field-free bound state, such a
comcidence is not always observed, especially for the lower order plateau harmonics.

T'herefore, in the present chapter, we address the question of whether the two pictures of rescat-
(ring and bound-level transitions can be compatible and what are their respective ranges of ap-
plicability concerning harmonic generation, for atoms with several bound states. The goal of these

(udies is to gain some insight in the process of generation of harmonics when several bound states
e involved, and to include information about the complementary temporal structure of the har-
monics, with the eventual aim of being able to control this emission for tailoring harmonic pulses
ol desired characteristics. For that purpose, one needs of course to consider further computations
ol the propagation of harmonic radiation, for which the two-level atom, TDSE or three-step model
iy provide the initial conditions [22].

Again, we base our discussion on the fully numerical solutiou of the time-dependent Schrodinger
(quation. This approach includes all bound-bound, bound-continuum and continuum-continuum
{1ansitions, thus incorporating time-dependent effects like ground- and excited-state depletion, ion-
\/ntion and recombination. Therefore, as a first step we must define and isolate the different mecha-
s and investigate their contribution to harmonic generation. To first approximation, we project
(I time-dependent wave function onto the field-free bound states, the remainder being an effec-
(ive time-dependent continuum. Using spectral and time-frequency analysis, we perform a detailed
investigation of the radiation emitted by the atom. The case of a system with two bound states
il o continuum is analyzed in detail and compared with a two-level atom model. A particular
1notivation for this specific analysis lies in a recent work, in which the inclusion of a “three-step-like”
(ccombination mechanism in the bound-state populations of a two-level atom was able to reproduce
| plateau and sharp cutoff at wyg + 3.17 Uy, where €; — €¢ = wig is the energy difference between
(e bound states [45]. The “bound-bound transitions” from the TDSE include such recombina-
{101 mechanisms. Furthermore, we consider ionizing bound-state populations in the two-level atom
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model. Recent studies have shown that this procedure may prolong the plateau in the harmonic
spectra, depending on the functional forms of the ionization rates [44] (see also discussion in Sec.
4.2). Therein, a similar rate as in Sec. 4.2 (i.e., Eq.(4.28)) and a step function were used for,
respectively, the ground- and excited-state populations.

The Chapter is organized as follows: in the next section, we discuss a theoretical projection
method, which is used to isolate different “classes” of transitions from the TDSE solution. In
Sec. 6.2, we have taken several model potentials to investigate: two bound states in a short range
potential (Subsec. 6.2.1), one deeply bound and many weakly bound states in a long-range (soft
Coulomb) potential (Subsec. 6.2.2), several deeply bound (and many weakly bound) states in a
deep soft-Coulomb potential (Subsec. 6.2.3), and the same potential as in Subsec. 6.2.3, but with
its Coulomb tails cut off (Subsec. 6.2.4). In Sec. 6.3 we state our conclusions.

6.1 Fully time-dependent projections

The time-dependent wave function |4 (¢)) from the TDSE computation (Sec. (4.3)) can be expanded
into the field-free-bound-state basis

(¢ ZC )n) + e(t), (6.1)

where the bound states are denoted by |n), the remaining continuum part of the wave function by
|¢.(#)) and Cpn(t) = (n|¥(t)). These time-dependent amplitudes are calculated fully numerically.
The advantage of taking such a basis concerns the orthogonality between the bound states and the
contimmum. In case this property is not fulfilled, the computation of the amplitudes C,,(¢) is not
straightforward.. We took as initial condition the atom in the ground state, i.e., [¢ (¢t = 0)) = |0).
The average dipole acceleration & (t) = (¥(t)| X |¥(t)) can therefore be split into

(W) X [p(#)) =Zop (£)+ Toe (t)+ Tec (2)- (6.2)

Inserting the expression for Z (¢) given by Ehrenfest’s theorem (Eq. (4.33)) in (6.2) , the bound-
bound, bound-continuum and continuum-continuum contributions are written as respectively

Ey (1) = ) Cr(t)Cu(t)(m )+ E( Z\C , (6.3)

dV(x)
dz

dV (x)

e () = Y 2Re [0 0nt)| )

n>} (6.4)

and
e 1) = (90~ + EOIRD) (65)

As discussed in Sec. 4.3, the E(¢) term in (4.33) contributes only to an enhancement in the fun-
damental in the spectrum of the full acceleration. However, for the bound-bound and continuum-
continuum contributions (6.3) and (6.5), there is the introduction of an extra time-dependence in
this term, coming from the bound-state and continuum populations'. This term does however not
introduce any important contributions, as will be shown in Sec. 6.2.

We perform the decomposition (6.1) taking the time-dependent wave function both in the velocity
and in the length gauge. For the length gauge wave function, we apply the unitary transformation

1 Adding (6.3) and (6.5), since 3, |Cn (£)|? + < ¢.(1)|¢.(t) >= 1, this extra time-dependence disappears.

6.1. FULLY TIME-DEPENDENT PROJECTIONS 45

Ajy = e7A0) on |4 (t)) after each step of the time propagation. In both cases, we use the same
{ime-independent states |n) calculated for the field-free atomic Hamiltonian. This approach is widely
used in the literature and is well-known as a “hybrid procedure” [79]. One should keep in mind,
however, that through keeping the field-free eigenstates, one breaks the gauge invariance for each
isolated projection [80]. Only for the full acceleration, (t), this property is maintained. In order to
keep the gauge equivalence for the projections 2y, (£), Zp. (£), and Z.. (t), it is necessary to perform
the same unitary transformation also on |n), such that changing from a representation (u) to a
representation (), one would have time-dependent states for one of the representations, according
0 [nwy () = Avpln). Using the hybrid procedure, one obtains, instead, for the amplitudes
(',(t) in the different representations,
n
n(l/) Z (n] App 17) 7«/4)(” +(n] Ay

j=0

be®)) (6.6)
with the continuum being
[6e)(®) = [0y () =3 CoyOlm) ©7)

The choice of gauge for which the field-free bound state basis yields physically reasonable results,
a5 well as a justification for that choice, is a highly controversial issue. There are two main arguments
i the literature in favor of using bare bound states in the length gauge: The picture of the quasi-

latic distorted potential considered in Sec. 4.1, which is used in the physical description of the
(hree-step model, corresponds to the length gauge Hamiltonian. Thus, as a first approximation, one

hould do the projections on the undistorted bound states in the length gauge [81, 82]. Another

irpument uses the fact that the mechanical momentum IT and not the canonical momentum p is a
physical observable [83]. In the absence of the field and in the length gauge, such quantities coincide.
I the velocity gauge, however, they are related by II = p — A(t). According to several authors,
this discrepancy is responsible for unphysical results projecting onto the eigenstates of the field-free
Ilamiltonian in the velocity gauge, HZ [79].

Even though the arguments above are not completely agreed upon, we could in fact observe
nnphysical behavior for the amplitudes C),(t) using field-free bound states in the velocity gauge. The
iisleading results obtained using the velocity gauge are presented and discussed in Subsec. 6.2.5.
Ohviously, the expansion into a field-free bound-state basis yields just an approximate picture for the
honnd-state subspace, since in a real atom the higher excited bound states are <trongly distorted
Iy the field and coupled to the continuum. Moreover, the projections (¥(t)|n){n| % |m){m|y(t))
e not equivalent to the respective second temporal derivatives of the dipole length projections,
A p(8) ) {n|x|m) (m|p(t)) /dt?, since the projection operators |n)(n| do not commute with the full
Ilimiltonian (4.31). Therefore, for an atom with two bound states, a direct comparison between
1, (t) of Eq. (6.3) and the dipole acceleration of a two-level atormn is questionable. This error is not
mtroduced if we compare the bound-bound projections and the two-level atom dipole in the length
[orm, used as a test in Subsec. 6.2.1.

Just as for the time dependent dipole, one can split the time-dependent power spectra discussed
i See. 4.4 into the corresponding bound-bound, bound-continuum and continuum-continuum con-
(1ibutions. We thus obtain the wavelet transforin of the dipole acceleration (6.2) and its projections,

W Q)P = Waslt, 2,00 + Wae(t, 2,0)[* + Weelt, 2, 0)1
+2 RE{W};b by Q: ”)vac(tv Qv U) i Wbc(t Q,U)qu(t, Qv ”)
FWis(t, 2, WL, D, )}, (6.8)

vhere not only the separate contributions but also their relative phases play an important role, since
there are crossed terms.
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6.2 Results

6.2.1 Short-range potential

In 0r§er to test the two-level atom against the fully time-dependent solution of the Schrodinger
equation, we chose a Gaussian short-range potential

Ve(z) = —0.76 exp(—2/4). (6.9)

This potential Supports two field-free bound states, at eg = —0.499 a.u. and &1 = —0.099 a.u. We
consider an externa_l field of frequency w;, = 0.05 a.u. and amplitude Ey = 0.08 a.u., which is .cI.ezarl
in the tunneling regime for the ground state. These conditions are comparable to th(; ones considereg
in [44], i.e., ground state in the tunneling regime, excited state in the over-the-barrier regime and
dipole matrix element (0]z|1) = 1.066 a.u. According to the three-step models, the expected cutoff
for the present case §h0u1d be at Q = 49 wy, which is in very good agreemen,t with the spectrum
for the full acceleration, shown as the dotted line in Fig. 6.1. In fact, the dotted line beyond the
harmonic 21 superposes exactly on the solid line, which gives only the bound-continuum part of the
spectrum, resulting VfTOHl Tpe (t), Eq. (6.4). At low energy the bound-continuum part underestimateé
the full results, while the bound-bound part gives the dominant contribution. The bound-bound
spectrum presents a completely different cutoff (at roughly © = 35 w;) and no clear indication of
a plateau, in contrast to the fyl] dipole acceleration. An interesting feature of the bound-bound
spectrum is a pI:Ol’lOlll?CEd increase in the harmonic intensity, a so-called “low-energy hump” around
the 7th harmoni¢, which resembles the features observed for molecular HHG spectra (24, 25]. This
resemblance is 'related to a common harmonic generation mechanism, which will be discuséed f;uther
in this subsection.

In order to verify whether these features correspond to a two-level atom, we compare the bound-
bound part with the corresponding two-level atom, with and without ionization. We solved the Bloch
equations (4.27) mllflerically using a standard fourth-order Runge-Kutta method (see Appendix D
for a discussion of this method). The resulting time-dependent amplitudes C,,(t) are then inserted in
the two-level dlpqle acceleration, Eq. (4.26), from which the power spectra are calculated. Without
taking ionization Into account, we do not observe a plateau structure at all in the emission spectra
for the field parameter's above. In fact, the only peaks observed correspond to the fundamental, a
few very weak haTm_OHICS (up to the 5th) and the resonance peak around the transition [0) — [’1>
Harmonic spectra with an extended plateau structure are only observed for much higher intensities'
where any real atom would ionize practically instantaneously and the two-level atom description ié
unrealistic. These results are not shown in the figure.

As a further step, we introduce ionization rates for the bound-state populations as stated in Sec
4.2. The tunnel formula for the ground state yields Dy = 0.72 and Dy = 0.665 in (4.28). For til(;
excited state we choc?se D3 = 0.05 and Dy = 0.0026 in (4.29). The harmonic spectrum obtained
in this case is very dlf-fercnt from the full solution spectrum or from the bound-bound part of the
full solution. Il-Iz‘mnOmcs up to the 9th are visible, which is in agreement with the instantaneoué
two-level transition frequency (4.30), but these harmonics are much weaker than those of the full
result. We conclude that the driven two-level atom is not a good model for computing the harmonic
response, not even for the low harmonics which can be extracted as the bound-bound part of the
spectrum. A strongly nonlinear ionization rate within the two-level atom model can enhance the
harmonics and p7rol(.)ng the plateau, but then the field-dependent ionization rate does not reproduce
the full so]utio?l s .tlme dependence for the populations of the bound states, obtained by the time
dependent projection onto the unperturbed states, shown in Fig. 6.2. Actually, the rate v (E@®))
of Eq. (4.29) for the e.xcited state is just an ad-hoc adjusted quantity since a tunnel formulat is not
too appropriate for this state whose binding energy €; = —0.099 a.u. is only 2hwy,. Choosing a step
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I'ipure 6.1: Power spectra for the short-range Gaussian potential (6.9) and its two-level atom model.
Dotted line: full acceleration; solid line: bound-continuum part; squares: bound-bound part; tri-
mnples: two-level atom including ionization (for the latter two, only the harmonic peak heights are
lhown, connected by a thin line)

[unction as a model of the over-the-barrier ionization process yields more harmonics since it is more
nonlinear {44}, but it is arguably less realistic.

The ground- and excited state populations depicted in 6.2 show reasonably similar behavior for
(he full solution and the two-level atom model. The excited-state population of the full solution is
(uasi-periodic in time, with a zero at the times for which the field is zero. There are small dips
(nfter the second cycle) at the times for which the field is maximal. The small dips in the excited

tate population are mirrored by corresponding peaks in the ground state population These dips,

which are absent in the two-level atom results, are an indication that a nonlinear process is taking
place around the peak field intensity, which involves just the two bound states. Both the full and
the two-level atom calculations contain irreversible ionization, partially over-the barrier ionization,
Ihe excited state having the function of an intermediate state between the ground state and the
continuum, and partially tunneling ionization. It must be noted that, even though recombination is
present in the bound state part of the time evolution for the full results, the bound-bound part of
(lie spectrum in Fig. 6.1 does not exhibit the cutoff at wyg + 3.17 U, observed by [45].

['he Gabor transform allows a more detailed analysis of the harmonic generation process. In
I'ip. 6.3, parts a to d, we present results obtained for low harmonics taking a time-width o = 0.1 7.
In Fig. 6.3.a, we plot the wavelet transform for € = 7 wy . In this case, the main contribution
(0 harmonic generation within a field cycle for the full solution occurs close to the field peak. The
[ull and the bound-bound contributions have very similar shapes, same amplitudes and coincident
peaks. However, the bound-bound wavelet transform of the fully time-dependent computation and
(he two-level atom wavelet transform are remarkably different. The two-level atom results exhibit
peaks at ¢ = 0.5 T modulo T/2, that is, when the field E(¢) is zero. The full or the bound-bound
lts have also a small shoulder at ¢ = 0.5 7 mod T'/2, but their main peak is 90° out of phase with
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Figure 6.2: Bound-state populations. Solid heavy lines: full time-dependent computation for the
short-range Gaussian potential. Dashed heavy lines: two-level atom with ionization. Solid and
dotted light lines: full time-dependent calculation with projections in the velocity gauge. The upper
curves are for the ground state, the lower ones for the excited state. The small dips related to the
abrupt population transfer close to the field peak are marked with arrows.
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{he two-level-atom results, being at ¢ = 0.25 T' mod T'/2. In order to test whether this discrepancy is
introduced by the fact that the projection operators onto the bare bound states do not commute with
the full Hamiltonian (4.31), we performed the same calculation using the bound-bound projections
and the two-level atom dipole, both in the length form; the result is shown in Fig. 6.3.b. The
lound-bound contributions from the full solution in the length and acceleration forms in parts a
and b exhibit peaks at the same times. This shows that the error introduced by the fact that
[n)(n|, H] # 0 is of no qualitative importance in this situation. Once more, the two-level atom
results in part b present peaks at times different from the x4. The shape and location of the peaks
obtained for the two-level atom are not sensitive to variations in the ionization rates v, and 7,.

These results, together with the large difference in the magnitude of the harmonics, visible in Fig.
(.1, strongly suggest that the process of generation of these low harmonics must be quite different in
(he two cases, even though the full results are recovered in their two-bound-state projections. The
peneration of harmonics within the two-level-atom model has been investigated by Gauthey et al.
[16] (See also Sec. 4.2 in this thesis). They conclude that harmonics occur due to a crossing between
il two dressed states. The wavelet transform for the parameters used in [46] exhibits indeed well-
localized sharp peaks at ¢t = 0.5 7 mod 7'/2. In our present case however, the time-width of the
woided crossing between the two dressed levels becomes comparable to (although still smaller than)
(he laser field period and thus the peaks are no longer so sharp. For the full 1-D atom results, on
(he other hand, the field is driving the bound part of the electronic wave packet primarily within the
(wo lowest bound states, as can be seen in Fig. 6.2 (the slow decrease in the ground-state population

(lue to irreversible ionization). Apart from a main oscillation, in which the bound part of the wave
packet follows the field adiabatically, there is an abrupt population transfer between the two bound
(ates close to peak field, arising from a “charge oscillation” of the wave packet between dipoles of
(pposite parity in the atom, seen as the small but sharp peaks in the TDSE populations, marked
vith arrows in Fig. 6.2. These peaks can be interpreted as follows. The anti-symmetrical wave
[unction ¢, = { |1) is more concentrated at the edges of Vg(z) and the symmetrical ground-state
vive function g = (z |0) at its center. Thus, the overlap between the bound part of the wave
lunction {(z |1, (t)) = Colt)wg + Ci(t)g, and ¢, (ie., C1(t)) decreases as the bound wave packet
pproaches z = 0. Simultaneously, its overlap with ¢ increases. Subsequently, there is a sharp
inerease in Cy(t) as the wave packet reaches the other side of the atom. Tt is only a small part of the
vive packet that performs this motion, but this is the significant part producing the lower plateau
linrmonics. In fact, the time interval between the two small peaks in the excited-state population,
of about 10 a.u., is roughly the time it takes for a classical particle to be taken from one “edge” of
(11 atomic potential to the other (a distance of approximately 4 a.u.), with constant acceleration
(mx = Fp. This mechanism is not taken into account in the two-level-atom model.

The same mechanism is present in the emission of harmonics from a diatomic molecule when
considering the two lowest bound even- and odd-parity states [24, 25]. Intuitively, this charge
ncillation is clearer in the molecular case: if each atom of the molecule has a single bound state,
(1 molecule has a symmetrical state ¢, = (x |s) and an anti-symmetrical state @, = (= |a}, with

inilar spatial distributions as g and ;. The generation of the low plateau harmonics is described
11 o three-step process, in which an electronic wave packet tunnels from one molecular center to the
oiher when the field is at its maximum [25]. Clearly, the bound part of the electron wave packet
~in also be written as a superposition of |s) and |e}, and, as the electron moves, one would expect
. vimilar population transfer between |s) and |a) as for the two-bound-state potential Vip(z). Also
[0 the molecular case, the time profile of the low plateau harmonics presents peaks around times
[or which E(t) =~ Eq [26]. However, for a diatomic molecule, the bound-bound contributions occur
lishtly after the peak-field time 0.257 mod 7'/2. This is possibly related to the spatial dimensions
ol the molecule, which are larger than the range of V(). Thus, the bound part of the wave packet
1 Lo cross a larger distance, spending slightly more time.
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Figure 6.3: Wavelet analysis of the time-dependent dipole over one cycle of the driving laser field for
the short-range Gaussian potential. Parts (a), (c) to (f) give the dipole acceleration, whereas part
(b) gives the dipole length. Parts (a) and (b): @ =7 wr, 0 = 0.1T; Part (c): 2 = 15 wy; Part (d):
2 =17 wp. Part (e): @ =237 wy, 0 =0.024T (plateau harmonics), part (f): @ =49 wy, 0 =0.1T
(cutoff harmonics). Solid line: full dipole acceleration. Dashed line: bound-bound cor;tributions.
Dotted line: bound-continuum contributions. Dotted-dashed line: in parts (a) and (b) results from
the two-level atom with ionization (multiplied by 3000); in parts (e) and (f) continuum-ground-state
contributions.
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Considering now the wavelet transform centered at the low-frequency end of the plateau harmon-
1, © =15 wy, shown in Fig. 6.3.c, one observes that the full wavelet has significant contributions
[1om both the bound-continuum and the bound-bound parts. Increasing the center frequency just
lightly, to Q = 17 wy,, the bound-bound part rapidly loses its importance. In Fig. 6.3.d the bound-
Ontinuum and the full wavelet almost coincide, the bound-bound contributions now being out of
phiase with the full solution. Thus the dominant contribution in the full results shifts from the
lound-bound part for the low harmonics to the bound-continuum part, over just a few harmonics,
i is evident also from Fig. 6.1.

Finally, in Figs. 6.3.e and f we analyze the plateau and cutoff regions. In Fig. 6.3.e, we consider
| window function of time width o = 0.024 T centered at 2 = 37 wy,, so that most of the plateau
liirmonics are included. For this situation, we observe a near-perfect coincidence between the bound-
continuum (dotted line) and the full (solid line) results, in accord with the results in Fig. 6.1. The
[inin contributions to the bound-continuum part come from the ground-state-continuum transitions
(dotted-dashed line).

Figure 6.3.f shows the wavelet transform for the cutoff harmonics, @ = 49 wr, with time width

(.1 7. Here the full result and the contributions involving the ground-state-continuum tran-
llions (dotted-dashed line) and the bound-continuum transitions 2. (t) are almost identical. The
peak in part f corresponds to the classical return time of an electron with maximum kinetic energy
(wce e.g. [54] or [55] and references therein). We observed small variations in the position of this
penk between t = 0.4 T and t = 0.5 T, which is reasonable since this return time is very sensitive
(owards small variations in the electron energy, as discussed in [54].

['or all cases, the continuum-continuum transitions yield very small contributions, in accord with
(e analysis of [68).

.2.2 Shallow long-range potential

I the following two subsections, in order to investigate the influence of the potential shape on
lirmonic generation, we consider model atoms with the widely used soft Coulomb potential

Vo (@) = /8y +1] " (6.10)

Wo take @ = 0.38 and 3 = 0.76 which leads to one bound state of energy eg = —0.19 a.u. and
veral weakly bound states (binding energies of the order of 1072 a.u. and smaller) in an external
lield of amplitude Ey = 0.08 aaw. and frequency wy = 0.05 a.u. This case is very close, apart from
(I potential shape, to the single-bound-state short-range potential discussed in [55], since in the
wesence of the external field the excited states are strongly coupled to the continuum. For the
nrameters stated above, the cutoff predicted by the three-step model is at =45 wp.
Jor this binding potential, a striking agreement between the wavelet transforms for the ground-
(ale-continuum projection and the full acceleration was observed, at the cutoff and for the whole
plateau region. Once more, the semiclassical return times predicted by the three-step model have
|on recovered in the time profiles. These results are in agreement with a computation done by [84]
{0 o three-dimensional long-range single-active-electron model involving ultrashort pulses, at the
1l0fT harmonics, and also with the results in [54] and Chapter 5. The present results (not shown) for
(L plateau and cutoff regions are again in agreement with these calculations, showing their generic,
|otential-independent nature for an effective single-bound-state atom. As in the short-range case
ilressed in [55], the main wavelet peak corresponds to a return time of about t = 0.45 T, periodic
or 0.50 T. If the highly-lying excited states are taken into account, we obtain a spurious peak at
/(1) = Eg for the bound-continuum wavelet. This feature is also observed in the next subsection
((.2.3). We regard it as unphysical, since a projection onto a field-free bound-state basis is not a
o) approximation for the weakly bound states.
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6.2.3 Deep long-range potential

After discussing harmonic generation for models with just one or two bound states, we now wish to
address the question of whether the spectral features observed are present for an atom with more
than two strongly bound states.

We consider @ = 0.76 and 8 = 1.1 in the potential (6.10), resulting in a ground state energy
of eg = —0.501 a.u. This case differs from the one considered in Sec. 6.2.2 in the sense that also
the first and second excited states, of energies respectively e; = —0.199 a.u. and g2 = —0.108 a.u.
are relatively deeply bound and strongly coupled (the dipole matrix elements between the states
are respectively (0fz|1) = 1.19 and (1]z[2) = 3.02). The cutoff for this potential is, with the field
parameters taken as in the previous subsections, at 2 =49 wy.

In Fig. 6.4, for the part of the spectrum above the 13th harmonic, we observe a perfect agreement
between the spectrum of 7. (t) including the three most deeply bound states (c) and the full
acceleration spectrum (a). The inclusion of the higher excited states (b) makes the agreement much
worse, indicating the inadequacy of the field-free basis for this intensity regime. The bound-bound
transitions involving only the three strongly bound states (d) exhibit a cutoff at a much lower
frequency, the term proportional to E(t) in the dipole acceleration expression (4.33) modifying
only the background in this case. The harmonic intensities are much lower than those of the full
result. The spectrum of iy (¢) involving all the bound states (e) (their number is finite within our
discretization) yields a smeared out cutoff, which is also observed by [44]. Moreover, we observe
that the spectra corresponding to continuum-ground-state transitions are at least two orders of
magnitude higher than bound-continuum spectra involving only the excited bound state parts. The
harmonic yields from these contributions decrease with increasing bound-state energy. This is shown
in Fig. 6.4.f, where the contributions from the transitions involving the continuum and the bound
state |2) are presented. The contributions to the b-c spectrum from the first excited state |1) are
slightly larger, namely one to two orders of magnitude smaller than those involving the ground state.
Similar results were obtained by [85] in a time-dependent computation, in which the initial atomic
state was taken as a coherent superposition of ground and lowest metastable excited state. Indeed,
in three-step models for high-harmonic generation the excited bound states are usually neglected,
which is justified in view of the present results.

The corresponding wavelet analysis in Fig. 6.5 shows that the bound-continuum part which
includes only the lowest three bound states and the full acceleration yield almost indistinguishable
wavelet transforms for both part a and b. The bound-continuum part including all bound states is
also in agreement with the other two sets of results, apart from a spurious peak at maximal field
(t = 0.25 T modulo 0.5 T'). This spurious (unphysical) peak is due to the contribution of the highly-
lying excited states in the time-dependent projections. This peak is not present in the harmonics of
energy higher than the cutoff, indicating that it arises only from the high-plateau harmonics. Once
more, in part b, the cutoff return time ¢ o~ 0.47 is recovered for the full acceleration and Zpe ().

For the lower-energy part of the spectra, however, the harmonics appear to be a “mixture”
of bound-continuum and bound-bound transitions, and it is difficult to draw conclusions about
which mechanism plays the most important role. This is clearly observed in the wavelet transform
centered at the 7th harmonic (not shown). In this case, the wavelet transform no longer exhibits
the T/2 periodicity of the driving field but there are other timescales present, presumably due to
resonant processes involving several bound atomic states. Concerning the term in Iy () which is
proportional to the field: as briefly mentioned in Sec. 6.1 it introduces an over-enhancement of the
peak at maximum field (¢t = 0.25 7 modulo 0.5 T') when all the bound states are taken into account.
The reason is that the projections on all these states become large for maximal field. If just the
three most deeply bound states are taken into account, the term in E (t) plays no important role
in the wavelet transforms, the result with and without this term being almost identical. Moreover,
even though the excited states |1) and |2) are strongly coupled, the wavelet transforms of Zp, (t) for
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I'ipure 6.4: Power spectra of the time-dependent dipole acceleration for the deep Coulomb potential.

It (a): full acceleration; Part (b): bound-continuum part; Part (¢): bound-continuum part from

(he three most deeply bound states; Part (d): bound-bound part from the three most deeply bound
(ntes; Part (e): bound-bound part ; Part (f): bound-continuum part for the second excited state
mly.  All subsequent curves have been shifted by —15 y-axis units from their respective upper

neiphbors. The harmonic peak heights from curve (a) have been repeated as the filled circles for all
ther five curves, as a point of reference.
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Figure 6.5: Wavelet analysis of the time-dependent dipole acceleration over one cycle of the driving
laser field for the deep Coulomb potential. Part (a): Plateau harmonics, Q = 37wy, o = 0.027T.
Part (b): Cutoff harmonics, Q = 51wy, o = 0.108T. Solid line: full dipole acceleration. Dashed
line: bound-continuum contributions from the three most deeply bound states. Dotted line: bound-
continuum contributions.
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only the two or only the three most deeply bound states present no significant difference.

(G.2.4 Effects of the Coulomb Tail

I order to investigate quantitatively the effects of the long-range Coulomb tails in the deep Coulomb
potential of the previous subsection, we now discuss and compare results obtained with the same
potential, where the Coulomb tails have been cut off,

1 ; || < ag
Vr (2)=Ve ()4 cos™ [TITO (= - ao)] , ag<l|z|<L (6.11)
0 ; L < |z|.

l'or regions close to the atomic core, this expression yields the deep Coulomb potential Vi from
Subsec. 6.2.3. For |z| > ag, its tails are cut off smoothly. We take ag = 5, n = 6 and L = 2ay,
) being the excursion amplitude of the electron (ag = Fp/w? = 32.). Thus, within its excursion
implitude, the electronic wave packet will experience a very different potential tail between Vi and
\'/. For the parameters above, the ground state energy ¢ of Vp is the same as the one for V¢
(Subsee. 6.2.3), while the first and second excited states’ energies of Vp are at e; = —0.192 and

—0.063. The energies of the higher excited bound states are of course quite different between
(he two potentials. (Also the matrix element (1|z|2) = 0.499 is very different.) The truncated
potential Vi has only a finite number of bound states, seven within our discretization. We apply

actly the same field pulse as for the previous results shown.

'T'he effects of Coulomb tails on harmonic generation spectra have been discussed in several pa-
pers before [86]. Mainly, however, these discussions were concerned with elliptically polarized driving
lields, investigating harmonic energies close to the ionization energy (“threshold” harmonics). Un-
nal ellipticity dependence was observed, whose origin was usually surmised to lie in the dominant

cllect of excited bound states. Coulomb corrections to the free wave packet evolution within the

context of multiphoton ionization and above-threshold (high photoelectron energy) multiphoton
inization have also been addressed [87], again mainly in the context of elliptical polarization and
(hus concerned with wave-packet spreading transverse to its principal excursion amplitude. In the
present study, we are uniquely concerned with the longitudinal spreading of our (1D) wave packet
i o linearly polarized laser field. Even within this restricted context, one should expect quantita-
tive differences in the harmonic yield, since the Coulomb tails affect atomic ionization [87] and the
propagation of the electronic wave packet in the continuum.

When comparing the harmonic generation spectra from V> and Vi, there are no major differences
iible on the scale of Fig. 6.4 (the results for Vi are not shown in the figure). However, there are
juantitative differences of about one order of magnitude. The Vp harmonics at the cutoff are
liphtly (a factor 2-3) lower than the Vo harmonics. On the other hand, there are a few groups

ol harmonics, in the plateau (around the 35th) and at threshold (around the 11th) where the Vp
liirmonics are about one to two orders of magnitude higher than the Vi harmonics. Again, there is
perfect agreement between the full and the Ty, (¢) high-energy spectra for Vi, where only the lowest
three bound states are taken.

We now consider the wavelet transforms for the two sets of results. For the low harmonics, for

‘) 7wy and ¢ = 0.108 T, we observe that the results for Vp are much less structured than the

ioonlts for V. The results for Vi are dominated by a single smooth peak, near 0.25T', periodic

modulo T/2, as was the case for the short-range Gaussian potential, discussed in Fig. 6.3. This
nppests that the non-periodic wavelet yield of Vo for the low harmonics is inherent to the long-

mnpe tail of (6.10). However, for the potential (6.11) it is not clear whether the low harmonics are
iipmated by the bound-bound or bound-continuum transitions, since both contributions present
oIl defined maxima at peak-field times.
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For the plateau region, for @ = 37 wir and o = 0.027 T, Vp exhibits much less structured
temporal profiles than Vo, this time dominated by a peak near 0.50 7. At the cutoff, finally, very
similar wavelet yields are obtained for Vr and Vg, once more indicating the potential-independent
nature of the cutoff harmonics. The cutoff return time is slightly shifted between the different sets
of results: Ve yields 0.42 T, Vi yields 0.47 T, while Ve gave 0.45 T [55] for the (single) peak of the
temporal signal. The width of the peak, however, is much larger than these differences, and thus
the wavelet cannot really (neither in practice nor in principle) resolve such a small difference.

According to our analysis, the long-range tail of the Coulomb potential influences mainly low-
and threshold harmonics, and, depending on the potential in question, might affect particular groups
of plateau harmonics. The effect of truncating or not the long-range potential, even quantitatively,
does not have a significant influence on the cutoff harmonics.

6.2.5 Gauge dependence

As discussed in Sec. 6.1, the time-dependent projections in a field-free bound-state basis are gauge-
dependent and one has to be careful about the choice of gauge: In the present low-frequency region,
the projections make sense only when taken in the length gauge, as has also been argued in [81]
and [82]. In this subsection, we present misleading results obtained in the velocity gauge as an
example. We take the short-range potential from Subsec. 6.2.1, which has two deeply bound states,
and calculate the time-dependent projections in the velocity gauge. In this case, the plateau- and
cutoff-structure is recovered also for the @ (t) spectrum. This can be seen in Fig. 6.6, where the
spectra for Zpp (t), Ty (t) and Z (t) in the velocity gauge are presented. The full line gives the “exact”
result, the same as the dashed line in Fig. 6.1. The key point of the present figure is that the various
projection contributions (bound-bound and bound-continuum) are much larger than those of the
full result (the continuum-continuum contribution is roughly of the order of magnitude of the full
result). This indicates that the projections in the velocity gauge cannot be expected to yield much
physical information individually, since they cancel each other to a large extent when summed to
give the full result.

Moreover, performing the wavelet analysis for the present case, shown in figure 6.7.a for the
plateau harmonics, one observes that the Zy, (t) contribution is similar to the full Z (t), whereas
the %y (t) wavelet is completely out of phase with the full result. This appears to lead to the
conclusion that, for atoms with strongly coupled bound states, the bound-bound transitions play
a very important role in the generation of plateau harmonics. However, it must be noted that, as
shown in part 6.7.b, all the contributions (although most prominently the bound-free contribution)
reproduce the return time ¢ ~ 0.5 T at the cutoff.

Considering the ground-state and excited-state populations obtained by projecting the velocity-
gauge wavefunction, shown as the thin lines in Fig. 6.2, the former presents maxima for times
t = 0.25 T modulo 0.5 T, corresponding to maximum field strength E (t) = Eg. These results are
obviously unphysical, when viewed in a quasi-static field picture. This justifies the gauge transforma-
tion introduced in the present analysis. Studies concerning the gauge dependence of time-dependent
projections were also performed by [81] within the context of population transfer.

6.3 Discussion

We wish to draw the following qualitative conclusions on high-harmonic generation, based on the
results within our projection method:

There is no significant qualitative influence on either low- or high-harmonic generation from the
long-range shape of the potential. In other words, for long-range potentials, the highly excited bound
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|'ipure 6.6: Power spectra of the dipole acceleration for the Gaussian potential. All projections (but
one, see below) are performed in the velocity gauge. Solid line: spectrum of the full acceleration
(same as in Fig. 6.1). Filled squares: bound-bound contribution. Circles: bound-continuum con-
|ribution. Crossed diamonds: continuum-continuum contribution. Triangles: continuum-continuum
contribution from length-gauge projection.
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Figure 6.7: Wavelet transform of the time-dependent dipole acceleration for the Gaussian potential.
The projections are performed in the velocity gauge. Part (a): Plateau harmonics, Q = 3w,
o = 0.024T. Part (b): Cutoff harmonics, 2 = 49wy, o = 0.17. Solid line: full dipole acceleration.
Dashed line: bound-continuum contributions. Dotted line: bound-bound contributions. Dotted-
dashed line: continuum-continuum contributions.
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states do not play a significant role. When observing 3-D effects, however, as for example in the
cllipticity dependence of harmonic generation [86], the potential tails may become important.

For atoms with more than one bound state, both the bound-bound and the continuum-bound
{ransitions play a role in the harmonic generation process. The generation of high harmonics corre-
sponds to a three-step physical picture, in which the main contributions within a field cycle corre-
spond to the semiclassical return times, even for long-range potentials. For all the potentials studied,
only the bound-free transitions originate a cutoff at the semiclassical energy |eo| + 3.17 Up. Both
spectral and time-frequency analysis demonstrate that the main contributions to high-harmonic
peneration come from transitions involving the ground state. This shows that the electronic wave
packet not only rescatters with the atomic potential, but really recombines to the ground state.

On the other hand, the low harmonics appear to be the result of several mechanisms, depending
very much on the potential in question. Our analysis shows that indeed the excited bound states play
a significant role in the properties of these lower harmonics, in agreement with the interpretation of
some of the results in [86, 87].

Specifically, for an atom with only two deeply bound states, the bound-bound transitions play
the dominant role in the generation of harmonics at the low-energy side of the plateau. Similar
results were also obtained by [45]. However, the plateau and cutoff at wyo + 3 Up reported in this
publication are absent in our computation. It should be noted that we do take recombination into
account for the amplitudes Cp,(t). Only in the velocity gauge, for which the time-dependence of the
ground- and excited state populations yields unphysical results, a plateau and a cutoff within this
frequency regime is observed. The mechanism of harmonic generation in a two-level atom leads to a
temporal structure in the low-harmonic generation which is completely out of phase with the main
process of harmonic generation in a spatially extended atom.

In the low-frequency regime we observe strikingly different bound-bound and two-level atom
spectra and wavelet transforms. The spectra can be made to appear more similar if one chooses
much higher ionization rates in the two-level atom model. This indicates that the high-frequency
components in the amplitudes Cn(t) of the bound states from the full solution are very different
from the corresponding components in the amplitudes from the two-level atom model, due to the
contribution of the continuum states in the dynamics of the driven atom, even though the dynamics
involves primarily only a charge oscillation between the lowest two bound states. A critical influence
of the bound-state population transfers on harmonic generation was also observed by [88], as well
as ionization-related effects in the bound-state population dynamics.

For the particular case of an atom with only two strongly coupled bound states, we conclude
that the low harmonics are not well represented by a two-leve! atom. Even the insertion of effective
ionization rates yields a completely inappropriate model for the low-energy spectral region. As the
harmonic frequency increases, the three-step model becomes the appropriate picture for the high-
harmonic generation process.
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Chapter 7

High-harmonic generation with
bichromatic driving fields

For HHG with monochromatic driving fields, the existence of a simple cutoff law for the atomic
emission spectra is an established fact. Moreover, the mechanisms responsible for HHG in this case
are the bound-free transitions of the three-step model. However, for nonmonochromatic fields there
are still several open questions concerning an explicit cutoff law and the validity of the rescattering
picture. The existence or absence of a simple cutoff law of the form |eo|+ aU), in the bichromatic case
has been extensively discussed [28, 67, 89], but no general expression exists. Moreover, the harmonic
output has a more complex structure in the nonmonochromatic case, depending on the shape of
the driving field. The more parameters the latter has the more knobs can be turned. For instance,
a linearly polarized bichromatic field already provides two additional parameters in comparison to
the monochromatic case, viz. the ratio of the two field strengths and the respective phase. Thus,
the possibility of controlling the length of the plateau or to enhance or suppress a selected group of
harmonics by adjusting the parameters of the coherent fields has attracted the attention of several
groups, originating several experimental [62, 94, 95| and theoretical [28, 61, 67, 89, 90, 91, 92}
studies on the subject. Special features of harmonic generation with bichromatic fields, such as
the enhancement of the plateau harmonics in at least one order of magnitude with respect to the
monochromatic case [92, 95], the extension of the plateau towards higher energies (28, 89, 96} and
the production of attosecond pulses [61, 62] have been identified and investigated within the past
few years.

With the same motivation as these groups, i.e., to gain useful information for high-intensity-
coherent control, we performed the investigations presented in this Chapter. We restrict ourselves
to a-one dimensional atom model, for which qualitative features concerning two-color HHG with
linearly polarized light are present. We solve the TDSE for a one-bound state atom with the same
short-range gaussian potential (5.1) as in Chapter 5, subject to a bichromatic field of the form

E (t) = Eg sin (w1 t) + Eggsin (wat + @) . (7.1)

The frequencies are taken to be commensurate, wyp = nwy, with n being an integer, so that the phase
¢ has physical significance. For this field, the ponderomotive energy is given by

Up = B /4w + Egy /403 (7.2)

We take the driving field (7.1) with n =2, i.e. one of the driving waves as the second harmonic of
the other. However, one should keep in mind that the formalism used in cur investigations can in
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principle be applied to any nonmonochromatic field. Clearly, for our field choice there are also even
harmonics in the emission spectra. The chapter is divided in two main parts, with emphasis on two
different aspects of two-color HHG:

In Sec. 7.1, the reliability of simple semiclassical (three-step) pictures for bichromatic driving
fields is investigated. We use spectral and time-frequency analysis to determine the main contribution
to high-harmonic generation within a field cycle for bichromatic fields, extracting the semiclassical
return times from the TDSE computation.

In Sec. 7.2, we concentrate on how the relative phase and the relative intensities of both driving
waves affect the maximal-energy trajectories of the returning electron and, consequently, the har-
monic spectra, for bichromatic driving fields. We also address the question of whether there is an
analog of the simple cutoff law pertinent to the monochromatic case. Within the two-color frame-
work, it is clear that the relative field strengths Fo1, Fog, the frequency ratio n and the relative
phase ¢ are the important parameters determining the extremal-energy emission and return times
(to,t1)-

Concerning these maximal- (and sometimes minimal-) energy trajectories, there is an important
difference between the monochromatic and bichromatic cases. In the monochromatic case, it so
happens that the start time o of the maximal energy solution with shortest travel time is very
close to the time where the electric field is maximal, so that, in the tunneling regime, injection
of the electron into the field is most likely!. This is not necessarily so in the bichromatic case.
There are solutions (fo,#1) that lead to extremal return energies, but for whom the field E(tp) is
comparatively weak. Hence, within the tunneling regime, the corresponding cutoff frequencies may
not be prominent in the spectrum.

Tn both parts, when investigating phase-related effects, we take fields of equal amplitude, for
which these should be most pronounced. High-harmonic generation with comparable bichromatic
driving fields was addressed experimentally in [94]. We consider excursion times t1 —tg for the electron
in the continuum up to two periods T' = 2m /w1 of the low-frequency field. There are infinitely many
return times for which the excursion time ¢1 — o is longer than two periods: However, due to wave

packet spreading, even in 1D, these longer return times are of minor importance in the harmonic
generation spectra. For Sec. 7.1 we impose the additional condition t; < 2T, since we did not
observe significant contributions for the wavelet yield from longer return times.

7.1 Time-frequency analysis of two-color HHG

For the studies performed in this section, we take Eg1 = Eo2 = Eg =0.04 a.u,, and w; = 0.05 a.u. in
Eq. (7.1). This field has a ponderomotive energy of Up = 0.2 .1, which gives a Keldysh parameter

v = /Jeo] /2Up = 1. We present results for ¢ = 0 and ¢ = 7/2.

7.1.1 Classical return times

In Figs. 7.1 and 7.2 we present the complete picture of the emission and return times obtained from
a numerical solution of the time-dependent classical equations of motion of an electron in the field,
for ¢ = 0 and ¢ = /2, respectively, using the fourth-order Runge-Kutta method (a discussion of this
method can be found in Appendix D). It is worth noting that the introduction of a second driving
field results in a much more complex pattern for the semiclassical trajectories (for a comparison, see
for instance the same diagram for monochromatic driving fields, presented in Sec. 4.1.2 and [54]).
The figures have been obtained as follows: we cover the interval 0 < to < T (with T = 27 Jwy the

B
I This can be clearly seen in Figs. 4.3.(a) and 4.4 in this thesis. In Fig. 4.3.(a), the graphical method explained in
Chapter 4 shows that the field at the emission time corresponding to the cutoff Emax, given in Fig. 4.4, is close to its

maximum.
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E:’igure 7.1: Classical emission and return times as a function of return energy for an electron in a
field as in Eq. (7.1), with Eoy = Eg2 = Eo, for ¢ = 0. Lower part: emission times; upper part:
return times. The solid arrows connecting both parts indicate the extremal energy trajectories, in
accordance with Table I The dashed arrows indicate non-extremal trajectories which give rise, to
peaks in the wavelet yield of Fig. 7.4.

period of the low-frequency driving field) of the start times with a closely spaced uniform grid. For
each to we calculate the associated return time #; and kinetic energy Eyin(t1,t0)- In general, there
will be more than one solution for each to. Each triplet (tg,t1, Exin(to,t1)) provides one enéry for
Fig. 7.1 or 7.2

Occasionally, we will refer to a triplet (to, t1, Exin(to,t1)) as a “trajectory”. Indeed, a classical
(\lgctr()n trajectory starting with zero velocity from the ionic core (z = 0) and returning to it is
uniquely specified by to and t;. Extremal values of the return energies (mostly maxima, sometimes
minima) in the curves of Figs. 7.1 and 7.2 specify the cutoff energies and the corresponding emission
and return times. In this case, we will cavalierly speak of “extremal trajectories”. All others will
be referred to as “nonextremal trajectories”. The density of ¢;-points in the figures allows to draw
conclusions about the relevance of the corresponding trajectories to the harmonic response. Both
figures 7.1 and 7.2 show the return times only for returns during a time shorter than 2T

For 0 <ty < T and t; — ty < 27T, extremal energies, §; with their associated emission times tg;
and return times t;; are given in Table I (for ¢ = 0) and Table II (for ¢ = m/2), the subscript j
labeling the solutions in increasing order of €;. The corresponding harmonic number is obtained
as ;/w; + 8, since it results from a recombination energy of Egin(t1,t0) + |eo|(where |eo| = 8hwn).
The fifth column gives the kinetic energy of the returning electron in units of the ponderomotive
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Figure 7.2: Same as Fig. 7.1, but for ¢ = /2. The relevant extremal energy trajectories are listed

in Table II.
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energy. In the next subsections, only trajectories with return times 0 < ¢; < 2T" will be taken into
account, since only these contribute to the harmonic yield. The longer return times in Table I, as
well as the respective cutoff frequencies, corresponding to j = 3,6 and 9, will be only necessary in
the discussions of Sec. 7.2.

Table I: cutoff emission and return times,
and the respective harmonic frequencies, for ¢ = 0.

J [ toi/T | /T | (9 +leol)/wr | £5/Up
1 0.20 1.50 9.04 0.22
2 0.21 1.67 10.0 0.50
3 0.85 2.51 104 0.59
4 0.20 1.32 10.7 0.67
5 0.83 1.53 11.5 0.88
6 0.85 2.60 12.1 1.02
it 0.50 0.85 12.5 1.13
8 0.82 1.65 12.6 i.14
9 0.85 2.30 13.7 1.43
10 | 0.81 1.99 19.9 2.98
11 | 0.88 1.29 20.2 3.05
121 020 | 1.99 24.4 412
13 | 0.22 0.98 274 4.86

Table II: cutoff emission and return times,

and the respective harmonic frequencies, for ¢ = 7/2.

3ty /T | &y/T | (24 +|eol)/wr | ©5/Up
1] 080 1.30 10.5 0.62
2 0.82 1.18 11.7 0.92
31 0.36 1.57 16.3 2.16
41 0.76 1.90 17.0 2.24
51 030 1.86 20.7 3.20
6| 0.77 1.56 22.0 3.54
7| 042 0.88 25.9 4.48

The cutoff energies fall into two categories, the high-harmonic peaks, above harmonic 16, and the
low harmonic peaks, below harmonic 16; this dividing line is indicated in the tables. Tables I and
II show that there are regions of the harmonic spectrum without any extremal energies Q;, so that
in the classical picture harmonics in these regions can only be due to ” nonextremal” trajectories.
In fact, Figs. 7.1 and 7.2 show that a given return energy can be accomplished by several start and
return times to and t; such that the return energy is mot extremal. The corresponding times to
and #, satisfy the return condition (4.6), but not the extremal energy condition (4.7). Whenever
possible, we shall discuss the results in Subsec. 7.1.2 and 7.1.3 in terms of extremal return times.
However, in several situations one must refer to non-extremal trajectories for the returning electron
(cf. Subsec. 7.1.3). Dashed arrows in Figs. 7.1 and 7.2 mark those nonextremal trajectories whose
return times are observed in the time-frequency yields presented in Subsec. 7.1.3. We shall refer to
them by (to(u),tl(#)), where the index g increases in alphabetical order with the energy.

The radically different patterns in Figs. 7.1 and 7.2, where not only the cutoff energies, but also
the number of extremal-energy trajectories (for Fig. 7.1, ten cutoff frequencies are present within
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Figure 7.3: Harmonic spectra for a field (7.1) with Ep; = Epz = 0.04 and phases ¢ = 0 (triangles)
and ¢ = w/2 (filled circles). The cutoffs for which an abrupt intensity decrease is present are
indicated. Only the harmonic peak heights are shown, connected by a thin line to guide the eye.
The solid and dashed lines relate, respectively, to ¢ = 0 and ¢ = 7/2.

the additional restriction t; < 27T) vary dramatically with respect to the phase, already suggest
the inexistence of a simple cutoff law of the form €max = |eo| + @(¢)Up. The cutoff frequencies are
connected in an intrincated way, which will be discussed in Subsec. 7.2.2.

7.1.2 Harmonic spectra

In Fig. 7.3 we show the harmonics’ power spectrum for the two cases, ¢ = 0 and ¢ = 7/2, obtained
through the numerical solution of the time-dependent Schrédinger equation. Some of the maximal-
energy cutoffs of Table I (¢ = 0) can be clearly seen: around the frequencies Q;, Qg, £2;; and Q3
maxima are observed with subsequent abrupt decreases in the harmonic intensities. ~ Similar results
are obtained for the case ¢ = /2 (filled circles in Fig. 7.3). Near most of the cutoff energies of
Table II (except 524), again significant decreases of the harmonic intensities in the power spectrum
are observed. The fact that only some cutoffs are followed by abrupt intensity decreases in the
harmonic yield is not surprising, since there are several semiclassical interfering cutoff trajectories
within a very close energy range. Moreover, this interference pattern is also strongly affected by the
intensity of the entire field (7.1). This might seem strange at first sight, since the start and return
times presented in Figs. 7.1 and 7.2 are unaffected if the entire field (7.1) is multiplied by a constant
factor. The kinetic energy upon return just scales with the square of this factor. The harmonic
spectrum does not fully reflect this scaling property of the classical equations of motion. The reason
is that the first step of the three-step model, viz. the probability that an electron is emitted into the
field, scales exponentially with the field in the form exp(—C/|E(t)|), which favors start times where
the field is strong. This dependence of the harmonics on the field at the emission time ¢ is also
shown by the variation of the harmonic yield with the relative phase ¢. An example is presented
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Figure 7.4: Harmonic yield as function of the relative phase ¢, for € = 26w (solid triangles),
€ = 27w, (cross-centered diamonds) and € = 28w (dot-centered circles), connected by thin lines,
compared to the quasi-static ionization rate (solid diamonds connected by a thick line).

in Fig. 7.4, where the intensities of the harmonics ! = 26w, = 27w; and Q = 28wy, given as
functions of ¢, are compared to the quasi-static tunneling rate, exp[—C/|E(t)|]. Both E(to) and to
depend on ¢. Particularly for ¢ ~ 0.357 the emission time jumps from ¢y ~ 0.2T to ty ~ 0.4 due
to the merging of two semiclassical cutoff trajectories. This is discussed in more detail in the next
section. The global behavior of the harmonic yield and the predictions of the quasi-static rate are
strikingly similar, showing a pronounced dip near ¢ = 0.3.

Another feature of the spectrum for ¢ = 0 appears noteworthy. Figure 7.1 shows there is a
significant range of energies — between Qg and 9 — without any extremal energy®. A glance at the
spectrum of Fig. 7.3 draws attention to a suppression of harmonic intensities within this range.

7.1.3 Time-frequency analysis

A detailed analysis of the harmonic response in a certain frequency range with regard to the corre-
sponding emission and return times can be performed through the wavelet analysis. Since we are
mainly interested in the cutoff trajectories, we center the window function approximately at a cutoff
frequency. Figure 7.5 gives the corresponding wavelet yields. The width of the analyzing wavelet is
chosen as ¢ = 0.1 T. The corresponding window in frequency is 2/o, covering about two harmonics
on either side of the center (or 0.8 U, on the scale of Figs. 7.1 and 7.2). The temporal structures
in Fig. 7.5 which are quasi-periodic in the field cycle 7" represent the main contributions to the
generation of this group of harmonics. One should note that for monochromatic driving fields this

2In Table I, there is still the cutoff €, with slightly larger energy than Qg. However, no contribution to the
harmonic yield is given by the return time in question.




68 CHAPTER 7. HHG WITH BICHROMATIC DRIVING FIELDS

periodicity is reduced to T/2%. The fact that the temporal patterns of Figs.7.5(a) and 7.5(b) are
only approximately periodic in 7" is due to the turn-on of the field and to ionization which is inherent
in the TDSE wave function.

We will now try to interpret the wavelet pattern mainly in terms of the “extremal trajectories”.
Inspection of Figs. 7.1 or 7.2 shows that for kinetic energies below a maximal energy (or above
a minimal energy) Q the extremal trajectory splits into two nonextremal energies. As long as
Eyin is still close to 2 the corresponding separation of the associated return times is small and
will not show in the wavelet yield. (It can be made visible, however, by narrowing the window in
time at the expense, of course, of increasing the window in frequency.) This separation is, however,
responsible for a slight disagreement between the position of a maximum in the wavelet yield and the
corresponding maximal return time of Table I or IT which we will observe in some cases. Occasionally
we observe the effect of trajectories with energies far away from their extremal values 2. In such
cases, we will ascribe bumps in the wavelet yield to nonextremal trajectories, or rather to sets of
these.

There is a close connection between our trajectories and those identified in the Lewenstein model
[41, 54]. In addition to the classical kinematics, the latter also incorporates the initial (tunneling)
ionization process, as a result of which the start time becomes a complex rather than a real quantity.
As a consequence, the trajectories of the Lewenstein model are much more difficult to calculate. In
the preceding paragraph, we described the splitting of an extremal trajectory into two nonextremal
trajectories when the energy decreases below a cutoff energy. This is a feature that is shared by
both models.

Let us now discuss in detail the correspondence between the peaks in Fig. 7.5 and the return
times of Tables I and II and of Figs. 7.1 and 7.2. We first consider, for ¢ = 0, the time-dependent
wavelet yield for the window centered at w = 20w; (Fig. 7.5(a), dashed line). We observe two bumps,
at t; = 0.277T (mod T) and ¢; = 0.97 T (mod T), which are very close to the extremal return
times t111 and 113 & t112 of Table I. The energy Q411 is at the center of the frequency window, hence
it makes the largest contribution. Another very noticeable feature is the absence of any significant
yield between t; ~ 0.5 7 (mod T) and t; = 0.8 T (mod T). Indeed, Fig. 7.1 confirms there are
no return times (extremal or other) contributing within this frequency window.

A very similar situation occurs for the frequency window centered at w = 27wy, the position
of the highest cutoff energy (Fig. 7.5(a), dotted line). Bumps are observed at nearly the same
positions as before, but their magnitudes have been exchanged. This is expected from the simple
graphical method, since now the dominant contribution ought to come from the return at £113. A
quite noticeable contribution is still made by t;;; even though the corresponding energy is only
in the wings of the frequency window. Just as for the window centered at 20w;, there is again
a range of return times which generate no contribution at all, which has expanded to 0.4T < ¢;

(mod T") < 0.8T.

The analysis of the results for the frequency window centered at w = 12 wy (Fig. 7.5(a), solid
line) is more involved. This is in the low-energy range, and a glance at the region around Eyin, = Uy,
in Fig. 7.1shows that due to the large amount of structure at low energies a detailed interpretation
of the wavelet yield will be difficult and ambiguous. The most conspicuous feature of the wavelet
vield is the absence of any contribution from return times ¢; (mod T') around 0.9 7. This is in
good agreement with Fig. 7.1 which does not exhibit any trajectories returning around this time
with an energy near the frequency window. The frequency window includes the extremal return
energies from 2y to (g (given in table I, with the associated return times). These times can be

3Recall that for a monochromatic field E(t) we have E(t+7'/2) = —E(t) and A(t+7T/2) = —A(t). For bichromatic
fields this condition holds for odd frequency ratio n = wa /w1, but not for even n. The different periodicity is already
observed for Ega two orders of magnitude smaller than Eo;. This is not explained by the classical model which does
not hold when one of the two fields is too weak.

il
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Figure 7.5: Part (a): wavelet transforms for ¢ = 0. Solid line: window function centered at
) = 12w, dashed line: window function centered at @ = 20w;; dotted line: window function
centered at = 27w;. Part (b): wavelet transforms for ¢ = m/2. Solid line: window function
centered at ) = 12w, dashed line: window function centered at £ = 22w, dotted line: window
function centered at Q = 26w;. In all the plots, ¢ = 0.1T.
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found represented in the wavelet yield, with the notable exception of ¢17 to be discussed below.
They interfere in complicated ways which cannot be inferred from Fig. 7.1, but the fact that they
do is evident from the quite different wavelet yields within the two periods of the driving field
which are covered by Fig. 7.5(a): the physical situation within these two periods only differs by the
amount of ionization reached. Hence the fact that the wavelet yields are so different must be traced
to interference mechanisms.

The conspicuous bump near t; = 0.17" (mod T') (Fig. 7.5(a), solid line) cannot be explained by
any extremal trajectory in Table I. This is an example of the importance of nonextremal trajectories
as defined and explained in Sec. 7.1.1. Within the frequency range of concern, Fig. 7.1 shows a very
well developed set of nonextremal trajectories around t; = 1.1 T (as part of the curve that ultimately
reaches the extremal energy ; outside the frequency window), and it is this set of nonextremal
trajectories that generates the bump.

Within the same frequency window, we identify in Fig. 7.1 another very marked set of trajectories
near ¢; = 0.85 T. These trajectories correspond to harmonic energies varying from the ionization
threshold to the cutoff frequency €7, which is well inside the frequency window. This, however, does
not show at all in the wavelet yield. The reason lies in the range of start times to corresponding to
this trajectory. It comprises about 0.47 < to < 0.67, and in this range the driving electric field is
very weak. In the tunneling regime, start times within this range are strongly underrepresented, and
consequently, their contributions do not show in the harmonic response. This argument suggests
that they might become visible in the multiphoton regime (that is, for lower driving intensities)
where all start times have roughly the same weight. We have checked that this is indeed the case.

Information about the field strength at the start time for this set of trajectorics can be gained
using the graphical method discussed in 4.1.1. If one draws a tangent to the F(t f A(t) curve,
such that the rescattering condition (4.6) for 0.4T < to < 0.6T is satisfied, one Cl(!arly notices that
F(t) in this region is approximately linear. This means that the electric field for these times is
approximately zero.

In general, we expect a trajectory to make the stronger a contribution to the wavelet yield, the
higher the density of relevant return times, the shorter the travel time ¢; — to, and the stronger the
electric field is at the start time ¢.

As a further example, we perform the same analysis for ¢ = /2, shown in Fig.7.5(b). The
classical trajectories’ start and return times are depicted in Fig. 7.3.

Again we obtain a complete explanation of all spectral features in terms of the classical return
times. Concentrating on the wavelet yields in the hlgh energy part of the spectrum, w = 22w,
and w = 26w;. We observe bumps at t; = f16 and ;7 as expected. However, the bump at 16 is
dominant even for the frequency window centered at the higher energy of 26w;. Since the cutoff
energy 97 = 25.9w; is just at that point, one would have expected the bump at t17 = 0.88T to
be the strongest, which is not the case. The explanation can be found again in the value of the
electric field at the start time #,. At the start time corresponding to f17 the field is near its weak
maximum while at the start time corresponding to %14 it is near its overall maximum, and the latter
exceeds the former by a factor of two. In fact, as we decrease the field strength Ejy, the peak at tie
decreases much faster than the one at ¢17. Finally, we notice a small shoulder in the 22w,-wavelet
near t; = 0.757  (mod T'). This can be traced to a nonextremal trajectory (returning in this time
range with a culminating point at the extremal frequency Q7 in Fig. 7.2). Also for w = 12wy, we
recover the extremal semiclassical return times #1; and f;2, and some groups of non-extremal return
times, which are indicated in Figs. 7.2 and 7.5(b).
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7.2 Phase- and intensity-dependence of the cutoffs

In this section, we investigate the dependence of the cutoff energies and their associated start and
return times on the relative phase and intensity of the two driving waves and we discuss the con-
sequences for the resulting harmonic spectra. We try to match features of the calculated spectrum
to the properties of the semiclassical cut-off trajectories. While keeping the total ponderomotive
energy of the field (7.1) constant we vary either the intensity ratio of the high-frequency over the
low-frequency component for constant phase or vary the phase for equal and fixed field components.

7.2.1 Variation of the relative intensities

With the objective of investigating how the ratio n = Egy/ FEy; influences the cutoff energies, we
keep the ponderomotive energy and the phase ¢ fixed and equal, respectively, to U, = 0.31 and

¢ = 0. With g = ~0.4 a.u. this yields a Keldysh parameter v = \/|eo| /2U, = 0.8. For a given 5,
the amplitudes are, for a w-2w bichromatic field,

Up
4472

Ep = 4w (7.3)
and Fgy = nFEg;.

Figure 7.6 shows some of the cutoff energies as functions of the field strength ratio 7. First, let
us consider the monochromatic case 7 = 0. Apart from the well-known maximal cutoff energy emax
=leo| + 3.17U,, additional cutoffs which correspond to longer excursion times of the electron in the
continuum also exist. With the restriction ¢; — tp < 2T, the next two cutoffs are at €1 max = |€o] +
1.54U, and £9 max = |eo| + 2.4U,. All three cutoffs have almost identical start times near to = 0.37,
while the return times are ¢y = 0.957, 1.5T and 2.0T’, respectively. In the monochromatic case, not
much attention is paid to these additional cutoffs since, due to the spreading of the electronic wave
packet and rescattering effects, their contribution to harmonic generation is insignificant. However,
for two-color fields, their role in the harmonic generation process is much more prominent, as we
will see next.

For a monochromatic driving field proportional to sin2nt/T all temporal patterns relevant to
harmonic generation have a period of T/2. That is, if ¢y and ¢; form a pair of start and return
times, then so do ¢ty +nT/2 and t; + nT'/2 for any integer n. This symmetry arises because the
field satisfies E(t + T/2) = —E(t), and the change of sign has no effect on harmonic generation.
This is also evident from Eqgs. (4.6) and (4.7) which determine the start and return times. The
addition of the second field in Eq. (7.1) destroys this symmetry. As a consequence, start times ¢y
and tg +7'/2 no longer lead to return times ¢, and ¢, +T'/2. Trajectories starting at ¢y and ¢ +7'/2
are independent and lead to different kinetic energies upon return.

The consequences can be observed in Fig. 7.6 which depicts the cutoff energies as a function of
the field-strength ratio 7. With the addition of the second driving field, €yax, €1 max and €2 max €ach
split into two branches. The upper branch of e,,ax provides the highest cutoff for all values of the
ratio 7. The lower branch of €., almost merges with the upper branch of &1, When the ratio n
approaches unity. The growth of the most energetic cutoff towards higher energies (roughly 5 Up)
is in agreement with the extension of the plateau in the bichromatic case which has been reported
by several groups [89, 28, 96]. The effect is already visible with the superposition of a very weak
second driving wave. In addition, a group of lower-energy cutoffs appears for values of 7 exceeding
0.6. Remarkably, most of them also split. for increasing 7.

Table III lists the expected harmonic frequencies for the cutoff at emax for several values of 7,
along with the respective values of the two field corponents. The harmonic number results from
Fin{t1,to) /w1 with the addition of |eg| = 8hws.
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Figure 7.6: Cutoff energies as functions of the field-strength ratio 7, for a w-2w driving field and
¢ =0, calculated from the semiclassical three-step model.

Table T1I: Field strength ratio, the respective amplitudes, and approximate harmonic frequencies
for the cutoff trajectories corresponding t0 €max.The relative phase is ¢ = 0.

n Eo1 x 10% | Egz X 107 | (Emax + |€0]) /w1
0 5.59 0 278,

0.2 | 5.56 1.11 30.6 25.7
0.4 | 548 2.19 33.0 24.4
0.6 | 5.35 3.21 35.1 24.6
0.8 | 5.19 415 36.9 25.8
1.0 | 5.0 5.0 384 201

In Fig. 7.7 we present the power spectra of the dipole acceleration from the solution of the
TDSE, for several values of 7. We observe the increase of the cutoff with £,y for increasing 7. The
most dramatic feature is the extreme sensitivity of the power spectra against small variations in 7.
Extreme examples are = 20w; and £ = 14wy, which, from n =0 to = 0.2 suffer a variation of
roughly 5 orders of magnitude. For 1 # 0, also even harmonics are present, as expected. In part
(b) we show the cutoff region in order to illustrate the splitting of the most energetic cutoff, for
n = 0, 0.4 and 0.8. The corresponding cutoff energies (namely the two branches of emax, 8s well
as the upper branch of £omax) are marked with arrows. In each case; the very highest cutoff emax
accurately identifies the onset of the final dropoff of the plateau. The other two cutoffs are typically
followed by decreasing harmonic intensities as well. Moreover, the lower one of these two cutoffs
marks the position of the absolute intensity maximum of the plateau. One should bear in mind,
however, that the one-dimensional calculation overemphasizes the contribution of the longer return
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Figure 7.7: Harmonic yields calculated from the TDSE for U, /w1 = 6.2 and |eg| /w; = 8, for different
field-strength ratios 7 and ¢ = 0. Part (a): complete power spectra, for all values of 7 displayed in
Table I; part (b): high-energy part, for 7 = 0, = 0.4 and 5 = 0.8. The three most energetic cutoffs,
for respectively n = 0, n = 0.4 and 1 = 0.8 are indicated as solid, dashed and dotted arrows. The
thickest arrows show the most energetic cutoff. The numbers on the upper edge of part (b) specify
the kinetic energy upon return in multiples of U, for the 22nd, 26th, 30th, 34th, and 38th harmonic.




74 CHAPTER 7. HHG WITH BICHROMATIC DRIVING FIELDS

Cutoff energy (Up)

tive phase ¢ for a w-2w driving field with both

i H ies as functions of the rela
R e | the semiclassical three-step model. The cutoff

driving waves of equal field strength, calculated from
energies are labeled according to Table I for ¢ < .

i e ee] he
times. OWiIlg to the reduced sig,niﬁ(‘,ance of wave packet Spreadmg. In all the Sp ctra one sees t
)

plateau extension predicted by the three-step model very clearly.

7.2.2 Variation of the relative phase
d strengths Eo1 = Eoz = 0.05 a.u. (w{ = 0.05 a.‘u) and vary th?rfhaset (/)f.f
We take the field to have the same ponderomotive energy as in the prevmus.subs;fcnon. o ix\e/ec:t ; i
energies §); at ¢ =0, in increasing order, are displayed in Table I, along.wuhbt (el res;;ed iy
and return times (to]',tlj)4. The two branches of max, for example, are given by ki3 11- g
Figure 7.8 exhibits the cutoff frequencies (2; as functions of the phase ¢. For ¢ = v(?,;llt}l;{‘eee cuttr;le
energies listed in Table I can be read off. Even thou‘gh the‘curves merge or cr?ss, we iy ﬁ i
notation of Table I throughout. We display an entire period of 27.1' for th‘e p1aste ¢E(t . fw) ;i
trajectories actually obey the smaller period of m: the reason lies in the}:yxnme éy : On, e
—E(t — T/2,¢) of the field (7.1) for our case n = 2. The change of sign a;'no e fe;:l R
generation, and the shift by half a peri(;))d just rgf‘ets t};egclsc})lc;.vs”[t‘ﬁztlzl;e; 1;1)gt§)1e pleriodi](.ity £
i i within the interval 0 < ¢ < w. kigure 7. ; 3
;Sra?zct::(r)lrliltlarslegs, g, Q2 are connected. This is also the case for Qg,'Qn, ng an('i for Qfl ’ 15@]:5, (;Ilgm Et};(;
start and return times also vary as functions. of t'}Il‘i Phase,bbeu‘tl rfg:s; S\:ixolgtg;nifsiﬁmg i
than that of the corresponding kinetic energies. This can zstand, Ly 1 B S‘tal.rt A
is the function F(t) that governs the return conthlfm (.4.6) whose solutléns yield p o
i ince = Fy; /4, the return condition is not very strongly affected by the addition
lcr)itrlrl: ltlli{griisf-reillllleczcgoéeld (:Lln/d 7thus neither by its phase with respect to the low-frequency field).
i NIt - N B

this table, however, do not apply in this subsection, since these
ed in the lower axis of Figs. 7.7 and 7.10.

Next we consider fiel

4The harmonic numbers given in the 4th column of e
are calculated for 4 = 1. The harmonic numbers for v = 0.8 are indicat
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Figure 7.9: Classical start and return times as a function of return energy for an electron in a field
E(t) = 0.05[sin(0.05t) + sin(0.10t + ¢)], for ¢ = m/3. Lower part: start times; upper part: return
times, calculated from the semiclassical three-step model. The solid arrows connecting both parts
show the extremal-energy trajectories, labeled in accordance with Fig. 7.8 and Table I.

On the other hand, the kinetic energies exhibit a much stronger influence of the high-frequency field,
due to their quadratic dependence on the field and since Age = Ag; /2. Hence, the start and return
times displayed in Table I for ¢ = 0 can still be used as points of reference for ¢ # 0. We consider
only trajectories for which the kinetic energy of the electron is of the order of or larger than 0.5U,,
so that we consider cutoff energies higher or equal to §2; in Table 1.

The most energetic cutoff is given by the two trajectories Q13 and Qg which intersect at roughly
¢ = 0.677 (modulo 7). Its absolute maximum of 4.86U,, occurs at ¢ = 0.057. The enveloping
pattern as a function of the phase ¢ for this most energetic cutoff agrees with the curve given in
Ref. [28]. Interestingly, a third trajectory (€, diamonds) merges with 5 at ¢ = 0.37 (modulo
7). More information about this merging can be inferred from Fig. 7.9, where the start and return
times as functions of the kinetic energy of the returning electron are displayed for ¢ = 0.37 As
a function of the kinetic energy Eiin(fo,t1) upon return, the upper and lower parts of the figure
display, respectively, the start and return times ¢y and ¢;. The cutoff energies are easily identified,
and we will refer to the corresponding electron trajectories as “extremal trajectories”. They are
marked by arrows and labeled according to the notation of Fig. 7.8. For the merging trajectories,
there is an extended range of start times between 0.2T and 0.47 all of which correspond to return
times near t; ~ 0.937" , and energies near Q3.

The results stated above are in general confirmed by the numerical solution of the TDSE. We
restrict ourselves to the upper part of the plateau where only few cutoff trajectories are present. In
Fig. 7.10 we plot the high-energy part of the power spectra for several values of the phase in the
interval 0.05m < ¢ < 0.257. The power spectra show an overall intensity decrease of the harmonics
near the cutoff by several orders of magnitude. Partly, this illustrates the decrease of the highest
cutoff from 4.86U, to 4.65U, shown in Fig. 7.8. However, the very pronounced decrease of the
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Figure 7.10: High-energy part of the harmonic yield of a w-2w bichromatic field with equally strong
driving waves, for various relative phases 0.057 < ¢ < 0.25, calculated from the TDSE for Em. =
Epe = 0.05 a.u., wy = 0.05 a.u,, and |eg| = 8w1 The numbers on the upper edge of the figure give
the kinetic energy upon return in multiples of U, for the respective harmonics.

harmonics around the 36th is surprising. As shown in Fig. 7.9, electrons starting at any time within
0.2T < tog < 0.4T return within a narrow range about ¢, = 0.937 with an energy close to 36w . .Yet
the 36th harmonic is not only not in any way enhanced (nor does a calculation of the wavelet yield
show any particular concentration at this time), it is in fact strongly suppresset_i. The reason can
be found in the fact that the electric field within this entire range of emission times is quite we.ak
which prevents significant injection of electrons at these times. This can bg %nferred by inspection
of the field (7.1), but is, in fact, a general consequence of the return cond1t10n.(4.6)A In order to
have a situation like the one we consider — electrons from a whole range of start times to1 g t(). = tﬁ?
all returning at about the same time — the function F(to) must be approximately liI{eaT w1t.hm this
range. Then, however, E (to) is essentially zero, and very few electrons are set free within this range
of start times. A similar situation occurs for the cutoff Q7 in Sec. 7.1.3.

7.3 Discussion

We have investigated harmonic production in the simplest and, possibly, practical}y most rele:vant
case of a two-color driving field, namely, for two parallel linearly polarized fields with frequencies w
and 2w. This field provides two additional parameters as compared to the standard monf)cl.]roma.tlc
field: the relative phase between the two components of frequency w and 2w and tl.lﬂlr mten§1ty
ratio. Also for such fields, the semiclassical three-step model describes high-harmonic generatl‘on
very well, in terms of its spectral and temporal profiles, and can be employed :is a'useful guide
to the interesting regions of the parameter space with high predictive power. }‘f)r instance, the
cutoff structure in the spectra obtained with the TDSE results corresponds well with the extremal
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energies predicted by the semiclassical three-step picture. Moreover, the main contributions to
high-harmonic generation come from the classical extremal return times obtained from the classical
trajectory analysis. The relative heights of the peaks in the temporal harmonic generation profile can
be explained by invoking the first and second steps in the three-step model, namely emission through
tunneling, which is exponentially improbable at times when the field is weak and the time delay
between emission and return to the origin, which allows the wave packet to disperse the more the
longer this delay time. It is surprising that ali peaks observed in the temporal profile can be traced
back to classical return times and that furthermore all prominent peaks have a simple explanation
in terms of short-delay classical returns.

However, even within this simple picture, the second driving field introduces a lot of complexity.
It distorts the semiclassical trajectories of the electron in the continuum, such that, in general, the
number of extremal- energy trajectories considerably increases with respect to the monochromatic
case, their number and energy varying with respect to the relative phase ¢ and the field-strength
ratio 7. In Figs. 7.6 and 7.8, this variation can be clearly seen. Each point in the figures represents a
semiclassical orbit for the electron, within the three-step model framework, which yields maximal or
minimal kinetic energy upon return. These “cutoff trajectories” split, merge or cross each other in
a complicated way, as each of these two parameters are changed. As a consequence there are several
“cutoffs” in the harmonic spectrum whose individual significance is, however, hard to predict. The
question of the existence and form of the cutoff of the harmonic spectrum in the two-color case
has been repeatedly discussed in the literature, that is, the question of whether there is a simple
bichromatic analog of the well known 3.17U,, cutoff law of the monochromatic case. The results of
this chapter indicate there is no simple answer. For any value of the phase ¢ and the ratio 7 of the
two components of the field, there is, of course, a highest cutoff trajectory, but the resulting cutoff
a(n, $)U, is a complicated function of these two parameters. Moreover, the highest cutoff may be
not the most important cutoff: a cutoff which has a lower energy may dominate the spectrum, and
the higher one while visible in the spectrum just shows as a minor bump sitting on the shoulder of
the former. The existence of the two additional parameters provides options of coherent control of
the harmonic output. For example, we confirmed an extension of the plateau due to the addition of
the high-frequency component of the driving field. Experimental confirmation of these predictions
depends on efficient and reliable control of the relative phase between the two components of the
driving field.
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Chapter 8

(Generalities

8.1 Introduction

For many decades, Fermi’s golden rule has been successfully applied for the computation of ionization
rates or probabilities of atoms in external radiation fields. In fact, until the late eighties, all external
field strengths involved in such processes were much weaker than the atomic binding fields. Thus,
an approach based on perturbation theory around the solution of the Schrédinger equation without
the presence of the laser fields [97] is actually expected to yield reasonable results. With the advance
of laser technology, however, nowadays intensities higher than 10?'W/em? are possible and pulses
may be reduced to a duration of 7 ~ 1071%s!. Such intensities are no longer in the region of validity
of conventional perturbation theory - and consequently of Fermi’s golden rule. This new regime is
tackled by expansions around the Gordon-Volkov solution [98] of the Schrodinger equation [65, 99,
100, 101, 104, 105], fully numerical solutions of the Schrédinger equation [34, 47, 48, 50, 106, 107, 108,
109, 110, 111, 112, 113, 114], Floquet solution {115, 116, 117], high frequency approximations [19, 118,
119] or analogies to classical [120, 121, 122, 123] and semi-classical [124] dynamical systems. Some of
these methods suggested there may be physical mechanisms which suppress ionization, leading to so-
called “atomic stabilization”. This theoretical prediction has become one of the most controversial
effects related to the interaction between atoms and strong laser fields, not only concerning its
definition, but even its very existence altogether. For reviews on the subject we refer to [125, 126,
127, 128].

Also the conditions for which stabilization might occur, as well as the physical mechanisms
originating this phenomenon, have raised considerable debate. According to the physical mechanisms
which lead to the suppression of ionization, stabilization is usually classified as:

1. “Interference Stabilization”: In the late eighties, Parker and Stroud [129], and Fedorov and
Movsesian [130] suggested that the ionization amplitudes of closely-spaced atomic Rydberg
states may interfere destructively, such that jonization is suppressed. Concretely, this corre-
sponds to a reduction of the ionization rate below Fermi’s golden rule. These mechanisms are
expected to be destroyed at intensities higher than 10*4W/cm?, resulting in the total ionization
of the atom.

2. “Adiabatic Stabilization”: For very high frequencies and intensities, the atom is distorted in
such a way that the electron gets trapped in a dichotomous effective potential, such that
ionization is suppressed. This was first suggested by Gavrila et al. [19], using the high-
frequency approach. In the limit of infinite frequencies, the eigenstates of this potential are

!For a review and the experimental realization of such pulses see for instance [103].
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orthogonal to the continuum, with no resulting ionization [118]. For finite, but high frequencies,
this trapping mechanism is associated to the decrease of the ionization rate with field strength,
after a critical field intensity above 10'7W/em? [119]. The atomic Hamiltonian was taken
in the Kramers-Henneberger frame, and the dichotomous potential is the first term of the
Fourier expansion of the shifted atomic potential V(Z — &(t)). The other terms are negligible
for very high intensities and frequencies?. Within this picture, stabilization has a stationary
character, in the sense that it does not depend on how the field is switched on and off. In fact,
criticisms concerning this theory are mainly related to its applicability to a realistic pulse, i.e.,
with a turn-on and off and therefore a finite bandwidth. This is an important issue, since the
intensities for which stabilization is supposed to occur can only be achieved using pulsed lasers.
It is commonly accepted, however, that this physical picture should be valid for pulses which
are switched on adiabatically, i.e., in a time scale much longer than the field period, without
suffering 100% ionization in the process [110, 126]. Some classical arguments are also used
in this case, referring to a “quasi-free” electronic wave packet, which can not absorb enough
photons from the field (note that a free particle does not emit or absorb photons), but is not
in a continuum state.

3. “Dynamic Stabilization™ Computations based on the fully numerical solution of the Schrédinger
equation also observed a decrease in the ionization yield after a critical field intensity of more
than 1 a.u. for ultrashort pulses [109].The argument is in principle the same as above, but
in this case stabilization is not regarded as a steady-state phenomenon: the electron, initially
in the ground state, evolves to one or more field-dressed states. The trapping state must be
achieved through an appropriate turn-on of the field [112, 122].

One should keep in mind that this classification is not completely agreed upon within the scientific
community. For instance, several authors regard definition 1 as “dynamic stabilization” 50, 125], and
sometimes computations using pulses with a short turn-on are related to “adiabatic stabilization”, as
long as the concept of an effective dichotomous potential is applicable [125]. Moreover, “interference
stabilization” is sometimes only regarded as “suppression of ionization”, whose physical implications
are not so dramatic as those of definitions 2 and 3. In fact, the two latter subdivisions are much more
counterintuitive and controversial: as stated in [126], in case such predictions are experimentally
confirmed, “a dramatic shift in viewpoint is required to explain the physics of atoms in very strong
laser fields”.

Experimentally, strong deviations from Fermi’s golden rule have been observed, but the fields
involved in these experiments are below the ultra-intense regime concerning the theoretical studies
[20, 21]. In Fig. 8.1, we present results obtained recently by the Amsterdam group concerning the
surviving population of a circular 5g Rydberg state of neon [21], in comparison with the predictions
of Fermi’s golden rule. In their measurement, the ionization probability seems to saturate towards a
finite value, such that 70% of the bound-state population survives a field of roughly 200TW /em?. To
our knowledge, this is the strongest experimental support so far for the existence of stabilization®.

In this thesis, we will neither be concerned with the mechanisms sketched in 1-3, nor with the
methods used by most groups in the investigation of stabilization. Instead, we will perform a non-
orthodox analysis of this phenomenon, providing rigorous mathematical arguments for its existence
or absence. Analytical methods will be used whenever possible. This is a complementary approach

2 Mathematical conditions for this neglect were derived in [119], one of these being known as the “high-frequency
condition”. According to it, stabilization only occurs if the frequency of the driving field is much higher than the
binding energy of the electron. For existing laser frequencies, this condition is more easily fulfilled for highly excited
states.

3There is a numerical computation which presents quantitative agreement with the results of this experiment,
using Floguet and the TDSE methods [131].

8.2. DEFINITION 83

Figurg 8.1: lonized and surviving fractions of the 5g population as functions of the main pulse
intensity, rgeasured by N.J. van Druten et al [21]. The experimental results are given by the solid
and open circles, and the predictions of Fermi’s golden rule by the solid and dashed lines.

to most of the studies concerning stabilization, which are based on numerical treatments. Analytical
a.rgume.nts are desirable, since a high degree of numerical analysis may sometimes be detrimental
to the interpretation of the physical conditions responsible for stabilization. Furthermore, several
results have been disputed (last ref. in [109]) with regard to numerical convergence proble;ns [105]
and the possibility to allow distortions of the electron trajectory, which is believed to be necessar:

for the occurrence of stabilization [34]. Eiy

Moreover, most discussions of stabilization refer to the physical picture of an electron trapped in
a dressed atomic potential. Therefore, alternative views of the problem, presenting other physical
arguments, would certainly contribute to a more complete understanding of this phenomenon.

In particular, we concentrate on the influence of the pulse shape on ionization probability. .Some
authors [104, 109] put forward the claim that in order to observe atomic stabilization one r.equires
pulses WI.IiCh are switched on, sometimes also off, smoothly. It further appears that, among these
authors, it is not commonly agreed upon, whether one should associate these pulse 7shapes to the
laser field or to the associated vector potential. Even though there are detailed studies co;lcerning
the tg:n—on and off [112, 122], and even discussions of which turn-on would be most efficient, we did
not find any rigorous explanation why such pulses should produce so surprising effects. éeltma,n
[105] and also Chen and Bernstein [34] do not find evidence for stabilization for these types of
pulses'with smooth and turn on (and off) of the laser field. As it will become clear in this work
the existence or absence of stabilization involves deeper physical considerations, beyond the smootli
switch-on and -off. '

8.2 Definition

Even though the rough idea behind stabilization is the same, i.e., that atoms may survive ultra-
intense laser fields, there is no agreement upon a rigorous definition of it. For some authors, “sta-
pilization” means that the probability of ionization by a pulse of laser radiation, which f(’)r low
intensities increases with increasing intensities reaches some sort of maximum at 7high intensities
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and commences to decrease until ionization is considerably suppressed [34, 101, 105, 109, 122, 128).
Others adopt the same definition in terms of the ionization rate. Their main argument is that, since
this physical quantity decreases, the average atomic lifetime must increase after a critical intensity
[18, 19, 99, 102, 112, 114, 116, 118, 119]. Furthermore, some authors claim that, concerning ultra-
short and adiabatically switched-on pulses, one must use respectively the ionization probability and
the rate, without a justification for their statements [117, 123]. Some doubts about the rate being a
well-defined concept in this intensity regime have also been raised in the literature [101, 105, 128].

Therefore, since stabilization means different things to different authors, we will precisely state
our definition of it. We will not discuss the behavior of ionization rates as some authors do, but
we shall consider exclusively ionization probabilities. Denoting by [|%|? = ([} = [ |4()|?d3z the
usual Hilbert space norm, the ionization probability is defined as

P) = 1-|PSyl? . (81)
‘We used the scattering matrix

S= . linil exp(ity Hy) - U(ty,t) -exp(—it_H_) , (8.2)
400

where Hy = lim¢—, 100 H(t), ¥ is a normalized bound state of H_, Py is the projector onto the
bound state space of Hy and U(t,t') is the time evolution operator from time ¢’ to ¢ associated? to
H(t). The time evolution operators may be transformed from one gauge to another by

UR(t,¢') = Aa(UR ()AL (). (8.3)
The ionization probability P (1)) is a gauge invariant quantity [134]. Note that for the gauge equiv-
alent Hamiltonians quoted in Chapter 2 we have in general

i S . S . S
Jim HP() # lim H(8) # lim Hiy(t). (84)

However, (recall that b(0) = ¢ (0) = 0), equality in the first case holds whenever we have b (1) = 0 and
in both cases when in addition ¢ (7) = 0. We will encounter this condition of a particularly switched
on and off pulse below once more as the necessary condition for the presence of what we refer to as
asymptotically weak stabilization®. We would like to point out that this condition does not coincide
necessarily with the notion of adiabatically switched on and off pulses, because we may achieve
b(7) = 0 and ¢ (7) = 0 of course also with a very rapid switch on and off. Since we are interested
in the behavior of the atomic bound states |1)(t =0)) = |3} of the Hamiltonian H/* we should
commence the discussion in (8.1) in the length gauge (in this case we have lim,_, 40 HZ (t) = H{)
such that in our situation

, 2
Py) =1—||PU° (r,0)0|] . (8.5)
Regarding the ionization probability as a function of the field amplitude FEy, stabilization means
that
d
PW) i B Pl £l (8.6)
dEy

for Ep € [0,00) on a finite interval. Hence the occurrence of a saddle point does not qualify as
stabilization. Also we would like to introduce some terminology in order to distinguish in (8.6)
between the case of equality and strict inequality. If the former sign holds we call this behavior
“weak stabilization” and in the latter case “strong stabilization”. In case weak stabilization only
occurs in the limit Fy — oo, we shall refer to it as “asymptotically weak stabilization”.

t«pgsociated” is to be understood in the sense that the time evolution operator obeys the Schriodinger equation
’
B U(tt) = HRU().
3There are doubts expressed by experimentalists about the possibility to realise pulses having simultaneously
b(r)=0and c(r) =0 [152].

Chapter 9

Upper and lower bonds for the
ionization probability

Concerning bound-state stabilization through short-pulsed laser radiation, the standard analytical
and semi-analytical methods present several limitations and drawbacks. For instance, the Volkov
solution requires the binding potential to be much smaller than the external field, such that its
applicability to the turn-on and off regions, where both parameters are comparable, is questionable
[101, 105, 128]. Floquet computations [115, 116, 117] should work well for strictly periodic fields or
very smoothly switched on and -off pulses, but are expected to get worse as these pulses get shorter.
Also the high-frequency approximation [19, 118, 119], as its name says, is applicable only within a
certain frequency range. These limitations, together with the fact that fully numerical computations
suggested that the turn-on and off regions are important to the occurrence of stabilization, motivated
the development of the method discussed in this chapter. One of the main virtues of this approach is
that it may be carried out purely analytically. Moreover, it is valid for arbitrary frequency and pulse
shape, including the turn-on and off regions. In different contexts it has turned out to be extremely
fruitful, for instance in the proof of the stability of matter [132] and the stability of matter in a
magnetic field [133]. The essence of the method consists in treating bounds which restrict a physical
quantity rather than looking at its actual value.

We will provide rigorous analytic expressions for the upper and lower bound, P,(1) and Py (%),
respectively, for the ionization probability in the sense that

P(¥) < P() < Pu(t)). 1)

Surely one should treat these expressions with care and be aware of their limitations in the sense
that about the actual shape of P(3) no decisive conclusion can be drawn whenever P(¢) differs
strongly from P, (3). However, it seems a reasonable assumption that the analytic expression of the
bounds reflect qualitatively the behavior of the precise ionization probability. Nonetheless, there
exist certain type of questions in the present context which can be answered decisively with this
method. Concerning the question of stabilization we may consider the bounds as functions of the
field amplitude and can conclude that stabilization exists or does not exist once we find that P,(v)
for increasing field amplitude tends to zerc and Py(+) tends to one, respectively. Unfortunately, one
does net always succeed in deriving analytic expressions which are of this restrictive form.

We would like the reader to keep in mind that the cutcome of every theoretical investigation
will attach some sort of error to any physical quantity. In the minority of cases this error can be
precisely stated, since it may either be the consequence of various qualitative assumptions based
on some physical reasoning which are difficult to quantify or it may be of a more technical nature
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originating in the method used. Examples concerning analytical methods were already given in this
chapter. Also concerning the fully numerical solution of the Schrédinger equation, one is forced to,
for instance, discretize H(t), insert the atom into a finite box, obtaining a “discrete continuum”,
and introduce absorbing mask functions at the boundary (we refer to Sec. 4.3 in Chapter 4 and
Appendix D of this thesis for more details on this method). Even the main physical framework
(i.e. non-relativity, dipole approximation, classical treatment of the external field, neglect of the
magnetic field) introduces some error, which may lead to incorrect results for relativistic intensities
and ultra-high frequencies. Therefore, one is always dealing with some form of bounds.

9.1 General expressions

‘We shall now briefly recall the general expressions for these bounds, derived by Fring, Kostrykin
and Schrader using methods of functional analysis [134]. These expressions are valid for any bound
state, arbitrary external fields and a wide range of binding potentials'. In order to give an idea
of the estimations involved, one of these derivations is briefly sketched. We refer to [134] for more
details and further derivations. In this reference, the lower bound

.

A(p)=1- { / I(VE - c(t)éw) — V@)t

0

2
2 x 2b(7)l
—|[(V{E—c(r)é:) -V — P 9.2

o IV E — e = VEWI+ 5 s Teav (92)
was obtained. This bound is valid when the classical energy transfer is larger than the ionization
energy of the bound state, i.e.|en| < b(r)2/2. Here, &,, b(r) and ¢(7) denote, respectively the
binding energy, the momentum transfer and the classical displacement caused on the electron by
the field. The wave function 1 refers to a normalized bound state of the atomic Hamiltonian H, f\
The restriction upon b(7) appears as a technical requirement in the computation, but in fact has
a deeper physical meaning. In order to prove Eq. (9.2), one must start from Eq. (8.5), which
gives the ionization probability. A lower bound for this equation corresponds to an upper bound on
[|PUZ (7,0)9]|. First we write

[ PUL (7, 0)l |PA ki (YU (7, 00

1P exp —ib(7)x - expic(r)p - U (r, 0)9|
|17 exp —ib(r)x - exp ic(7)pz - (U (7, 0) — exp ~ir Hi )
+|| P exp —ib(T)x - expic(T)ps - || 9.3)

Il

IN

The first term on the r.h.s. is estimated using Du Hamel formula. This important expression gives
a relation between two time evolution operators Ug(t,t') and U2(t,t') associated to two different

Hamiltonians Hg(t) and H;-’(t)7 respectively
i i
b . a b ATTh
st t) = Ub(t, t’)~1,/ ds U (t,5) HEH(5)US (5, ). (9.4)

v

IThe only restriction upon thesc is that they are “Kato potentials”. This means that, if each a with 0<ax<l1
there is a constant b < oo, such that ||[Va|| < al| — A|| + b4l holds for all 9 in the domain D(Ho) of Ho = —A/2,
see for instance [32, 137). This guarantees that each term in the inequalities (9.2), (9.11) and (9.12) is finite. In
particular the Coulomb potential and its modifications, which are very often employed in numerical computations,
such as smoothed or screened Coulomb potentials, belong to this category. However, the delta-potential, which is
widely used in toy-model computations, is not a Kato potential.
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Here we use the notation Hf)f(s) = H{(s) — Hb(s). We take now U2(t,t') = Ugy(7,0) and
U;’(t,t’): exp —iTHfyy, such that || (Ug;(7,0) — exp —ir H{ )¢| is rewritten as

/ U u(m, )V (E = e(t)és) — V(F)] exp—i(r — ) Hity - dt” ) (9.5)
0
Now, using the unitarity of U (7, t), one finds an upper bound for Eq. (9.5), given by

/ "NVE - et)es) - VEIIE, (9.6)

achieving the first term of the lower bound (9.2).
The second term in (9.3) is treated as follows. By assumption PH ;é g < 0. Let 6§ > 0 be arbitrary.
Then P(Hj, — 6)7! is a well defined operator with operator norm < 1/6. Hence

|| P exp —ib(7)x - expic(T)ps - Y|
|P(Hity — 8) Y (Hi y — 6) exp —ib(T)x - exp ic(T)ps - ¥
LI(Hiky — 8) exp—ib(r)x - expic(r)p - I ©7)

‘We now use the fact that

Il

iA

exp —ic(T)pz - exp ib(7)x - Hit g - exp —ib(T)x - expic(T)pa

1
5(—1:v —b(1)éz)? + V(F - c(7)éz)
1
= Hfjy —b0(1)pa + 55(r)" + V(F — e(r)és) - V(¥). (9.8)
Inserting this into (9.7) we obtain
o ; 1 = ’ -
I[P exp—ib(r)x - expic(r)pzd| < SIV(F~elr)ea) = V(E) -9
1 1
+5llen —b(T)pe + 50()* — &)yl (9.9)
‘We now make the choice 3
F=Ep + 517(1)2 (9.10)
which by assumption on b(7) is > 0 and when inserted into (9.8) immediately yields the remaining

two terms in the bracket of (9.7), thus concluding the proof of the lower limit.
Using similar methods, it is also possible to derive the upper bounds

P¥) = { / IV = () — VEllde (9.11)

2|b(r)|
mupzwu}

2
+le(m)] ezl + :

and

Pu(¥) = {/H(V(F—C(t)ém)*V(F))d}lldt
0

2
+e(n)l Ipall + 16(7)] Iixwll} : (9.12)
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The upper bound (9.11) was obtained within the restriction |e,| > b(7)?/2, whereas no conditions
upon the energy were needed in the derivation of (9.12).

9.2 Upper and lower bounds for the Hydrogen atom

In the following (see also [135]) we will consider a realistic example and take the potential V to be
the Coulomb potential, concentrating our discussion on the Hydrogen atom. In [134], the upper and
lower bounds were calculated for its ground state 1,4y. For increasing intensities, the lower bound
increases and the existence of atomic stabilization can be excluded in the sense that the ionization
probability tends to one. The shortcoming of the analysis in [134] is that definite conclusions
concerning the above question may only be reached for extremely short pulses (7 < 1 a.u.), which
are experimentally unrealistic. In this Section, these bounds are analyzed in further detail, and
we demonstrate that atomic stabilization can also be excluded for longer pulses. In this case it

is well known that the binding energy for a state ¥, is e, = —527, [[Pe¥nool® = 5% and
I%%n00ll® = 3(¥no0lr?[noo) = % (5n? + 1) (see for instance [66, 138]). We will employ these

relations below. In [134] it was shown, that the Hilbert space norm of the difference of the potential
in the Kramers-Henneberger frame [31] and in the laboratory frame applied to the state 9

NE, ) = V=0 -Vl (9.13)

is bounded by 2 when ¢ = g for arbitrary ¢ = cé,. We shall now investigate in more detail how
this function depends on c. In order to simplify notations we ignore in the following the explicit
mentioning of é;. In Appendix E we present a detailed computation, where we obtain

N2(c,100) = 2+(1+|c\“1)e”“‘Ei(\c|)+(17\ci’l)e‘c‘Ei(f\c1)+|%l(e’zlc‘ 71)4 (9.14)

Here Fi(x) denotes the exponential integral function, given by the principal value of the integral
o0
et
Ei(z) = 7/7— dt for 340 4 (9.15)

Considering now the asymptotic behavior of N, we obtain as expected liI% N =0and lim N =+/2.
ooy ] c—00

Noting further that N is a monotonically increasing function of ¢, (one may easily compute its
derivatives w.r.t. ¢, but we refer here only to the plot of this function in Fig. 9.1), it follows that
the [134] estimate may in fact be improved to N(c,119) < v/2. The important thing to notice is,
that since N(e¢,vg) is an overall increasing function of ¢, it therefore also increases as a function
of the field strength. The last term in the bracket of the lower bound Py(1) is a decreasing function
of the field strength, while the second term does not have an obvious behavior. Hence if the first
term dominates the whole expression in the bracket, thus leading to a decrease of F;(1), one has in
principle the possibility of stabilization. We now investigate several pulse shapes for the possibility
of such a behavior and analyze the expressions

;- : 2
Pi($100) = 1- {/N(CU)v%oo)dt it HNb((CT(QLin& i % b(lTb)(zTﬁ 1} (9.16)

0

2

Py(tho) = O/ N(e(®), bro0)dt + ‘C(j;‘ﬂb(rn . (9.17)
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Figure 9.1: The Hilbert space norm of the difference of the potential in the Kramers-Henneberger
frame and in the laboratory frame applied to the state 1,4y as a function of the classical displacement
e

Here we have simply inserted the explicit values for €1, ||xt10o| and ||Pzt100]| into (9.11) and (9.2),
and understand N(c, %4q) to be given by the analytical expression (9.14). The formulae presented
in Appendix E allow in principle also the computation of N(¢,%,,,,) for different values of n,! and
m. However, for [ # 0 the sum over the Clebsch-Gordan coefficients becomes more complicated
and due to the presence of the Laguerre polynomial of degree n in the radial wave function R,
this becomes a rather complex analytical computation. We will therefore be content with a cruder
analytical estimate here. In fact, we have

N2 (elt) Botn) < 2tbmon, VO bron) = 5 (918)

In the appendix of [134] this statement was proven for n = 1. The general proof for arbitrary n may
be carried out along the same line. Therefore, we obtain the following new upper and lower bounds

2
2 4 1 1 2]
= T e i S T e OO . 7, 1
Punoo) = 1 {ns/f 1w T BN — 12 )
Ty 2

2 le(T)] 5n2 +1
Paulihnan) = {m—z + R (9:20

which are “weaker” than (9.17) and (9.16), in the sense that
Proy(¥00) < Pi(¥n00) < P(¥00) < Pul¥noo) < Puw(Proo) - (9.21)

ir order for (9.19) to be valid we must have b(t)? > . We will now turn to a detailed analysis
of these bounds by looking at different pulses. The main purpose for considering states of the type
Yy, With 1 7 1 is to extend our discussion to pulses with longer duration. The reason that longer
pulse durations are accessible for states with higher n is the n-dependence in estimate (9.18) and its
effect in (9.20) and (9.19).
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Figure 9.2: Upper (three curves on the left) and lower bound (P, and P)) for the ionization proba-
bility of the 1, o state through a static laser field Ey as functions of the pulse length 7. The dotted,
dashed and solid curves corresponds, respectively, to Ep = 5 a.u., Eg =10 a.u. and Ep = 20 a.u.

9.2.1 Static Field

This is the simplest case, but still instructive to investigate since it already contains the general
feature which we will observe for more complicated pulses. It is furthermore important to study,
because it may be viewed as the background which is present in most experimental setups, before
more complicated pulses can be generated. For a static field of intensity I = E3 we have

_ Eot?

E(t) = Ey b(t) = Eot c(t) =

(9.22)
for 0 < t < 7. Inserting these functions into (9.16) we may easily compute the upper and lower
bound. Here the one dimensional integrals over time, appearing in (9.17) and (9.16) were carried
out numerically. The result is presented in Fig. 9.2, which shows that a bound for higher intensi-
ties always corresponds to a higher ionization probability. The overall qualitative behavior clearly
indicates that for increasing field strength the ionization probability also increases and tends to one.
In particular lines for different intensities never cross each other. Surely the shown pulse lengths
are too short to be realistic and we will indicate below how to obtain situations in which conclu-
sive statements may be drawn concerning longer pulse durations. In the following we will always
encounter the same qualitative behavior.

9.2.2 Linearly polarized monochromatic light (LPML)
Now we have

E e = QWE a2 (%t) i % {ut— sinfaD)) (9.23)

for 0 < ¢t < 7. The result of the computation which employs these functions in order to compute
(9.16) and (9.17) is illustrated in Fig. 9.3. Once again our bounds indicate that for increasing
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Figure 9.3: Upper (three curves on the left) and lower bound (P, and P)) for the ionization prob-
ability of the 1, 4o state through a linearly polarized monochromatic laser field F(t) = Eysin(wt),
with w = 1.5 a.u. as functions of the pulse length 7. The dotted, dashed and solid curves correspond,
respectively, to Ep =5 a.u., Fg = 10 a.u. and Ey =20 a.u.

field strength the ionization probability also increases. Keeping the field strength fixed at Eg = 2
a.u., a comparison between the case for w = 0.4 and w = 4 shows (Fig. 9.4), as expected, the
lower bounds for the ionization probability to be decreasing functions of the frequency. The peak
on the left, which seems to contradict this statement for that region, is only due to the fact that
the expression for the lower bound is not valid for w = 0.4 in that regime. Clearly, this is not
meant by stabilization, since for this to happen we require fixed frequencies and we have to analyze
the behaviour for varying field strength. The claim [19, 109, 118, 119] is that in general very high
frequencies are required for this phenomenon to emerge. Our analysis does not support stabilization
for any frequency. As mentioned above, the shortcoming of the analysis of the bounds P, (o) and
Py(100) is that we only see an effect for times smaller than one atomic unit. Figs. 9.4 and 9.5 also
show that by considering P(1,,q¢) for higher values of n our expressions allow also conclusions for
longer pulse durations. For the reasons mentioned above, in this analysis we employed the slightly
weaker bounds (9.20) and (9.19).

9.2.3 LPML with a trapezoidal enveloping function

We now turn to the simplest case of a pulse which is adiabatically switched on and off. These types
of pulses are of special interest since many authors observed (see, e.g., [109, 110, 112, 104]) that
stabilization only occurs in these cases. We consider a pulse of duration 7 which has linear turn-on
and turn-off ramps of length T. Then

= for 0<t<T
E(t) = Epsin(wt){ 1 for T<t<(ro—T) (9.24)
%l for (to—T)<t<Tg

b(rg) = :u% {sin(wT") — sin(wTo) + sin(w(ro — T))} (9.25)
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Figure 9.4: Lower bound (Py,) for the ionization probability of the 114 gpstate through a linearly
polarized laser field E(t) = Eypsin(wt), with Ep = 2 a.u. as a function of the pulse length 7. The

dotted and solid curves correspond, respectively, to w = 0.4 a.u. and w =4 a.u.
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Figure 9.5: Lower bound (Py,) for the ionization probability of the 1y gostate through a linearly
polarized laser field E(t) = Egsin(wt), with Eg = 20 a.u. and w = 1.5 a.u. as a function of the pulse

length 7.
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Figure 9.6: Lower bound for the ionization probability of the ¢34 gg-state through a linearly polarized
monochromatic laser field with a trapezoidal (upper curves of different line types) and a sine-squared
(lower curves) turn-on and off enveloping function, with frequency w = 1.5 a.u. Solid lines:% —12— %

pulse; dashed line:§ =10 == % pulse; dotted line:%7 —6— —14—7 pulse.
Eo
e(rg) = =T 2 — 2cos(wT') + 2 cos(wTg) — 2cos(w(To — T'))
—wT'sin(wT) 4 wrg sin(wT") + wT sin(w(To — T))) . (9.26)

The expressions for b(t) and c¢(t) are rather messy and will not be reported here since we only
analyze the weaker bounds. Notice that now, in contrast to the previous cases, both b(7¢) and ¢(7¢)
may become zero for certain pulse durations and ramps. We choose the ramps to be of the form
T = (m+ 1) 2= (m being an integer) for the lower and 7' = (m + §) 2 for the upper bound®. Our
lower bound does not permit the analysis of half cycles since then b(7¢) = 0. The results are shown
in Figs. 9.6 and 9.7, which both do not show any evidence for stabilization. They further indicate
that a decrease in the slopes of the ramps with fixed pulse duration, leads to a smaller ionization
probability. Once more (we do not present a figure for this, since one may also see this from the
analytical expressions), an increase in the frequency leads to a decrease in the lower bound of the
jonization probability for fixed field strength.

9.2.4 LPML with a sine-squared enveloping function

Here we consider a sinus squared enveloping function for the laser field, of frequency < w.

o

E(t) = Ep sin? ()sin(wt) 9.27)

2Concerning the figures of this and the next subsection, we sometimes adopt a specific terminology to this field of
— ¢ pulse, where ¢; are rational numbers and m an integer. This shouid be understood
s amplitude being kept

research, referring toa ¢y —m
pulse which is switched on and off smoothly within respectively c¢1 and cg field cycles,

as A
constant over m cycles.
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Figure 9.7: Upper bound Py, for the ionization probability of the 3, oo-state through a linearly
polarized monochromatic laser field with a trapezoidal (upper curves of the same line type) and a
sine-squared (lower curves) turn-on and off enveloping function, with frequency w = 1.5 a.u. Solid
lines:% —6— % pulse; dashed line:g =4 — % pulse; dotted line:g =g ,_5, pulse.

E 5
b(t) = m (8 2% +20% cos(wt) — 8022 cos(wt)
~w? cos((w—22) t) — 2w 2 cos((w —212) t)
—w? cos((w +202) t) + 2w 2 cos((w + 2 2) t)) (9.28)
et) = E02 5 | —8w? 2%t + 32w 2%t — 20? sin(wt)
402 (w20 (w+20)?

+16w? 22 sin(wt) — 32 2% sin(wt) — w? sin((2 2 — w) t)
—4w® 2 sin((202 — w) t) — 40? 2% sin((202 — w) t)
+w? sin((w+292) t) — 40® 2 sin((w + 2 2) t)

+40? 2% sin((w +20) t)) (9.29)

for 0 <t < 7. At first sight it appears that both b(¢) and c(t) are singular at w = £2Q, which of
course is not the case since both functions are bounded as one may easily derive. With the help
of the Schwarz inequality applied on (9.28) and (9.29), it follows that always |b(t)| < 2 ||Eg|| and
le(t)] < %t% || Eo||. We first investigate the situation in which this pulse is switched on smoothly but
turned off abruptly. Figure 9.8 shows that the bounds become nontrivial for times larger than one
atomic unit in the same fashion as in the previous cases by considering Pj(1,,4) for higher values
of n. Figure 9.9 shows that also in this case the ionization probability tends to one and no sign for
stabilization is found. Figure 9.10 shows the lower bound in which the pulse length is taken to be a

9.2. UPPER AND LOWER BOUNDS FOR THE HYDROGEN ATOM . 95

ox (\

06

04

02

Figure 9.8: Lower bound for the ionization probability of the 13 go-state through a linearly polarized
monochromatic laser field with a trapezoidal (upper curves of different line types) and a sine-squared
(lower curves) turn-on and off enveloping function, with frequency w = 1.5 a.u. Solid lines:?1 —-12— %

pulse; dashed line:g —10 - % pulse; dotted Iine:1—47— —6- % pulse.

half cycle of the enveloping function. Once more it indicates increasing ionization probability with
increasing field strength and also for increasing values for n. Following now Geltman [105] and Su
et al. [109] we employ the sine-square only for the turn-on and off and include a plateau region into
the pulse shape. Then

sin? (2% for 0<t<T
E(t) = Epsin(wt){ ! for T<it<(ro-T) (9.30)
sin? (L(%’T;Q) for (ro—T)<t<To
Eon? (1 +cos(wT) — cos(w (T — 79)) — cos(wTo)) 9.31)
Yrg} = 2wn? — 203 T2 ’
Eym*2w? 2 3 2 2 373
e(rg) = ———Wwrltg—w’T?7p —wr*T cos(wT) +w’ T* cos(wT)
(72 — w2 T2)
+ wrlty cos(wT) —w?T?7¢ cos(wT) —wn? T cos(w (T — 7p))
+ w3T? cos(w (T —79)) + 72 sin(wT) — 3w T? sin(w T)
+ 72 sin(w (T — 70)) — 3w? T? sin(w (T — 74)) — 7* sin(w o)
+ 3w?T? sin(wTy)) . (9.32)

(Also in these cases the apparent poles in b(7¢) and ¢(7p) for w = £7 are accompanied by Z€108.)
The results of this computations are shown in Figs. 9.6 and 9.7, once more with no evidence for
bound-state stabilization. A comparison with the linear switch on and off shows that the ionization
probability for sine-squared turn-on and offs is lower. The effect is larger for longer ramps.
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Figure 9.9: Lower bound (P,) for the ionization probability of the g, gostate through a
linearly polarized monochromatic laser field with a sine-squared enveloping function, E(t)
Epsin(wt)sin?(Q%), w = 0.2 a.u,Q = 0.01 au. The dotted curve corresponds to Ey = 5 a.u.
the dashed curve to Ey = 10 a.u. and the solid curve to Ey = 20 a.u. ’
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Figure 9.10: Lower bound (Py,) for the ionization probability of the 1, gostate through a
linearly polarized monochromatic laser field with a sine-squared enveloping function, E(t) =
Eysin(wt) sin?(Q#), w = 0.8 a.u.,Q = w/13.5. The dotted curve corresponds to n = 40, the dashed
curve to n = 35 and the solid curve to n = 30.
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9.3 Discussion

We have investigated the ionization probability for the Hydrogen atom when exposed to ultra-intense
shortly pulsed laser radiation of various types of pulse shapes. In comparison with [134], we extended
our analysis to the situation which is applicable to any bound-state v,,,,, and in particular for the
1go-State we carried out the computation until the end for the stronger upper (9.17) and lower
(9.16) bounds. We overcome the shortcoming of [134] which did not allow definite statements for
pulses of durations longer than one atomic unit by investigating the bounds for higher values of n.
As our computations show, there is of course a quantitative different behavior for different values of
n. However, qualitatively we obtain the same behavior (refer to Fig. 9.10).

For the situation when the total classical momentum transfer b(7) and the total classical dis-
placement ¢(7) are non-vanishing we confirm once more the results of [134] and do not find any
evidence for bound-state stabilization for ultrashort pulses. This holds for various types of pulses,
whether they are switched on (and off), smoothly or not. Therefore, smooth pulses in general will
only prolong the onset of ionization but will not provide a mechanism for stabilization. Another
interesting feature is the increase of the lower bound for the ionization probability with principal
quantum number. This is in apparent contradiction with the statement that stabilization should
occur more easily for Rydberg states.

We would like now to comment on pulses with vanishing momentum transfer. Even though our
lower bound is not applicable under this condition (in the sense that then the condition $b%(7) > [en|
is not fulfilled), we are still able to draw some conclusions.

For pulses switched on and off such that b(7) = 0, but ¢(7) # 0, our bounds do not allow any
definite statement, since the lower bound is not applicable and the upper bound gives for typical
values of the frequency and field strength ionization probabilities larger than one. These types of
pulses are extensively used in the literature ( for instance in [104, 109, 111}]). Therefore, it would be
very interesting to find alternative expressions for the upper and lower bound which allow conclusions
on this case.

For the case b() = ¢(r) = 0 the upper bound P, remains an increasing function of the field
strength due to the properties of the Hilbert space norm of the difference of the potential in the
Kramers-Henneberger frame and in the laboratory frame applied to the state 100- The weaker
upper bound takes on the value Puw(¥00) = 14"1;, which implies that the upper bound decreases
with increasing n, i.e. for states close to the ionization threshold, and fixed 73. Classically, this
apparently counterintuitive behavior can be intuitively understood. For closed Kepler orbits, i.e.
ellipses, with energies sufficiently close to zero (depending on 7), for any pulse with small b(r) and
¢(T), these quantities will be very close to the actual changes, caused by the pulse, of the momentum
and the coordinate, respectively. So in this case ionization, i.e. the transition to a hyperbolic or
parabolic orbit will therefore be very unlikely. These results are in perfect accordance with the
findings that precisely the highly excited states should stabilize, and suggest that the momentum
transfer delimits regions of different physical behavior. In fact, vanishing momentum transfer at the
end of the pulse was pointed out in [121] as a necessary condition for the occurrence of stabilization
using classical arguments. Also in the investigations in [136] stabilization is found for this case,
however with the additional condition ¢(7) = 0. A detailed analysis allowing for all possible values
of b(r) and ¢(7) using entirely different methods will be presented in Chapter 10.

In principle, it is possible to carry out our analysis further and also investigate the influence
of varying the quantum numbers 1 and m on the ionization probability, in order to compare with
existing results in the literature [111, 139]. However, due to the sum in (E.6) the explicit expressions
will be rather messy and we will therefore omit them here.

3The same dependence with the principal number was observed in [111] in a three-dimensional TDSE computation
for Hydrogen.
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CHAPTER 9.

UPPER AND LOWER BONDS FOR THE IONIZATION PROBABILITY

Chapter 10

Momentum transfer, classical
displacement and stabilization

In the previous chapter, we confirmed the results of [134] that stabilization is always absent for non-
vanishing momentum transfer at the end of the pulse. These features neither depend on the pulse
shape nor on its frequency. For the case b(r) = 0, the method used did not allow any decisive conclu-
sion concerning stabilization. However, the results in Chapter 9 already indicate that the momentum
transfer and the classical displacement delimit regions of different physical behavior concerning ion-
ization. In particular, a suppression of ionization was observed when these two quantities vanish at
the end of the pulse. In fact, investigations of the ionization probability in the ultra-extreme limit,
i.e., when the field strength is taken to infinity, found, under the condition b(T) = ¢(7) = 0, what
we call “asymptotically weak stabilization” [136]. Despite the fact that in this regime one should
commence with a relativistic treatment, our physical framework, that is the Schrédinger equation
(2.1) remains self-consistent, and should represent the overall behavior. Moreover, it suggests that
for finite, but high enough intensities for which (2.1) can still be applied, the ionization probability
may in practice saturate with the external field strength towards a finite value smaller than one.
This extremely counterintuitive behavior, which also qualitatively corresponds to the experimental
findings of N.J. van Druten et al., [21], motivated the investigation in this chapter.

We took a concrete example in order to investigate whether the same features might be recov-
ered. We consider one-dimensional atomic models with attractive delta potentials in the presence
of intense very shortly pulsed laser radiation. Both independent general non-perturbative as well
as perturbative arguments and the analysis of the explicit analytic expressions demonstrate that
weak stabilization occurs when both the total classical momentum transfer and the total classical
displacement vanish simultaneously. The effect is relatively stable towards small variations of the
displacement, but more sensitive towards changes of the momentum transfer away from zero.

10.1 The Gordon-Volkov (GV) perturbation theory

In the high intensity regime for the radiation fields, the basic assumption for the validity of con-
ventional perturbation theory breaks down, i.e. that the absolute value of the potential is large
in comparison with the absolute value of the field. However, there is a replacement for this, the
so-called Gordon-Volkov (GV) perturbation theory [98]. Since the basic idea is simple, it makes
this approach very attractive. Instead of constructing the power series, either for the fields or for
the time evolution operator, out of the solution for the Schrodinger equation involving the field-free
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atomic Hamiltonian H, lA and regarding xE(t) as the perturbation, one constructs the series out of
solutions involving the Hamiltonian HE" of an unbound particle in the field and treats the potential
V as the perturbation.

The starting point in this analysis is the Du Hamel formula (9.4), whose formal iteration yields

the perturbative series
oo
UR@,t) =Y U (nlt,t) . (10.1)
n=0
We introduced the quantity U;f}b(nft,t’ ) relating to the time evolution operator order by order

in perturbation theory, i.e. UR*(0ft,t') = UL(t,t'), USL(1]e,#') = i [tds U? (t,8) Y (s)U(s,1').

Taking therefore ¢ = j and in addition a = S and b = GV we obtain

US(t,8) = USY(t,£) + USCY (L, ) + ... (10.2)

In this case we need Hi?'l‘cv(t) = H3SV(t) =V (¥), Hoghpy(t) = V(E - ¢(t)é,) and the Gordon-
Volkov time evolution operator, which in the KH-frame eciuals the free-particle evolution operator
in the length gauge

URG(6¢) = U(t,¢) = e (103)
The expressions for the Gordon-Volkov time evolution operator in the length and velocity gauge
may then simply be obtained from (10.3) by the application of the gauge transformations (2.7)-(2.8)
discussed in Chapter 2 according to the transformation (8.3) concerning the time-evolution operator.
The choice i = j together with a = S and b = A in the Du Hamel formula (9.4) yields the usual
perturbation series, which is well known from the low intensity regime. Surely, care has to be taken
concerning the question of convergence the Gordon-Volkov series. In particular if one has oscillating
laser fields, there will always be regions in which the potential in absolute value is still larger than
the fields. Also for instance the Coulomb potential may be larger in absolute value than the electrical
field near the origin. A systematic analysis of this problem does not yet exist, but there are some
partial results, see for instance [100].

There are some results which may be derived from the perturbative expression, one concerning the
ultra-extreme intensity limit Eg — oo used in [136] and the other the ultra-extreme high frequency
limit w — oo (a slightly milder assumption was used in the seminal paper [19] which formulates the
high frequency approach). Both results are simple consequences of the Riemann-Lebesgue theorem!,
which is applicable if the laser field is of frequency w modulated with an arbitrary enveloping function
(we only demand that g(¢) is integrable)

E(t) = Egsin(wt)g(t). (10.4)
For infinite frequencies we obtain
Jim A gen () = lim Augp(t) =1 (10.5)
such that with (10.3)
Jim USY(t,¢') = lim USY(t,¢) = UL(t, ') = e~ C-*)ET, (10.6)

Since the atomic potential is independent of Ey we obtain with (10.6) that the entire Gordon-Volkov
series (10.1) is independent of the field amplitude as well, such that

d%, (sim P@) =0 . (10.7)

oo
HIf g(x) € L1(—00,00) (i.e. |g(z)| is integrable) then - lig J g(z)e=dz = 0.
t—oo 'L

T Tm—
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‘We have therefore weak stabilization in this ultra-extreme high frequency limit for all systems for
which (10.1) makes sense and for which the laser field is of the form (10.4). One should keep in mind
that the use of the Stark Hamiltonian in (2.1) assumes the validity of the dipole approximation, such
that the limit w — oo only makes formally sense. In order to describe real physics in this frequency
regime one should actually also take multipole terms into account.

Concerning the ultra-extreme intensity limit, we consider the transition amplitude between two
bound states %;(Z), ¥;(Z) of the Hamiltonian H;* perturbatively

(BulUZ (7, 0)15) = ($sl Ak (T)UR p(7,0)[95)
= (WlAkaa(MUZE(0;) + (Wil Axr (UG R (Ar,Olw; )+ ... (108)
Recall that a(0) = b(0) = ¢(0) = 0, such that A; xu(0) = 1. Using now (10.3) it is clear that to
zeroth order we obtain 1 .
($: @l @) (10.9)

when b(1) = ¢(r) = 0. In all other cases we may bring this term into a form suitable for the
application of the Riemann-Lebesgue theorem, such that the zeroth order matrix element always
vanishes in the ultra-extreme intensity limit. For the higher order terms the argument is analogous
with the difference that the condition b(7) = ¢(7) = 0 does not have the consequence that these
expressions become independent of Ey, since also terms like b(t), ¢(t) for 0 < ¢ < T appear. Hence by
the application of the Riemann-Lebesgue theorem all higher order terms vanish in the limit Ey — co.
If we now sum over all bound states ¢ in (10.8) we obtain the results of [136].

We shall now use the Gordon-Volkov approach in more specific problems. We take the Gordon
Volkov and Schrodinger Hamiltonians in the length gauge, and write the Du Hamel formula (9.4) as
t

US(t,t) = USY (4,1) — i / ds USY (t,5)VUS(s,¢) . (10.10)
3
The operator equation (10.10) may of course be used in both configuration and momentum space,
as well as (10.1). It will turn out below that for our purposes the explicit computations are in genﬁral
easier to perform in momentum space. Acting now with (10.10) upon a solution (pl¥(¢)) = ¢ (p,t)
of the Schrodinger equation (2.1) in the momentun representation, we obtain the following integral
equation for ¥ (p,t)

t
P (Ft) = Yoy (B,1) —i/ds/dﬁl/dp’gUFV (B, t; P2, 8) V (D1, P2) (P2, 8) - (10.11)
0

X PpE
With the help of the transformation UV (t,t) = Ajgu(t)e 5 A2y (t'), the Gordon-
Volkov time evolution operator in the momentum representation acquires the well-known form
(B A)Uo(t, ) As) | 71)
— giar gicea(pe—b(1) ,— 5 (F-b(1):)* (1-5) § (5 — 71 — busba) . (10.12)

Ucv (P, t; 1, 8)

For convenience we introduced the notation a;s = a(t) — a(s), which we employ throug,‘hout and
analogously for b and ¢. The Gordon-Volkov wave function is chosen in such a way, that it takes on
the value of the bound state 9 (p,t = 0) of the Hamiltonian H,A as the initial value

Vor () = [ diley (7,00 7)
e—ia(t)eic(t)(Pr*b(i))e*%t(ﬁ‘b(i)ém)zw (1_7.* b(t)éz,) . (10.13)
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Notice that sometimes the pj and p5 integration in (10.11) may be carried out analytically, such

that, upon integrating the remaining equation once more with respect to p, the original equation is

reduced to a purely time dependent Volterra type integral equation. Depending on the explicit form |
of the kernel of the remaining equation this problem is more easily solvable. This is the approach we I
are going to follow in our explicit application. A similar method has been pursued in configuration

space in [144, 145].

10.2 The one-dimensional delta potential

We commence the discussion by considering a one-dimensional set up, where we take the potential :
to be the one-dimensional attractive —potential {

Vx)=—ad(x) . (10.14)

« is positive and real. This is a very popular example [42, 101, 141, 142, 143, 144, 146, 147 148,
149, 150, since it has the virtue to possess only one bound state, with bound-state energy ~%, Hs
normalized wave function in both configuration and momentum space representation is well- known
to be
Pz, t=0)=vae ™  and  y(pt=0)= \/7 s (10.15)
y sl =)=y g ;
The projector in (8.5) becomes P = |¢) (3|, and therefore the ionization probability reads

P)=1— (0, U (r,0)9)]> =1~ |g(r)* . (10.16)

This equation also serves to define the survival probability |¢()[*>. The problem of convergence of
the GV series mentioned in Sec. 10.1 is expected not to occur in this case, since apart from z = 0,
the potential is always smaller than the field. However, despite the apparent simplicity of the model
it still seems a hopeless task to sum up the whole perturbative series even for potentials with only
one bound state and to determine the time evolution operator U} (7,0) exactly. For the case of the
§—potential the problem may be reduced to a far easier equation in the following way:

Since the potential in the momentum representation becomes simply

&
Vipe) = Vil =5 (10.17)
™
equation (10.11) together with (10.12) becomes
t
Y(t) = tay(pt) +i%/dse”ia(t)eiow(pnb(ﬁ))e_%<p—b(t))m'5)¢1 (s)
0
= Yoy (p1) +¥(p,1), (10.18)
where we introduced the function
=0 [y (10.19)

Integrating now (10.18) with respect to p one may reduce it to a Volterra equation of the second

kind in ¢
00 — t i <2
i ' 3(t—a)
W, (t) = — [ d. s
w10 = [ dovoy @)+ 5 [dew @ =, (10.20)
—00 0
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which serves to determine ¥, (t). Appendix F provides a detailed discussion of this equation. Leaving
now ; (t) as the only unknown quantity, we may compute the survival probability of the bound
state |1) by means of (10.18) in a closed analytic form

la(n)* = {6, Yoy (7)) + (5, W) (10.21)
We obtain upon using (10.13) and (10.15)
exp (*i"r%z = ic(-r)p)

” (10.22)
(22 + @ +b()) (@2 +57)

,
(W) = 2ot [ ap
and together with (10.18)

. ia(r) ad T oo eicw(p~b(f))87%(p,b<7))2(7~3)
(W, ¥(r) = ie™ o / dsyy (s) / dp Y] : (10.23)
Y —00

Before we turn to the evaluation of these expressions it is instructive to carry out a quick consistency
check. Naturally we have to have

- 2
=1 10.24
Am ()" =1 (10.24)

First of all we may carry out the limit Eo — 0 for (10.19)
7 2
N
EI:IEOwI / dp[ = exp1—2—t e \/2a7rexpz?t : (10.25)

Performing the same limit for the Volterra equation (10.20) yields?

=v2al, , (’ta) \/;/ t_s (10.26)

which is indeed solved by (10.25) as one may easily verify. Using on the other hand expression
(10.25) in equation (10.23) it is straightforward to obtain together with (10.21), (10.22) and (10.23)
the limit (10.24), which supports the validity of the above expressions.

Taking the extreme limit Eg — oo as a further check, one may easily see that the survival
probability tends to zero, except when b(7) = ¢(7) =0, in which case it tends to the zeroth order of
the Gordon-Volkov perturbation theory

: oy (D for b{r) = e(r) =0
o)t = {10 Vov :

0 otherwise

(10.27)

2Relation (10.26) (also e.g. (10.28) and (F.1)) follows upon using the integral representation for the conflu-
o0

ent hypergeometric function U, 4(z) = F(la_) [ dte==tta=1(1 + t)>=271, (not to be confused with the time evo-
o

lution operator). Properties of this function may be found for instance in [140]. Alternatively one may also
employ error fundions which are known to be related to the particular confluent hypergeometric function via

£
w(iz) = % f z“p dp = IU\ il (zz). In what follows, it will be important to keep in mind that in the defin-

ing domain for the integral representations of U, p(z), the complex z-plane, there are branch cuts along the real axis.
For the validity of the present integral representation one demands therefore Re(z) > 0.
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This follows directly from an inspection of equations (10.22) and (10.23), together with the Riemann-
Lebesgue theorem, which is in agreement with the general result in [136]. Hence once one is in a
regime in which the higher order contributions are negligible one may think of this phenomenon as
asymptotically weak stabilization for the case b(7) = ¢(7) = 0, according to the discussion in Secs.
8.2 and 10.1.

10.2.1 Lowest Order GV perturbation Theory

We shall commence by discussing first the effects resulting from taking solely (¥, (7)) into
consideration, which corresponds to the lowest order in the GV-perturbation theory. Similarly as in
[101], one might expect that the key features will already be present at this order. However, we will
demonstrate that care has to be taken concerning the convergence of the GV series which depends
sensitively on the choice of the parameters, i.e. 7,a and Ey, involved (see Appendix F). As we
already observed, a different physical behavior is obtained depending on the values of b(7) and ¢(7)
and it is therefore instructive to treat several cases separately:

b(t) =0and ¢(r) =0

One readily observes from (10.22), that the case b(r) = ¢(7) = 0 is very special, since then the
dependence on the field amplitude Ey drops out entirely and one simply obtains
0 4 _a? *
PO () =1- = U%,_% <z‘r7>

We will use P(™ for the ionization probability in the n'® order of GV-perturbation theory throughout.

The fact that, up to a phase, Aj_gu(7) = 1 for the case b(t) = ¢(r) = 0 is responsible
for the disappearance of the explicit dependence on the field amplitude. Hence, in this order of
GV-perturbation theory the ionization probability simply becomes proportional to the pulse length
7. As we already stated in (10.27), equation (10.28) precisely coincides with the expression for
the ionization probability which one obtains in the extreme limit Ey — oo, that is example 2 in
[136] (in [136] only the case of the three-dimensional §—potential was presented) applied to the
one dimensional ¢-potential. Therefore, in this limit, the zeroth order GV-perturbation theory is
exact. However, since we have to have P () = 0 for Ey — 0, we also observe that for small and
intermediate field strength this is in general in poor agreement with the correct answer.

We would also like to comment on the dependence of P (1) on the coupling «, i.e. essentially

(10.28)

I
the energy, for this case. Since [U Lk (z)l is a monotonically decreasing function of z we conclude,

-1
assuming that this order is dominant, that more deeply bound states are more likely to ionize.
Intuitively this is clear, states with larger « are more localized, such that the overlap between
two wave functions vanishes relatively quickly if one of the wave functions evolves with the free
time evolution operator. Hence tunneling effects play no role in this case. This is in qualitative
agreement with previously obtained results for the Hydrogen atom concerning these types of pulses
(see discussion in the previous chapter and [135]).

b(r) =0and c(1) #0

‘We will now consider the case in which the pulse is switched on and off but subject to the condition
b(t) = 0. As we remarked above, in this case the limit Ey — oo, when co(7) is kept fixed, yields
P () =1 for all Ep > 0. For the generic case we consider the derivative

aP ()

T = .oy () g Whbov ()" —ce. (10:29)
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Since we know PO (1)|g,—0 and P (1)|g,=co from the preceding discussion, the occurrence of
strong stabilization up to this order implies that P(®) (1) has at least one minimum and one maximum
as a function of Fy. Therefore, in order to show the absence of strong and weak stabilization, it is

© . . AL
now sufficient to prove that %’(ﬂ never vanishes. Since (1,9 (7)) is in general also non zero,
otherwise we would have P (y) = 1, it suffices to demonstrate that

- 7dppexp (47%"3 sin (¢(T)ap) . Al

d 2

aE, (b Yoy (7)) = ‘,—'E;C(T) / REN
A quick investigation of the integral (10.30) shows that neither the real nor the imaginary part may
vanish. There is of course still the possibility that (v, ¥qy (7)) ﬁ?; (¥, %y ()" is purely imaginary.
To exclude this possibility on general grounds is more complicated and we will consult the explicit
expressions for this purpose below. With this restriction still to be settled, our conclusion for the
situation in which b(7) = 0, is that weak stabilization to lowest order GV-perturbation theory may
only occur under the additional condition ¢ (7) = 0. Strong stabilization is always absent.

Concerning the question of the presence or absence of stabilization the above argument is almost
sufficient. Besides completing the proof, it is instructive to consider also the explicit analytic ex-
pression for PO (1), since it will reveal the sensitivity of this effect towards small deviations from
the weak stabilization condition b(7) = ¢ (7) = 0. We present here a solution in form of elementary
functions, which to our knowledge was not known hitherto.

Taking now b(7) = 0 the integral (10.22) can be conveniently split into four integrals by using
partial fractions. Then each of the integrals may be computed by means of the integral representation
of the error or confluent hypergeometric functions. We note that the integral representations of these
function only hold for Re(z) > 0. This condition may be expressed with the help of Keldysh-like
parameters (see below), which usually separate regions of different physical behaviour. Surely one
may analytically continue these functions in the standard way by rotation of the path of integration
[140]. Introducing the quantities

Py = —;— (1+ac(r) —ire?) and &y =7d (i*ﬂ + % (1- 192)> (10.31)
some algebra, leads for the amplitude of the survival probability for the bound state
! ira? )
g(r) =¢_ U%y% (@4) + o U;% (@) + ZT&ZU%’% <T> . (10.32)

For a given binding energy E of the bound state we introduced here the parameter

e(7)
= —=t= (10.33)
r/2eo]
which characterizes the validity of the preceding expressions. In our particular example the bind-
ing energy is g = 7921. Notice that, when taking a pulse of the type (10.4), this parameter is
closely related to the inverse of the Keldysh parameter v = w+/2leo|/Eo [65], which separates the
multiphoton ionization region from the tunneling region

g 2d (10.34)
Eory

Note that many pulses have the property 1ir% %E)ITZ = w™! (e.g. (10.42)), such that in these cases
TS

lin}) 97! = 5. The restriction
W <1 (10.35)
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guaran.tees convergence, uniqueness and avoids transversion through the branch cut concerning the

abpve integral representations for the confluent hypergeometric functions. So we have to ke§ i

mind that (10.32) is only applicable under the condition (10.35). o
Once more we may check for consistency and verify whether anything went wrong during the

computation. Taking the limit ¢(7) — 0 we s > S i
b (7) we should recover the result (10.28) of the preceding

: 2 1 ira? iTa?
1 1 ira? T o T
a2 (G- ) (777)) ves
ira?
—U%)_ﬁ( 6 > ; (10.36)

where the latter equality follows upon a well-known identit
¢ y for confluent hypergeometric fi i
which may be found for instance in [140]. it AP

=|’°=1|

b(t) # 0 and c¢(7) #0

Finally we t'rgat t.he generic case, that is for arbitrary b(7) # 0 and ¢(7) # 0. Once more we may use
a g.e(;?mpo(siltlon into partial fractions and reduce the computation of (10.22) to integrals of the type
which are directly related to the integral representation of the confl o furiotl

e uent h; >
Introducing the quantities A

A o?

fa = IRRE ~ 7 ~2
b= ymramge 4 Bi=re (w +3 (1 -9 )) (10.37)
with 9 = %l + 1—7%) we obtain for the amplitude of the survival probability

= % [Uﬁ,% (@4) + U%,%(‘i,)] % [U

Due to the same reasons as.in the preceding section, i.e. properties of the integral representation of
the confluent hypergeometric functions, we obtain now the condition

or)

T

11
212

(@_)+ U%,%.(&u)] ) (10.38)

+b(7)

in addition to (10.35). Once again we may carry out the limit b
(10.28). Indeed we obtain B0 i

N 1 ita? iTa? iTa? iTa?
lim o L irat iTa® 2 T
b(T),C(T)Hoq(T) N3 23 ( 2 ) + QﬁU%'% ( 2 ) I —\/_EU%”% 27 g

10.2.2 All higher Order Contributions

|19| (il
vEo

<1 (10.39)

‘We now come tf) the higher order contributions. For this purpose we have to evaluate (10.23), which
after computations similar to the ones in the preceding section, equals : ’

ot =il

W () == [ sy (s) x5 (U%,% (@) + Uy, (@;)) , (10.40)
0

with

i i & 2
B =Fa (e~ (t=5)b(t) +5(t—2) (a2 = (L = b(t)) ) J (10.41)
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In principle there is now only a time integration and the unknown Py (t) left.

The general solution to (10.20) may be approximated by an iterative procedure in a similar
fashion as we generated (10.1). However, in this case the problem of convergence is taken care of
by a well-known theorem concerning integral equations (see for instance [151]). It states, that if
the free term in a Volterra equation is absolutely integrable, then successive approximations for this
cquation converge for all values of the constant in front of the integral. Hence, choosing a reasonable
pulse, the iterative solution to (F.1) always makes sense. In Appendix F this point is discussed in
more detail.

In order to study the explicit dependence of the ionization probability as a function of the
intensity of the incoming light, we have to select a concrete pulse. We choose linearly polarized light
with a trapezoidal enveloping function. This type of pulse has also been taken as an example in the
previous chapter (see Subsec. 9.2.3, Equation 9.24) and is widely used in the literature [109, 150].
We consider a pulse of duration 7 which has linear turn-on and turn-off ramps of length T'. Choosing
the ramps to have the length T' = n%", with n being an integer, we have the desired property that
b(r) = 0 for arbitrary 7. The total displacement takes on a particularly simple form in this case

o(1) = % sinwTt (10.42)

which vanishes with the additional constraint on the pulse duration T = 2nZ. Of course in order to
achieve b(7) = 0 one may also fix the pulse duration 7 = n%", leaving T as the only variable for this
family of pulses. In this case we have

e(r) = ﬁ—; <8sin2 (5’23) + (2 — W) Sian) . (1043)

10.2.3 First Order GV perturbation Theory

For pulses of the type (9.24) we will now analyze the ionization probability up to first order in the
GV expansion. For this purpose we want to approximate the function 1/; (t) in (10.40) by the free
term in the Volterra equation (F.1). In order to select parameters for which this approximation is
valid, we consult the expression for the maximal relative error u computed in Appendix F (F.18).
From Fig. 10.1 we observe that oo =1 /8 and T ~ 1 should lead to reasonably precise results for the
case b(t) = ¢(1) = 0.

‘We shall now briefly comment on the convergence of the GV series for some results presented in
the literature. For instance, in the last reference of [101] a pulse with instantaneous switch on was
used in this context, i.e. E(t) = Eocos(wt), and an analysis up to the first order GV-perturbation
theory was carried out. Typical parameters in [101] were & = 1/2,Ep = 5,w = 1.5 and the pulse
length was 2 cycles, that is 7 ~ 8. For these parameters we obtain p =~ 8.44 , such that we do not
expect convergence of the GV-perturbation series up to this order. In fact, as 10.2 shows, relevant
contributions are to be expected up to the order 10. The convergence is even worse for the typical
parameters used in [150], since as Fig. 10.2 indicates in this case (diamonds) one should go beyond
the 40-th order to achieve a reasonable approximation. These arguments also raise doubt on the
reliability of statements based on this order of the Volkov series in the context of the Hydrogen
atom (third reference in [101]). Of course in order to be quantitatively precise one requires a similar
analysis as carried out in Appendix F for the Coulomb potential. Since this is a long range potential
one expects intuitively that the GV-series converges even more slowly than in the presented case.
The argument presented in there, i.e. that the addition of the next order only changes slightly the
result, is not rigorous since this effect is additive and in the worst case one might be in a situation
for which the contributions from each higher order are still increasing (as in Fig. 10.2 the curve with
diamonds indicates).
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Figure 10.1: Upper bound for the relative error obtained by solving the Volterra equation iteratively,
as a function of t, for several values of the coupling constant a.
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Figure 10.2: Upper bound for [¢(t)| obtained by iteration of the Volterra equation, as a function
of the order n of iteration.The upper bound to n-th order is multiplied by a normalizing constant
N , and denoted by NB(1,,). The crosses and diamonds refer, respectively, to parameters used by
Geltman [101] and by Su et al. [150].
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10.3 Discussion

From the results of this chapter, it is clear that the important parameters determining the absence
or the presence of stabilization are the momentum transfer and the classical displacement at the
end of the pulse. This condition is independent of the frequency and the pulse shape, such that the
turn-on and off play only a secondary role.

In the literature, some authors take only the momentum transfer b(T') at the end of the turn-on
as an important condition for the existence of stabilization (112, 122]. Some computations do not
even fulfill or refer to this condition [125, 117]. In our analysis, this is not a crucial parameter.
However, for some pulse shapes, such as a trapezoidal pulse switched on and off in an integer
number of cycles, it so happens that b(T) and b(r) vanish. Since numerical computations are
sometimes of difficult interpretation,they would possibly suggest that the former, and not the latter
parameter, is of importance. In some computations, the condition b(r) = 0 is actually fulfilled, in
the sense that the vector potential, and not the field, is switched on and off smoothly [114]. For
A(0) = 0 and A(t) continuous, A(t) and b(t) differ up to a minus sign (see Chapter 2). These
authors are in fact aware of the condition upon the momentum transfer, which is discussed in
detail in [121]. However, since their studies were mainly based on classical arguments, we present an
alternative and more rigorous interpretation of this condition. The condition concerning the classical
displacement is usually not mentioned in the literature, and, in some cases, b(T) = 0 still yields a
considerably large classical displacement at the end of the pulse [104, 109, 111]. Recently, however,
numerical computations fulfilling also this condition [131] reproduced the experimental results of [21]
quantitatively. Qualitatively, our results for vanishing momentum transfer and classical displacement
at the end of the pulse also agree with these experiments, in the sense that the ionization probability
as a function of the field strength tends asymptotically to a finite value smaller than one.

Also the high frequency approach is a way to guarantee that b(t) and c(t) approximately vanish
for all times. As a consequence, the transformation from the Kramers Henneberger frame to the
velocity or length gauge becomes the identity operator, such that the ionization probability does not
depend on the external field.

Our analysis has also shown the inadequacy of the zeroth order Gordon-Volkov solution for
describing atomic stabilization. Within this approximation, one can at most identify this phenom-
enon in its weak asymptotic form, for vanishing b(7) and ¢(7). For describing stabilization in its
strong form, it is definitely not sufficient. Furthermore, for typical parameters, the Volterra equation
(10.20) presents a very slow convergence, such that more orders of the Volkov series are necessary for
an appropriate computation of ionization probabilities. Therefore, existing results in the literature
concerning this phenomenon based on the Gordon-Volkov solution, as for instance [99, 101, 104, 105]
must be seen with extreme care.
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Part III

Low-intensity harmonic generation
with short pulses
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Chapter 11

Amplitude-modulated second
harmonic generation as an initial
value problem

In the previous parts, we were concerned with high-intensity optical phenomena, in particular ion-
ization and harmonic generation. In this part, we consider the macroscopic response of a medium to
short-pulsed incident radiation, within the weak-field framework. More specifically, we present an an-
alytical solution to second harmonic generation (SHG), taking into account an amplitude-modulated
incident pulse of arbitrary shape. One should keep in mind that the single-atom response is not the
only source of harmonic radiation, but nonlinear optical processes may also occur due to wave-mixing
in a medium [6]. In most computations in the high-intensity regime where propagation is included,
these effects are neglected [58]. Harmonic generation at low intensities involving single atoms is
briefly recalled in Appendix B.

Until the eighties, experiments on nonlinear optics been performed either using cw laser radia-
tion, or relatively long laser pulses. Within this framework, the propagation equations are reducible
to coupled first-order ordinary differential equations, which can be solved analytically. As the laser
pulses became shorter and shorter, the walk-off of the pulses at fundamental and harmonic fre-
quencies gained considerable importance in the physics of nonlinear optical processes, such that
non-stationary effects like group velocity mismatch have become a problem of interest [153, 154].
For such fields, even in a one-dimensional theory, which we have here in mind exclusively, nonlinear
partial differential equations must be solved.

In the case of a purely amplitude-modulated fundamental wave, the problem is governed by a
second-order equation named after Liouville [155] (which should not be confused with the Liouville
equation in Statistical Mechanics). Even though this connection has been known since a quarter of a
century [156], to the best of our knowledge no attention has been paid to it in current text books on
nonlinear optics, or in articles on SHG. This is rather surprising since the Liouville equation is one
of the few examples of nonlinear equations for which the general solution can be derived explicitly.
Such a solvable theory is very useful, and even under conditions where the inherent idealizations are
only approximately fulfilled could be used as a zeroth-order approximation. Despite of the general
solvability it is not quite obvious how to select, among the solutions of the Liouville equation, the
physically relevant SHG solutions. Therefore, it is a matter of interest to consider the following two
questions, whose answers characterize the purpose of the present chapter.

1. How to solve the initial value problem for an incident pulse of arbitrary shape at the funda-
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mental frequency, under the condition that there is no incident harmonic wave?
2. Are there examples for which this problem has a fully analytical solution?

Both problems are of physical relevance and experimental interest [154, 157, 158, 159, 160, 161],
and to our knowledge the prescribed initial value problem has never been systematically studied. A
particular type of analytical solutions with the initial pulse being of squared Lorentzian shape was
found by Akhmanov et al. [162], c.f., Subsec. 11.3.3.

Throughout this work, we will discuss a more general approach and study this problem systemati-
cally. We will give several new analytical solutions for experimentally relevant initial pulses.

This chapter is organized as follows: In Sec. 11.1.1 we briefly review the basic equations describing
one-dimensional SHG in the slowly varying amplitude approximation and in Sec. 11.1.2 we establish
the connection to the Liouville equation. Similarity transformations of evolution equations, which
are useful in the subsequent analysis, are discussed in Subsec. 11.1.3. In Subsec. 11.1.4 we define
Goursat and Cauchy problems. Subsection 11.2.1 is the main part of the chapter. In there, we
show how the physically relevant initial value problem is reduced to a Schrodinger-type equation,
where the initial pulse shape plays the role of a repulsive potential. In Section 11.3 several examples
are analyzed in detail. Analytical solutions are given for many realistic cases and a broad class of
exponentially decaying initial pulses is found with the help of a single numerical integration. In
Section 11.4 we state our conclusions.

11.1 Second harmonic generation in one space dimension

11.1.1 General propagation equations for short pulses

The propagation of an electromagnetic wave in a medium of dielectric constant € is given by the
wave equation .
s PN By = L2 B0l 5 B

<7 + 2&5) [t e ( () + NL(r,t)) . 11.1)
Here, E‘(F,t) denotes the electric field and the vectors on the right-hand-side the macroscopic po-
larization induced in the medium by the field, with P()(7 ¢) and ﬁNL(F,t) corresponding to, re-
spectively, its linear and nonlinear response. As a first simplification, we take the electric field as a
quasi-monochromatic wave propagating along an axis x, such that this problem can be reduced to
a one-dimensional one!,

iE’(F, r,)i = {E@-.t)’ = Eo(z,t) expli(kz — wt)]. (11.2)

‘We consider now that the enveloping function Ey(z,t) varies much more slowly than the oscillating
part of (11.2), such that the second temporal and spatial derivatives in (11.1) are negligible. This is
called the slowly-varying amplitude (SVA) approximation. With this further restriction, we exclude
for instance half-cycle pulses [163] from our framework. After a few other manipulations, which
include the neglect of the dispersion of the nonlinear polarization and of the dielectric constant
[6](i.e., e(w) ~ 1), one has

1o} s i2w? A
(’5; T o 5) Eo(z,t) = 45 Pup(, t)e” ¢, {11.5)
g

1One should note that, in case one is interested in, for instance, describing the propagation of the high-harmonics
discussed in the previous chapters, one must take a field of the form Y Eon () explin(kz — wt)], which corresponds
n

to the output of the single-atom computations performed in Part I.
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where vy = dk/dw is the group velocity of the pulse, assumed constant. For strictly monochromatic
fields, the second term on the left-hand side is zero. Now we make the assumption that Py, can be
expanded in powers of the field. The most general form for this expansion is the tensorial product

Pup(z,t) = x?@ : E(z,t)E(z,t) + x® : E(,8)E(z,t)E(z,t) + ... (11.4)

The tensors x(™are called “nonlinear susceptibilities”, and depend very much on the material in
question. For instance, for isotropic materials, such as gases, due to symmetry considerations,
the even susceptibilities vanish (see e.g. [164] for a detailed discussion of this issue). Clearly, the
expansion above only converges for weak fields. In the high-intensity regime, the induced polarization
is a complicated function of the intensity of the driving field, such that in this case a numerical
treatment is required [22]. Moreover, there is an extra phase involved in the problem, since the
harmonics generated in the single-atom response have an intensity-dependent phase. Concerning
second harmonic generation, we consider this expansion up to x®.

In a second-order nonlinear medium, the interaction between two quasi- monochromatic plane
electromagnetic waves, with slowly—varying complex electric field amplitudes Fo;(z,t), Eo2(z,t) and
respective frequencies w; and wg = 2wy, is described by the two differential equations [29]

5 i 1 N .
(0 + U—dt)Em =—iZEpEy , (0:+ E@)E’gg = —iEEZ, . (11.5)
1

Here we assumed that the wave-numbers of both carrier waves fulfil the phase-matching condition
ky = 2k;. The star denotes complex conjugation. z,t are laboratory space and time coordinates.
The coupling constant = is expressed as

2)((2)0.)%
T k2

8]

(11.6)

11.1.2 SHG and the Liouville equation

In order to write the equations of motion in a convenient form we introduce characteristic coordinates

x =v(-t+z/va)=~vre , T=v(t—-z/v1)=vT1, (11.7)
where the parameter v describing the group velocity mismatch.is given by
v (e =1, (11.8)
and introduce new amplitudes g1, go by taking
En=Vv2="'q , Ep=2E"¢. (11.9)
The inverse transformation of (11.7) is
z=x+71 , t=x/vi+T/v2, (11.10)

and the derivatives are transformed according to
1 1
Oy =0,+—0r, 0r =0 +—0: . (11.11)
v (%)
In this way we arrive at the differential equations
1 * 1 h
(Oc+ 000 = s = 200, (Oet OB =02 =0} . (11.12)
0 .
The scaling of the amplitudes is such that, up to a common scaling factor, |q1|2,|g2|?> may be

interpreted as photon current densities. The physical conditions included in the present model can
be summarized as follows :
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1. Applicability of the slowly—varying amplitude approximation (SVA), i.e. the pulses should still
be long compared to the wavelengths.

2. One-dimensionality in space, i.e. the transverse structure can be neglected.

3. The phase matching condition 2k; = ky for the wave numbers kj o are fulfilled exactly for the
two carrier waves.

4. The group velocities v; and v2 do not coincide, but

5. the dispersion within either of the two pulses at frequencies wg and 2wq can be neglected.

According to theoretical estimations [29] and experiments [154] these presumptions are quite
realistic. For instance, for 100 fs pulses with intensities above 100 GW/cm? and long—focus con-
ditions in KDP or LilOg crystals, high conversion efficiencies can be achieved over crystal lengths
of several mm. Both pump depletion and group velocity dispersion then become important and a
non-stationary approach to the problem is required. One may also think of a realization in a planar
optical waveguide.

The basis for applying the inverse scattering transform method to equations (11.12) with complex
amplitudes was established by Kaup [165]. Its full development, however, met some particular
difficulties which have not yet been solved. Recently, Hamiltonian structures and particular solutions,
not reducible to real ones, of (11.12) were established [166]. Here we focus our attention on purely
amplitude-modulated signals. Thus the amplitudes q; and ¢o are real, and the stars in Eqs.(11.12)
can be omitted. Clearly, this further approximation excludes important physical effects due to phase
mismatch and related applications [167)].

Let us now consider causality. In the 1+1 dimensional world of the present SHG model, propa-
gation occurs only with velocities v; and vy. For definiteness we will assume vy > vy , normal group
dispersion, such that v defined by (11.8) is positive. One should notice, however, that our results are
easily transferred to v; < w9, i.e., anomalous group dispersion. The cone of future from z =t =01is
given by the region

vt <z <wut, ie, x>0,7>0. (11.13)

The signs of the characteristic coordinates x,7 are such that causal action always occurs in the
direction of increasing coordinates.

It was found by Bass and Sinitsyn [156] that in the case of real amplitudes, the SHG problem
of Egs. (11.12) is solvable. Actually, it is “C-integrable” [168], which means integrable by change
of variables. Indeed, one can see that from Eqgs. (11.12) with real waves g1, ¢z we may eliminate gy
arriving at the Liouville equation

0,0~ In(4q?) = —4q3. (11.14)

The general solution is well known [155] and it is given by

1 F'00G'(n)
2
Pelo SR 11.15
LT G + GO)P ke
In Eq. (11.15) F(x) and G(7) are arbitrary functions, which depend only on  and 7 respectively.
The primes denote differentiations. The solution is completed by substitution of Eq. (11.15) in Egs.
(11.12), leading to
LER L. FX)
Il T K .
4F(x)  2F()+G(7)

(11.16)
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11.1.3 Similarity transformations

Given any solution g, (x, 7), g2(x, 7) of the equations of motion, a two-parameter manifold of solutions
can be found by use of similarity (scale) transformations. Equations (11.12), in fact, are invariant
under the two following scale transformations:

1) The conformal transformation
= S &7 B 1 TR | 5
x=aX, 7=a%, G(%7) = ~ai(ax, af) , &%) = _@(aX;a) 5, (11.17)

ii) The 7—dilation
o e A %
=0, a7 =0k, (11.18)

and the general similarity transformation is obtained as a combination of both these types. Here
a and b are real numbers. Under conformal transformations all the four quantities

/dqu(x,r) ; /d’rq;c(x,'r) ¢ kw12, (11.19)

are invariant while, on the other hand, the r-dilation does not change the integral

/dr Ex,7) - (11.20)

In the context of the Cauchy problem discussed below, it will be of interest to use only invariance
transformations that map the set of straight lines z = x +7 = const. to themselves. This restriction
is fulfilled by the conformal transformation, but not by the 7—dilation. Thus any particular solution
of Egs. (11.12) represents a one-parameter family of solutions.

11.1.4 Goursat and Cauchy problems

One may relate two typical initial value problems to the coupled differential equations (11.12):
i) The Goursat problem in which initial values are given at characteristic curves
@1 (0,7) =quo(r), 7>0 5 g2(x,0) =gq20(x), x>0 (11.21)

After substitution of the general solution (11.15-11.16) in Eqgs.(11.21) the functions F(x) and
G(7) can be determined by quadratures.

ii) The Cauchy problem in which the initial values are given on some line that is not a characteristic
curve. This is usually the case, as from the physical point of view, it is natural to give both
fields g and gy for z = 0, i.e., according to Egs. (11.7) and (11.10), for 7 = —x and t = x/v,

a(-7,7) =qo(r) , @(7.7)=qn(r). (11.22)

In a common situation encountered in experiments [169] there is an incident ground wave, ¢,
with no incident harmonic wave, go. This is the Cauchy problem specified by g0 = 0. In the
following we will be concerned with this problem, and we will refer to it as the restricted Cauchy
problem.
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11.2 The restricted Cauchy problem

11.2.1 Solution
Let us write the restricted Cauchy problem in the form
G(-r, ) =0L(7), a(-7,7)=0. (11.23)

Thus, starting from the general solution of Egs. (11.15-11.16), we have to determine the functions
F(x) and G(7). Upon defining

K(r)=F(-7) (11.24)
we get
K'(1)G'(7) LK K’
20(1) = ——5- e L i, 95
R ="mrer @ Y~3w-%ic i)
By elimination of G in (11.25), we find
K" 3 /K" 2
{K,r}= = 3 <K') =—4h (11.26)

where the curly bracket denotes the Schwarzian derivative [170]. The function o(7), defined in the
second of Egs. (11.25), fulfils the Riccati equation

=0 -2I, (11.27)
which by taking
0=-4/9, (11.28)
is connected to the Schrodinger-type equation
¢ =20 . (11.29)
By comparison of Egs. (11.28) and (11.25) we find
¢ _ 1K"
& 9’ (11.30)
and, by integration,
1
et (11.31)

Summarizing we may formulate the following “recipe” for solving the restricted Cauchy problem :

1. Given an initial pulse shape I;(7) one first has to solve the second order differential equa-
tion (11.29), which can be viewed as a Schrédinger equation with repulsive potential 273 (7)
and eigenvalue 0. This is also known as Hill’s equation [171]. We require ¢ to be a real function.

2. By means of Eq. (11.31), the function F' can be evaluated as
k= [ ST, Fo=K(-x) (11.32)
0 ¢2("") ! i i

3. Upon substitution in Egs.(11.25) and (11.28) we arrive at the function G ,

2K"? 1

G(1) :7K(T)+W =7F(7T)7WT~).

(11.33)
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4. Eventually, the solution ¢;(x,7), ga(x,7) is found by substituting F(x) and G(7) in Egs.
(11.15) and (11.16),

2 _ ¢'(m)e(7) 1 E

a0 = {1+¢<f)¢’<r)[F(r)w(—x)]} e
R N T (o) 1

wtnn) = g V0 - R e o 0

We also notice that the choice of a symmetrical initial pulse I;(7) results in an even function ¢(7).
In this case F(x) is an odd function, and the general solution in Egs. (11.34-11.35) can be written
in the form

_ #0e) ! g

it = SR e rmT) e
_ L [ HOFO) 1

@1 = 5500 [¢ (x) + 200 TERFOFD —kF(x)]} . (11.37)

It may be worth noticing that ¢3(x, ) and g2(x,7) can also be expressed in terms of p(7) and thus
avoiding the wave function ¢. From (11.25) and (11.33), in fact, we get

T al T

/ exp 2/Q(T,I)dTH dr', G(t) = —K(r) + %exp Z/p(‘r')dr' g (11.38)

0 0 [

K(7)

The wave amplitudes q; and g can be obtained by substitution of F(x) = K(—x) and G(r) into
Egs. (11.15) and (11.16).

11.2.2 About uniqueness

In our procedure the solution of the restricted Cauchy problem is reduced to the solution of a
Schrodinger (Hill) equation. The latter is by no means unique, because we did not impose any
boundary or asymptotic condition. On the other hand, from physical intuition, we expect that there
is a unique solution of the Cauchy problem in our case. How can this apparent discrepancy be
resolved ?

Given any particular (real) solution ¢,(x) to Eq. (11.29) the general solution is found as

(0 =100 P (11.39)

x)=¢ x<61+02 ), 11.8
; o $1(¢)

¢1 and ¢y being real numbers. By taking the integral in Eq. (11.32), we obtain

Fee 1 _aFy +b
T8 T Gt el cFi+d’

(11.40)

In Eq. (11.40) c3 is an integration constant, and a,b,c,d are real numbers determined, up to an
arbitrary common factor, by c¢i,ca,c3. Eg. (11.40) tells us that F' is determined by ¢ up to an
arbitrary linear rational mapping. Indeed, it is known [170] - and could be checked directly — that
the Schwarzian derivative is invariant under such a transformation, and thus the potential I;(x) in
(11.26) is invariant. Moreover, starting from Eqs. (11.32) and (11.24), it can easily be derived that
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—G and —G are connected by the same linear rational transformation connecting F' and Fy. The i
proof of uniqueness is completed by noting that the right-hand side of (11.15) is invariant under an i
arbitrary linear rational transformation simultaneously applied to both F' and —G. Therefore, any i
solution of a given Hill equation leads to the same physical solution for the pulse amplitudes gy, go.

(Note that go is determined by g.)

11.3 Examples

The formalism discussed in the previous sections can be applied to several pulse shapes, leading to
fully analytical solutions for the Cauchy problem. Some of these pulses are presented and analyzed
in this section. In subsection 11.3.4 we also cousider a broad class of solutions, having exponential
decay as a distinctive feature, which can be generated by a single numerical integration. In all the
following examples we impose the condition that the second harmonic wave is zero at the boundary
z = 0, corresponding to the natural experimental conditions. In the transformed frame this reads
@(x=-71,7) =0.

11.3.1 Square Pulse

‘We first consider an initial square pulse, of intensity Iy, switched on and off at respectively ¢ = 0
and ¢ = t,,. For this pulse, the boundary condition to the Hill equation is given by

Ii(r) =Ipfor 0 < 7 < vt, and = 0 elsewhere . (11.41)

The solution of this problem requires the definition of several spatio-temporal regions, which are
shown in Fig. 11.1, both in the lab frame (z,t) and in the characteristic frame (x, 7). The “pieces”
of the solution in the respective regions are connected by the conditions that ¢; is continuous and
differentiable in 7, whereas g is continuous and differentiable in 7. From Eqs. (11.12) we get

=0, =0 in regions II and VI

¢ =0, 0;¢o=0 inregionsIV and V iRy

The dynamics occurs exclusively in regions I and III and the Cauchy problem of Eq. (11.41) reduces
to the following problems

i) the Cauchy problem for the triangle I
a(-n7) =L , g(-7,7)=0, (11.43)
ii) and the Goursat problem for the strip III
a(x=0,7) =qo(r) ,0<T<vt, ; qkx7=0=0,0<x (11.44)
where g1 is known upon ¢) has been solved.
The Hill equation for triangle I is easily solved by
#(r) =cosh(Br),  B=+/2I,. (11.45)

Thus, in region I the solution is given by v

Il

?(x,7) Iy sech®[B(x + 7)] = Io sech®(Bx)

g tanh[B(x + 7)] = g tanh(Bzx) . (11.46)

a@(x,T)
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Figure 11.1: Space-time regions I to VI of the solution for an initial square pulse at the fundamental
frequency. In part (a) the lab coordinates (x,t) are taken as Cartesian ones while in part (b) the
same holds for the characteristic coordinates (x, 7). The interaction occurs in the regions I and II.
There is no field in II and VI while in IV and V there is free propagation of the harmonic wave.
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Figure 11.2: Solution for an incident fundamental wave being a square pulse. Part (a) shows the
fundamental amplitude ¢ , part (b) shows the harmonic amplitude go. Note that, for z = 0, it holds
7 = vt with v being the group velocity mismatch defined by Eq. (11.8).

The Goursat problem in the strip III has to be solved with the initial condition

q3o(7) = Ipsech?(BT) | (11.47)
thus leading to the solution
2 Iy
@0o67) [cosh(BT) + By sinh(BT)]?
@067 ? (11.45)

2[Bx + coth(BT)]

The complete solution is depicted in Fig.11.2

11.3.2 Lorentzian Pulse

Let us now consider, as a fundamental wave at the boundary = 0, a Lorentzian pulse, that is, a

pulse whose intensity is given by
1

I s 11.49
=1 (11.49)
As one can easily verify, such a pulse corresponds to the following “wave-function”

Hr)= 1+72. (11.50)
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Figure 11.3: Amplitudes g; and g for a Lorentzian initial intensity |g1|? at the fundamental fre-
quency.

Starting from Eq. (11.50) one can derive the solutions for both waves in an arbitrary cross section
of the nonlinear medium, which are

0 7) . : -
v e V) 1,72(14 72
(1+x?) (arctan x + arctan T + leZ = ;)zv' @ +r2)
X 1 1
a0, 7) s e . (11.51)
T+x?  (1+x7) (arctanx+arctan’r+—)£~—+~)
1+x2 7

This solution is depicted in Fig. 11.3

11.3.3 Squared Lorentzian

Here we consider a pulse for which the fundamental wave amplitude, at the boundary, has itself a
Lorentzian shape. The intensity is thus a squared Lorentzian given by

Io
11(7') = m (11.52)
This pulse corresponds to the following wave function
cos[aarctan(r)] , 1—-Ip=0a2>0
#(7) = (1 +7%)/2 1 , Iy=1 (11.53)

cosh [Barctan(r)] , Ip—1=4/>>0

from which we find
7% tan [oarctan(x))
F(x) = — arctan(x) (11.54)

—% tanh [ arctan(x))
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Figure 11.4: Solutions for a squared Lorentzian initial pulse intensity (dashed lines) are compared
with solutions where the initial intensity is approximately a sech? shape (solid lines). Here, only
the initial amplitudes ¢; (part a) and the asymptotic harmonic amplitudes g, (part b) are depicted.
For the three examples, the initial fundamental pulse shapes differ in their amplitudes, while the
half-width is the same for all these pulses.

The outgoing second harmonic wave is strongly dependent on the peak field intensity Io. Three
regions can be distinguished: very low (Ip < 1), intermediate (Ip = 1) and higher (but still pertur-
bative) (Ip > 1) intensities. For the intermediate case the propagated solutions for the two waves in
the medium have the particularly simple form

) 1 1 1
a(oT) 2(1 + x?) (arctan(x) + arctan(r) + 1)2 72(1 + 72)
@lx,T) = B - : (11.55)

2(1 + x? L 2(1 + x?) (arctan(x) + arctan(t) + 1)

The solutions for Iy > 1 and for I < 1 can be given as well by substitution of (11.53) and (11.54)
in (11.36) and (11.37) . The explicit formulas are rather messy, however, and therefore will not be
presented here. The problem for Iy > 1 was already solved by Akhmanov et al. [162]. In Fig. 11.4 we
show three examples of initial g; — pulses (upper part), together with the corresponding asymptotic
go— pulses (lower part), for Iy = 2 (upper curve), Iy = 1 (intermediate curve) and Ip = 0.5 (lower
curve) .

11.3.4 Exponentially decaying pulses

In examples treated in previous subsections (as well in the next one) the solutions can be explicitly
obtained in analytic form. It seems, however, impossible to do the same for an initial pulse with an

[
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exponentially decaying shape. Here we start from a particular choice of “wave functions”
¢(1) = a +log [b+ cosh?®(7)] , (11.56)
which corresponds to an initial pulse shape given by

4 (14 (1 + 2b) cosh(27)]

Lifr) = P 11.57
1 [1+ 2+ cosh(27)])* [a + log (b + cosh?(r)))] ( )
the latter exhibiting the exponential decay
tl—soo  4(142b
e "= ) oo (11.58)

[¢]

For this kind of pulse, we have no closed analytical solutions. However, the numerical solution is
obtained by means of the quadrature of Eq. (11.32). An interesting application makes use of the
fact that the free parameters a and b may be adjusted to approximate sech?-shaped pulses of the
form

I, (7) = Ipsech?(r) . (11.59)
This pulse shape is obviously of experimental interest, since it represents the output of many laser
systems. As an example, by choosing (a,b) = (3.45,0.122), (1.36,0.257) and (0.176,0.579) both
maxima and half-widths of I;(r) coincide with those of I with I = 0.25,0.5,1 respectively. In
Fig.11.4, the initial pulses and the asymptotic harmonic pulses are depicted, in comparison with
the corresponding curves of the squared Lorentzian pulse. It can be seen that the trailing edge of
the gy— pulse is steeper for the sech?pulse than for the squared Lorentzian. Apart from that, no
striking difference can be seen between these shapes.

11.3.5 An asymmetrical pulse

Here we will give the complete analytical solution for a particular asymmetrical initial pulse

Bir) = %TIT? (1 - ‘%) BT (11.60)
For € = +1 the asymptotic behavior is given by
L— /4, T =400 ; L —(1/r%), 7> —00
and vice versa for € = —1. In other words., the two pulses can be obtained one from the other by

the transformation 7 — —7. The corresponding “wave function” is given by

¢(r) =1+ 712 4er, (11.61)

and the function F' by "
2 €
FO) =x(1+ 53 +5 [+ -1)] . (11.62)
Through Egs. (11.15,11.16) we eventually arrive at the complete solution. The asymptotic shape of
the harmonic wave is given by the rather simple formulae
1
,T — 00 e SR R Ay g e=+1 11.63
T 0) = s (11.69)

3 1 2 SN i
21+ -x 2/1+x2

L, (11.64)

22(x, 7 — 00)



f 11.4. CONCLUSION 127

asymmetric initial pulses, differing only in the time orientation, give rise to quite different solutions.

AMPLITUDE-MODULATED SECOND HARMONIC GENERATION AS AN INITIAL \@
‘We believe that the method introduced here should be useful for optimizing SHG and achieving

126CHAPTER 11.
suitable pulse-shaping in a broad range of working conditions.
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Figure 11.5: For two asymmetric initial pulses (dashed lines), one being the mirror image of the other,
the asymptotic harmonic waves (solid lines) are given. Parts (a) and (b) correspond respectively to
€ = +1 and € = —1. The factor v/2 was introduced for normalization purposes with respect to the

energy (c.f. the text).

It is worth noticing that here two initial pulses, one being the time-reversed image of the other, yield

quite different results. In particular the asymptotic pulse is symmetric for € = +1, but asymmetric
for e = —1 , see Fig. 11.5. For a quantitative comparison of the incident fundamental wave with

the asymptotic harmonic wave in one and the same diagram, the respective electric field envelopes

E., Ey are more appropriate than our amplitudes ¢q,g2. (We recall that lgr|?> o< photon current
densities). Due to the fact that Ey/Ey = q1/ V/2g2 we have introduced the multiplicative factor v/2

in the figure.

11.4 Conclusion

We have treated second harmonic generation in one dimension with amplitude-modulated pulses
where the fundamental wave was the only incident pulse. We have shown how to reduce this problem
to that of solving a zero-eigenvalue Schrodinger equation, the initial pulse shape being formally a

repulsive potential.

Instead of starting from a specified pulse shape, we took a properly chosen multi-parametric set of
“wave functions” ¢(7) and easily computed the corresponding set of potentials. The free parameters
of these solutions can be used to approximate pulse shapes of interest. To give a complete SHG
solution, this method requires at most the single numerical integration of Eq. (11.32).

Using this approach we were able to obtain solutions for initial pulses approximately of a sech?-
shape with very little numerical effort. We also provide fully analytical solutions for several cases
of interest, among these the well-known solutions found by Akhmanov et al. [162], initial square
pulses, and asymmetrical initial pulses. Using a particular example, we have demonstrated that two
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Chapter 12

Summary

This thesis addresses the following optical phenomena: High-harmonic generation (Part I}, atomic
stabilization (Part IT) and second harmonic generation with short pulses (Part IIT). The phenomena
discussed in Parts I and I occur for very intense laser fields. Concerning high-harmonic generation,
we compared several existing models, namely the fully numerical solution of the time-dependent
Schrédinger equation (TDSE), the three-step model and the two-level atom (all of which are discussed
in Chapter 4), using mainly numerical methods, with the following results:

In Chapter 5 we investigate the time profile of high-harmonic generation with monochromatic
driving fields for an atom with a single bound state, using the three-step model and the TDSE.
We show that the main contributions to harmonic generation within a field cycle correspond to the
semiclassical returning times of an electron to its parent ion.

Chapter 6 is an extension of this work to model potentials with more than one bound state.
Using a time-dependent projection method, we observe that high-harmonic generation is a result of
bound-free transitions, where the transitions involving the ground state play the most important role.
The generation of low harmonics, however, is strongly dependent of the atomic internal structure.
Particularly concerning an atom with two strongly-coupled bound states, we have shown that these
harmonics are a result of transitions involving only bound states. We also find that, even for this
case, a two-level atom yields a very poor description of the low harmonics.

In Chapter 7 we address HHG with bichromatic driving fields, investigating the validity of the
three-step model and the existence of a simple cutoff law of the form |eg| + alUp. Sec. 7.1 is an
extension of Chapter 5, using time-frequency analysis. Therein, we show that the main contributions
to HHG within a field cycle corresponds to the predictions of the three-step model also in this case.
Furthermore, the harmonic intensities strongly depend on the field at the time the electron left the
atom, according to the quasi-static tunneling formula discussed in Appendix C. In Sec. 7.2, we show
the absence of a simple cutoff law in the bichromatic case.

In Part II we perform a mathematical analysis of atomic stabilization, providing rigorous criteria
for its presence or absence. According to the tesults of Chapter 9, stabilization is always absent if the
momentum transfer is non-vanishing at the end of the pulse. These results are totally independent
of the pulse shape, of the pulse frequency, or of how smoothly the pulse is switched on or off.

Chapter 10 extends this analysis, showing that stabilization is in fact present when

1. The classical displacement and the momentum transfer are both vanishing at the end of the
pulse

9. The frequency of the driving field tends to infinity, recovering the results of [19].
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These conclusions follow from simple mathematical arguments, based on the Riemann Lebesgue
theorem and the asymptotic behavior of the time evolution operator when w — oo or Eg — co.
Furthermore, we show the inadequacy of the Gordon Volkov solution for calculating ionization
probabilities at intensities and frequencies usually considered in the literature, such that statements
concerning this phenomenon within the Gordon Volkov framework are questionable.

In Part III, we provide a general analytical solution for second harmonic generation with amplitude-
modulated pulses, within the weak-field regime. In particular, we show how propagation affects the
pulse shape of the fundamental and harmonic waves, such that an asymmetrical pulse can lead to a
symmetrical second harmonic and vice-versa.

Appendix A

Atomic units

In this appendix, we give the atomic units, widely used in this thesis and in high-intensity laser-atom
physics.

1. Length: 7o = 1 a.u. = h2/me? = 0.53 - 10~1%n (Bohr radius)

2. Charge: e =1 a.u = 1.602- 1071°C (electron charge)

3. Energy:1 au=e?/rg = 27.2¢V

4. Intensity: Iy = 1 a.u. = egce?/2rg = 3.51 - 10'W/cm?

5. Mass(m): 1 a.u = 9.1-1073'kg (electron mass)

6. Frequency: wp = 1 a.u=4.13- 106571

7. Planck’s constant/2m = 6.5 - 10722 MeV - s. In atomic units this constant is equal to one.
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Appendix B

Single-atom response in the
weak-field regime

In this appendix, important aspects of ionization and harmonic generation for weak fields are briefly
recalled. These conventional approaches are based on the perturbative series (10.1) resulting from
the interaction of the Du Hamel formula (9.4). We take the external laser field as the perturbation,
in opposition to the procedure used in the derivation of the Volkov series, such that the perturbative
series is
t
US(tt) = UAGY)-—i / ds U (t,5) HE (5)UA(5,t) (B.1)

2
t t
,/ds/ds’ 2 (t,s") HE (s"\UMS  s)HE (s)US (s, 8) +

Here, U#* denotes the propagator concerning the field-free atomic Hamiltonian Hj A and HY the
perturbatlon introduced by the field, which is given, in the length and velocity gauge, respectxvely
by Hf = - E(t)and HY = —B.A(t) + A2(t). In both cases the n-th order term of the expansion
(B.1) is proportional to the n-th power of the field amplitude, (Ep)". For weak fields, the series
can be truncated and yields reliable results. For strong fields, however, it clearly diverges. The
perturbative series above is the key point of the discussion that follows.

We consider now an atom initially in the state |1(¢ = 0)) = |) subject to the perturbation H/ .
The time-dependent atomic wave function is given by

@) =UF®0) ) = > [#70), (B2)

np=0

where

P (t)> denotes the wave function to np-th order perturbation theory, obtained by trun-

cating the time-evolution operator until the n-th order of (B.1). In the computations that follow,
we take the Hamiltonian in the length gauge, the field to be of the form E(t) = Eo ) sin(wnt)éz,

and an atom with m bound states, such that

t

) = e =iy +iY  Eo / dse~ A =) x gin(wns)e ™ |1) (B.3)

4 0
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o B t
~E2 Z Z /ds/ds’ e iH{ (t—5) X 8in(wns) sin(wnrs/) 1) (el e—ienls —8)yomieis

n,n’ p=0 0

B.1 Harmonic generation

In order to calculate the harmonic response, one needs the time-dependent dipole moment (1(t)] x [ (t)).

To first order perturbation theory, this quantity is given by

dV =2Re {Z? i CRs
0

oy 0T

xui‘QF(tv“Jiﬁu 2 “"n)} y (B4)

with

e Hwni= gin[(w; L, —wn)t/2] e/2@nitl ginl(w;_,, + wa)t/2)

(Wisp — wn)t/2 (Wimp +wn)t/2 (B3]

F(t,wimy —wn) =

Here we introduced the notation (i|x|j) = zi; and wj_; = & — €;. A quick inspection of (B.5)
shows that the terms in brackets are sharply peaked around w, = %(e, — €i), such that only the
terms satisfying this condition survives in the sum above. Physically, this means that a one-photon
transition can couple a final state [u) to the initial state |i) if they are resonant or nearly resonant
with the driving field. In other words, to first order pérturbation theory, the atom responds linearly
to the field. The positive and negative signs correspond to, respectively, one-photon absorption and
stimulated emission processes. The higher-order perturbative terms yield the nonlinear response of
the atom. The dipole moment to np-th order perturbation theory, d™) is given by

np .
d™) = Re E E? E XD (Wi, .., wg)e™t.. e, (B.6)
g=1  all combinations of wq

with the nonlinear susceptibility

XD (wy,.wg) = 2 § (w1 +wa + ... +wg)
all intermediate all permutations
states involving wg

(i) (e La) - (g X )
TR TR [ POMME e ok MR TR

The derivation of these formulae can be seen in detail in, for instance, [164]. In equations (B.6) and
(B.7), both positive and negative frequencies are taken into account. There are (g+1)! permutations
involving the frequencies U.)[)...qul. The terms 9B;{w1..wq) correspond to the sum 5" wy, until the j-th
term of the chosen permutation®. Specifically concerning the generation of the qth harmonic of a
monochromatic driving field, one must take (B.6) at least until g-th order, with the absorption of q
photons of frequency w and the emission of a single photon of frequency gw. The absorption of each
low-frequency photon requires intermediate atomic states, which are connected by matrix elements
of the form (,uj\ x|14;). The emission of the harmonic photon is given by <uq| x |i) . The operator x

1For instance, concerning third harmonic generation, to third order perturbation theory there are four possible
processes, which must be taken into account in (B.7).

2For instance, for a permutation P(w1,ws), B1(wi,ws) = w1 and Pa(wi,ws) = wy +wsz. More details on these
permutations can be found, for instance, in [173].
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has odd parity. For the harmonic emission to take place, it is necessary that all matrix elements are
non-vanishing. For isotropic systems, like a single atom, the Hamiltonian commutes with the parity
operator, such that eigenstates have a definite parity. This implies that the matrix elements above
are only nonvanishing if the states |u,;) and | ,uj> are of opposite parities. In this case, harmonic
emission is just possible if g is odd. Therefore, even harmonics are absent. For other systems, like
for instance some crystals, due to the lack of inversion symmetry, the eigenstates do not have a
definite parity, and the emission of even harmonics is possible.

This argument also serves to justify the absence of even harmonics for strong laser fields. The
harmonic intensities are of course not given correctly, since the perturbative series in the field
diverges.

B.2 Fermi’s golden rule

In this case, we are interested in the transition probability from the bound state |¢) to a continuum
of states with energy ¢, such that €, ~ ¢; to first order in standard perturbation theory. For a set
. . e . 2
of discrete states, this probability is defined as Y [(y] w(1>(t)>t ,with Iw(l)(t)> being given by
Euei
the first-order term of the expansion (B.2). For continuum states, one has

3,

HEpEi

W O = [ depoten) | vO@)] (B8)

where p(e,.) is the density of final states with energy between e and € +de. For the sake of simplicity,
we consider here a monochromatic field of frequency w. The first-order transition amplitude is given
by
(l 1/;“)(t)> — iHpe— ity ei(wimn—w)t/2 sinf(wi—p —w)t/2} B.9)
(Winsp —w)/2
Since physically it only makes sense that the atom absorbs a photon and goes to the continuum, we
do not take the term corresponding to the emission of a photon into account. For very large times,

in? Wiy —w)t/2 s

such that the ionization probability is time-proportional and the ionization rate is given by

dP  E2x?
5 = g lmwal’ plen = i ). (B.11)

Equation (B.11) is known as “Fermi’s golden rule”, and it clearly shows the ionization rate as
proportional to the square of the field strength. As already discussed in Part II, this is not true
anymore in the strong-field regime.
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Appendix C

The quasi-static tunneling formula

In this appendix, we shall briefly recall an important formula, initially derived for the Hydrogen
atom in a static field [66]. This formula has also proven to yield a reasonable approximation for
fields with very low frequencies [65), and has been widely used for describing tunneling processes in
the quasi-static field regime. For the discussions in Part I, it will suffice to present a one-dimensional
derivation of this formula. As a starting point, we take the stationary Schrodinger equation,

2
V() - B v = v, (©1)

b
where Ey, e, and V (z) denote, respectively the static field, the energy of the electron and the binding
potential. One can regard (C.1) as describing an electron in the effective potential barrier Vess(z) =
V(z) — Eoz. Let us take = z as a turning point and consider that, inside the barrier, for z > zo,
such that 1(zo) is given, the WKB approximation is valid (this approximation is also discussed in
[66])). Within this formalism, the wave function for the electron inside and outside the barrier is
given approximately by

%exp(i [ pdz +i%), z > 2

() = e ; (C2)
< _exp | | [ pdx|], By L E I

k2l

where the momentum p(z) = v/2¢ + 2Eoz for = > zo(one should note that, inside the barrier, p is
imaginary). One can calculate the constant C using the boundary condition at zo, such that.

zo

C = /|poltp(wo) exp f/pdx . (C.3)

33
Here we denoted p(zo) = po. This way, the probability current for z > x,is given by

xp |

I = p [$(@)asar | = Ipol [$(0) Pexp | - / pdz

1

(C4)

Now a further assumption is made on the wave function inside the barrier, namely that it decays
exponentially with x, i.e., 1(zo) = Dj exp(—ko). Normally, ¥(xo) is determined by fitting a tail
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of the wave function we are taking into account ( for instance, for the bound state of the gaussian
potential of chapter D; we performed a fit for a numerically calculated wave function g =< 2|0 >).
If we consider a short-range potential, such that even for strong fields |Egzo| < |e|, then

I = kDZexp {72(2|5\)3/2/3E0] A (C.5)
This probability current can also be viewed as the ionization rate, since [Tdt = [ |¢(z)[?dz. To

first approximation, for quasi-static (low frequency) fields, one takes Eo — |E(t)|. Clearly, as the
frequency increases, this approximation gets inapplicable.

Appendix D

Numerical Methods

In this appendix, the numerical methods used in this thesis are briefly discussed. The inverse iteration
and the Crank Nicolson methods are the main structure of the TDSE solution used in Chapters 5,
6 and 7. The Runge Kutta method is used in the investigation of the semiclassical teturn times
(Chapters 5 and 7), and in the numerical integration of the Bloch equations for the two-level atom
(Chapter 6). The six point integration method is used for calculating quadratures throughout Part
I, which are necessary, for instance, in the simulations involving the three-step model (Chapter 5),
or in the time-dependent projections (Chapter 6).

D.1 Inverse Iteration Method

The initial wave function|(t = 0)) = |0) corresponds to the ground state, and will be propagated
in time within the TDSE framework is calculated solving the stationary Schrodinger equation

H*Jgo) =0 0), (D.1)

with H# being the atomic Hamiltonian of Chapter 2 for a one-dimensional “atom” confined in
a box of length L (the distinction between this Hamiltonian in the length and velocity gauges,
H, lA and HZ, is only necessary when the external field is present). We are mainly interested in a
fully numerical solution for the eigenvalue equation above, since (D.1) is analytically solvable only for
very few potentials. Equation (D.1) is solved in the configuration space through the inverse iteration
method. This numerical method requires an approximate eigenvalue € and an initial guess function
¢(x), which will be taken as a first step for approximating the eigenfunction p,(z) = (= |0). The
approximated eigenvalue is found by diagonalizing the matrix H4 — ¢,. These parameters are
inserted in the equation

(H” ~ €5) po() = wo(), (D2)
which is solved iteratively: the function <p(()") (z) at the n-th iterative step will now be used as

the guess function ¢g+1)(z) in the next step. We take the guess function for the first step as

wg(x) = cos(z/L), or pg(x) = sin(x/L), depending on the parity of the bound state in question.
For instance, for the ground state, which is even, we take the first choice of ¢ (z). At each iteration
step, the eigenfunction pgy(x) is normalized to one.Within this iterative scheme, the eigenvalues of
the successive steps are related by

(n+1) _ _(n) 1
€ =g +— (D.3)
’ : (¢ o)
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Particularly for the atomic Hamiltonian

. 1

=523 +tV@), (D4)

considering a discrete grid in the variable z, one can write, at © = x;,
wo(wj11) — 2p0(2;) +o(®i1)
2(Az)?

where Az is the grid spacing and z;41 = z; + Az. Inserting (D.5) in (D.2), one obtains a system of
linear equations with nonzero elements only in the main diagonal plus or minus one column. Such
systems, known as “tridiagonal systems”, are given in general by

HApg(z) = ~ + V(z;)po(z5), (D.5)

B 1 .- 0 U -
o Py U2 RE; T2 ] (D.6)
. ’ ’ Tn—1 ’ -
0 ... ap B, Un Tn
Concerning our specific problem, u; = @o(z;), 75 = al@;), @ = 7; = -1/2(Az)? and §; =

1/(Az)? + V(z;) — €h. These systems can be easily solved numerically using standard subroutines (
see e.g. subroutine “tridag” in [172]).

D.2 Crank Nicolson Method

The initial wave function @g(x) found using the inverse iteration method must now be propagated
in time. For that, the time-dependent Schrodinger equation (2.1) must be solved numerically. The
most popular way of doing this is the Crank Nicolson method. Its main advantage lies on its stability
for all values of the time increment used.

Taking the Hamiltonian (4.31) in the configuration space, (2.1) is written as the partial differential

equation

N, T 2
z@%’—*) — |+ Ao + V(m)] o (D.7)

The formal time-propagated solution of this equation is
¥(z,t) = e (2, 0). (D-8)

The time evolution operator, for a time increment At, is discretized using Cayley’s form'. This
approximation is second-order accurate in At.

o iHA 1-iHAt/ 2. (D.9)
“1TiHAt/2 ;

Using (D.9), one can write the scheme used in the time propagation,

(1 +iH) Wz, t+A) = (1 - i}iqét) B(z,1). (D.10)

2
1One of the main differences in the propagation methods concerns this discretization. A few examples can be seen,
for instance, in [172].
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The discretized Hamiltonian is written, for fixed z = z;, as

Ht)w(a,t) = _1/1(Ij+1,t)*221//(([?;)2)'1'10(%—1,1)
+iA(t) %/’ﬁ”—” + V(@) 1). (D.11)

Substituting this expression in (D.10), one obtains the tridiagonal system with

A . -
7 4(A$)2 1A (D.12)
e o AT At
B; = ZQ(Az)2+1+Z7V(Ij) (D.13)
b A AWA
and
. At A(t)At
P, = ir1,t
e )[24(Am)2+ 4Az}

. At At
+(z;,t) | -i——= + 1 —i—V(z;
P(z; )[ 12( z)2+ 5 (z5)

At A()At

4(02)? 4Az ] e

+ ’l/)(l‘jAl 5 t) [Z

which is, as in the previous section, solved according to [172].

D.3 Runge-Kutta Method

This is a typical method used for solving a set of n coupled first-order ordinary differential equations
of the generic form

dyn

e FiZ, ¥y s Yn)s (D.16)

to which any problem involving ordinary differential equations can be reduced. In this thesis, such
problems occur twice: :

o In t%le computation of the bound-state amplitudes of a two-level atom as functions of time,
solving .the Bloch equations (4.27) given in Sec.4.2. These equations are given in the form
D.16, with the initial condition that the atom is in the ground state, i.e.,

C1(0) = 0;Co(0) = 1. (D.17)

o In the integration of the equation of motion of a classical electron in an external field, where
the second-order equation (4.3) can be rewritten as

dx
dt
dv v (z)

% = o TE®. (D.18)
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To first approximation, the influence of the binding potential is neglected. The initial condi-
tions are given by the assumption that the electron leaves the atom at t = tp with zero velocity.
In case the potential is taken into account, the initial velocity is given by /2 l€o]- In order
words,

z(tp) = 0

U

i 2leol, V() # 0

This initial time is varied then over a field period, and, within the time propagation, when
the condition z(t) = 0 is satisfied, the return time t; and the corresponding kinetic energy are
stored.

(D.19)

In general, in Runge Kutta methods, the derivative of a function is evaluated at several “trial
points”, taken between two consecutive points of the grid, such that these are used to compute the
function at the next point of the grid. Concerning the fourth-order Runge-Kutta method, which is
used in this work, the derivative is evaluated four times: once at a n-th and at the n+1-th points of

the grid, and twice at trial midpoints. More precisely, we take
k1 Azxf (:II", 'yn)
ky = Azf(zn + Az/2,yn + k1/2)
ks = Azf(en+Az/2,yn +k2/2)
ky = Azf(zn+Az,yn+ks), (D.20)

with the derivatives denoted by k; and the increment by Az, such that the function at the next
point of the grid is given by
ki ke k3

- ky 5 .
Ynt1 =yn+ ¢ + 3 + 3 + 6 + O(Az®). (D.21)

D.4 Six-point integration method

This method was used in the computation of several integrals in this thesis, for instance:

e The average dipole acceleration (t) = (1(t)] % |(t)) in the TDSE computation (see also Eq.
(4.33)), as well as its time-dependent projections (Chapter 6)

e The Fourier and Gabor transforms in Chapters 5, 6 and 7.
o The time integral (4.18) in order to compute the three-step model dipole moment (Chapter
5).
The idea behind the six-point integration method is very simple: Let us consider a function f(z),
which must be integrated in the interval [a,b]. The increment in x is given by Az. We divide [a, b]

in several subintervals, such that the width of each interval is A€ = 5Az. The integral f: f(z)dx is
the sum of the integrals calculated in each subinterval, which are approximated by

£+0E
[ 1o 010910+ 1o + 7011+ S+ 50U+ £l (D22
£
where we used the notation fn = f(z + nAz). Here, we introduced the normalizing constant C1 =
5Az/288.

Appendix E

Hydrogen matrix elements

In this appendix we will provide the explicit calculation of the term
NG 9) = @, V%) + (@, VE - O™) — 20, V(7= OV(R)w) (E1)

For ’l/) = wn o he first term is well known € s 1] . We ot find a computation
t fi 11 O 0 equal —3 : 38] did P i
i n3(l+1/2) u
or the matrix eleme IlVOlVlIlg the Coulomb potentwd he Kramers-Henneber ger frame in the

literature and will therefore i i
present it here. Starting with the famili i i
Coulomb potential in terms of spherical harmonics ¢ S

L ) [
7= P 2141 No6,9) (E.2)

=0

where 7o = Min(|,|C|) and rs = Maz(|7],|C]), we obtain

(‘I’nlml |F“Q*1 Iﬂ—ll\pnlm> = Z/dﬂyz*mYz' oYim i
1'=0 Var+1

12 U1 oo st
=
/dr - R§,+/dT 4] R?,
¢\l J '
‘ 1<l
which by the well known formula from angular momentum theory
AW Y Vi _ @+ D)2 +1)
/ iy Yo ma = ([ 000110tz s mafim) (E3)
leads to
i 1<l 41 o0 R
(5 00[10) (11; mO| ) /dr Z) Ry k1) e
& AR b k)
1€l
Here (l;l3; mymg|lm) denote t ig i i
ol 1mg|im) denote the Wigner or Clebsch-Gordan coeflicients in the usual conventions (see ‘
We shall now consider the term
|
{Tntm! 17~ €17 (Wit (E.5)
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Employing (E.2) and the formula

@ + )2l +

1 1
Y[lmlnzﬂlg = A ) Z (2[/ i 1)Yl/m'<1112;Tnlm?lllmlxlll%Ooll/0>
U'm/
yields
[k+U| [y
1 TS 4 -
— = —< | ——— (KI’;00]{0)% Y3, - (E.6)
— =2 ). e CE fo
F=CP o e ™ 20+1
Once again applying (E.3) shows that (E.5) equals
1l U4it2 oo LN U
> (i'; 00{10)* (1; 0m|tm) {11; 00]10) dar [ = R% + / ar (19 R, . (®?
o TN AN

For s-states, i.e. (I =0), we may carry out the sums over the Clebsch-Gordan coefficients easily. In
(E.4) the only contribution comes from I’ = 0 and we trivially obtain

4] oo
(ool = 87 @ Te) = g ot / drR2, . (E5)
o 1€l

In (E.7) the sum over [ contributes only for T =0 and together with (Il’;00|00)% = 561%1 it leads to

o 9 2042 oo @ 21
7o Clm2 L s o 2 161 2
(Wnoo| 17— ¢]7% [¥noo) = Z?l+1 /d' (lfl) Rer/dr ( T) R | . (E9)
=0 . S
1€l
We turn to the case n =1 (with ¥y = —\/%e*’) for which (E.4) becomes
i i 1 200
(Ta00] 7= 7" 1717 [W00) = T (E.10)

As consistency check one may consider the asymptotic behaviors |E | — oo and |E | — 0, which give,
as expected, 0 and 2 respectively. Using the series expansion for the logarithm, (E9) for n =1

becomes

1q] o 0o .
= 7|2 _ 2 . gl +r —or r+ ¢l _or
(T100] 7= CI7% [T100) = m 0/d7 In (m = r> re +‘2(drln <r ) \E() re . (E11)

Using then the integrals

A 1 5
/dr In(1+r)re 2" = iz ((1 T 2¢)e™2 Ei (F2c(1 £ 7))

—e72¢" (14 (1 +2¢r) In(1 £ 'r))) (E.12)
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/drln(l tr e 2 = Zi—Q ((1 F 2¢)eT2T Bi (2¢(F1 — r))
—Ei(—2cr) — (1+ 2cr)e” 2" In(1 ir’1)> (E.13)
we obtain
(Waoo| 17— /2|7 W100) = (1 - <] ~1)e D Ei(T]) + (1 - ICI=)elh Bi(—2]) (E.14)

As 2 cor}sistency check we may again consider the asymptotic behavior, that is || | — 0and |{] - co
which gives correctly 2 and 0, respectively. Assembling now (E.1), (E.10) and (E.14) gives as claimeci
(9.14). In the same fashion one may also compute N (C, ¥yurm) for arbitrary n,! and m.
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Appendix F

Convergence of the Volterra
equation

In this appendix we discuss the convergence of the iterative solution of the Volterra equation (10.20),
which after integrating the free term acquires the form

t <t
b0 =[5 (U3 @)+ @0) veyf [0S @
0

It is crucial to note that unlike the Gordon-Volkov iterative series, this procedure always converges
with some natural assumption on the functions involved. With an obvious identification we may
write (F.1) in the general form )

t
VO =90 +a [ K@ ds . (F2)
o

We will now closely follow the line of argumentation in [151] and show that once the free term in
(F.2) is absolutely integrable, i.e.|[ g(t)dt| < [lg(¢)|dt, the iterative procedure converges for all
values of «. The proof serves to provide the necessary estimations of the higher terms, which we
employ to justify the termination of the iteration.

Tterating (F.2) leads to

Y (t) =g(t) + Za"/Kn(t, S (s)ds = g(t) + Y ¥, (1), (F.3)
n=1_ 4 n=1
where . . .
K,(t,s)= [dzy... [ dep1K(t,21)... K(2p-1,8) = | deK(t,2)Kp—1(x, ). (F.4)
[#=] /

Here we assumed w.l.g. for the kernel K(t,s) =0 for s > ¢ and furthermore that the kernel is
bounded by some value of the form

K

|K(t,s)| < ; (F.5)

t—s
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that is we allow a weak singularity of the type which occurs in (F.1), we will now show by complete
induction that for all n the bound

TER"(t—s)3!

=TT (v.6)
holds. Considering now (F.4) for n — n + 1 we obtain upon the use of (F.5) and (F.6)
t
|Knpi(t,8)] = /de(t,x)Kn(xv 5) -
s
i / z—s)i! a3tientl(t — 5)3 -3
N WF’Z%) / ot \/FE_E - F(%ig)) ) (F.8)

which concludes the induction. Using the bound (F.6) we may estimate the terms in the expansion
(F.3)

@) = o | [ Kt} (s (F.9)
1)
i f n_q 2A n
< F—%)—A/ds(tfs) e & (m\/ﬁ) ) (F.10)

0
where A denotes an upper bound for the absolute value of the free term
[fmI <A . (F.11)
We will now show that the infinite sum in (F.3) is indeed convergent and satisfies the Cauchy
criterium. For this purpose we carry out the Cauchy root test, i.e. we use the fact that if
limy,ey o (W)nl)l/ ™ < 1 the series ioj 1, is absolutely convergent. Approximating in (F.10) the
gamma function by Stirling’s formgl:a as n — 00

£(3)~ e ()" w32

we obtain A
. 1 . Ko/ mtAR 272
im (|4,[) %= lim 0 TR S IR WO M O =0 . (F.13)
n—0oo nN—=0 e 2 AInn2 T T 2n
Hence the iterative procedure converges for all values of a.
For the particular Volterra equation which concerns us, namely (F.1), we have

K= \/% and A =+V2ra, (F.14)

where we used the fact that the confluent hypergeometric is bounded by |U% 3

(z)| < /7. Hence in
our case the upper bound in (F.10) acquires the form

| n
\wn(t)|§\/8a_7rnr(%) (a t/2) ; (F.15)

In particular we have

Iy ()] <2tiad | m(t)fs\/gm%, |¢3(t)|g§t%a%. (F.16)

It is important to note that it is essentially the occurrence of the gamma function T (ﬂ), which
in (F.13) ensured the convergence and that this property is independent of the pa,ramef?ers a and
t. However, in (F.16) we observe that for some choices of o and ¢ this convergence might be quite
slow and we are therefore restricted to particular values of these parameters if we want to have a
reasonable approximation after only a few number of iterative steps. In order to obtain a general
criterion by which one may decide at which order it will be safe to terminate the iteration, we should
sum up all the remaining terms

D (O] = V2am (2exp(a’t/2) =1 U,y (e4/2) /) . (F.17)

%

Hence the maximal relative error after the zeroth order reads

(2exp(e?t/2) ~1- U, , (a?t/2) /)
(U%,g (@) +Uy s (‘h))

pi=2m (F.18)
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