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Chapter 1

Preface and general overview

'l'k: study oflight-matter interaction processes at the atomic level has already a long tradition as

rrrr nrea of Physics [1]. More than one hundred years ago (more precisely in 1886 and 1887), Hertz
rurlized that light could influence matter, observing that m electron discharge could be enhmced by
rrlt.ravioletlight. Atthebeginningofthiscentuy,AlbertEinsteinproposedtheexistenceofphotons,
rr.rrl even raised the possibility that multiphoton processes might exist l2]. The first systematic studies
,,l these processes, by Maria Goppert-Mayer, date from 1931 [3]. In the sixties, with the advent of
Irrscr sources, the ryternal fields involved in the optical processs achieved higher intensities, and
rr wide range of new possibiiities was opened- As a very important exmple, in 1961 Flmken et
rLl. [4] found that a ruby laser beam incident in crystalline quatz generates a very weak bem
,,1 tJV radiation, its frequency being twice that of the ruby lmer. Almost simultmmuly, Kaiser
rrrrtl Garret reported a very similar experimental obsemtion [5]. This was a clem sign that a

rrrrlium can respond nonlinearly to external lmer fields. Since then, nonlinem optics hm evolved
lloru a laboratory cuiosity to a very important area in Physics, with applications in imurrerous
li.l<ls of science md technology, m diverse as, for instance, lmer fusion, biomedica.l instrmentation
,rr lirntmecond sptrtroscopy [6]. Moreover, the development of lmer sources made the study of
rrrltiphoton ionization possible [7], which hm attracted the attention of several groups in the last
t lrrrr: decades.

Up to one decade ago, all external fields involved either in these nonlinem interactions or in ioniz+
I iorr 1>rocesses were much weaker thm the typical atomic binding forces. Thu, phenomena occurrilg
irr t,lrc context of the interaction of atoms md radiation were well described by pertubation theory
rrr iln cxternal lmer fie1d. As a direct consequence) our whole physical intuition concerning such

l,roblcrns hm ben strongly influenced by this "perturbative viewpoint". Within the pmt decade,

lrrwcver, lmermuceswithpeakintensitiesof theorder of 10\6wfm2 havebecomeexperimenta)ly
lirsible. In this intensity regime, the extemal lmer field is compmable to the binding energies of
ilr('(,lcctrons, and therefore it cm no longer be treated s a pertubation l8]. The inadequacy of
I lris llreory hm also been confirmed by several experimental obserrations concerning high-intensity
r,lriir:al phenomena, whose description require alternative thmretical methods l. Therefore, this
rrrtcrrsity regime poses now a great chaJlenge to both thoretical md experimental physicists, such

r lrrLt. this field ofresearch constitutes one ofthe most active areas withiu atomic physics. Apmt from
t lr rrrderstanding of the main efiects like high-hamonic generation and ionization in strong laser
li,'|ls, one expects possible applications for instance to plasma physics 110] (in particular fusion)'

Llrr frx:t, cxperirnents have showu that standard pcrturbatirlr theory already fails for fiolrls of thc ordor of
|tttlvfcm2. This is possibly related to the fact that, for tlroso iuLcxsities, the stark shifts of the AtoDic lcvels
1,,','rn{ r(trilparable to the phototr elergy, for tvpical frcqucrrcies usrrl l9].

7



8 CI{APTER 1. PREFACE A-I{D GEI{ERAI OVER\IIEW

particle physics 111], XW 112] and X-Ray sources [13].
Nloreover, foi laser intensities of the order of 10l8lifctn2, for typical frequencies, the kinetic

energy transferred to the atomic system by the {ield is of the order of the rest mass of the electron

[14]'. This meaDs that the lmer-atom interaction Deeds a relativistic ireatment 111, 15].

This thesis addressm mainly two high-irrtensity efiects: high-harmonic generation (Part I) and

atomic stabilization (Part II). These phenomena occur within the same physical framework, which

is discussed in detail in Chapter 2.

High-harmonic generation (ItlIG) is a high-intensity phenomcnon in which matter responds

nonlinearly to m external laser field, emitting humonics (i.e. coherent light whose frequency is a

multiple of the frequency of the external field) up to more than the 100-th order. This effect was

first observed independently in the late eighties, at the University of Illinois, Chicago [16], and in

Saclay l1?], in experiments related to harmonic generatiorr in gmeous media subject to external

fields of the order of 1013 l\lsWf cm2. The emission spectra in these experiments presented very

particulu features, which turned out to be independent of the atomic species in question and can

not be described by taking the field m a perturbation. In Chapter 3 these features, as well as our
,,perturbative expectations", are discussed in detail. chapter 4 presents some of the widely rrsed

theoretical approaches to the problem, which will be useful in the subsequent chapters of Part I-

These are concerned with a detailed investigation of the mlidity and limitations of such models, for

monochromatic (Chapiers 5 and 6) md bichrouratic (Chapter 7) driving fields'

Roughly speaking, atomic stabilization means that atomic bound states become resistmt to

ionization in ultra-intense laser fields. This strong-field effect is a very controversial theoretical ob-

servation, and the fi.rst studies suggesting its existence reported strong deviations of ionization rates

from the predictions of Fermi's golden rule [18, 19]. These rates started to decrease with the exter-

nal fi.eld strength, provided the fieltl intensity and frequency ue high enough. Alternatively, several

groups refer to a decrease in the ionization probability 3. The existence or not of this phenomenon is

not mttled yet, since wperimental memurements in the reqrrired intemity and frequency domain do

not exist4. In Part II, malytical methods for investigating the absence or existence of stabilization

with respect to the pulse shape are proposed arrd several examples are presented. In particular, in

Chapter 9 a new mathematical mcthod in this context is discussed and applied to the Hydrogen

atom. In Chapter 10 , we investigate the connectiol between the absence or existence of this phe

nontenon a1d the total clmsical moneltum transfer and displacement caused on the electron by the

external fiel<l. Pmticularly in Sec. 10.2 this discussion is extended to a specific example, namely the

orr+dimensional delta potential. The computations of Part II were performed in collaboratiorr with

Dr. A. Fring and Prof. Dr. R. Schrader, of the theory group of the ltee university Berlin.

In both puts, we concentrate on the single atom- field interaction. Effects such m the prop
agation of the hmmonics in the gaseous mediurn 122. 23] or the interaction between strong fields

..d *o.u complex systens, as for instance molecules 124,25,26), are not discussed in this work-

Furtherrnore, re consider the atom to have olly a single electron, msumption known m the Single

A.ctive E]ectron (SAE) approximation. Nlultielectronic eflects srrch m electron-electron correlation

or double ionization have been addressed, for instmce, in y27 
' 

28)'
pmt III is sonehow difierent from Parts I and II . Therein, a nonlinear optical process involving

much lower intensities is discussed: Second hmmonic generation. For strictly monochromatic driving

fielcls, this phenomenon is well-mderstood md can be found in every textbook on rronlinear optics'

For short prlses, ho*eter, it is still m open problem to a very large extent (see e'g 16, 29] for reviews

ffiuln'cLir..rrrr.,rr'Lab.lrat,,rv(USA),thcUliversityofRocheste.r(USA),
Laboratc,ire d'optiqrre Appliqrr&: (Paris), ihc Lrmri Lascr cqrt,cl (swedcn) aild the NIax-Boln hrstitut (Bcrlin)

:llrr Sct,. 8.2, wc prr)vicle a precisc <lefirritiol r:f slnl>iiizrti(D. wlii(:L is us{l throughout t}ris work One nlusl trotc,

howcver, thri a uuifie<1 dcfiritior of this phurorrrrrrr, withir ttrc s.i{xrtilic: (rlnnurity, seoils iol yet to cxist.
lExperinrxrtal evirlurr for soDrc sort of stal)ilizati(u is gi\(xr il [20, 2i], but thcso cxPerirnents do roi dcal with

thc 'trltr:r-ilrt{rFc" regiruo for wLich tlle ihcorcti(:Al l)rcdi(itiurs arc nradc

9

,rrr the subject). We present a general, nonstationary and analytical solution for the SHG problem,
r;Ltiri for a fundamental incident wave of arbitrary pulse shape, provided both fundamental md
.rrrxd harmonic waves are amplitudemodulated. This investigation is of interest in the context of
I lro present work, since, mder experimental <nnditions, high-intensity fields are only achieved using
rlrrrt-pulsed laser radiation. As a first approximation, high-intensity phenomena are investigated
rrsirg strictly periodic fields. For instance, in Part I we address HHG using monochromatic and
l,iclrromatic driving fields, namely a high-intensitv field of frequency o and its second harmonic.

I lowcrer, in order to describe e-xperiments quantitativeiy, one must use short pulses whose shapes

r r rr r well determined. For bichromatic u 2a driving fields, for instance, realistic driving pulse shapes

, rru be obtained using the results of Part III. This pmt also differs from Parts I and II in the rense

t lrrr.i,, instead of considering the response of a single atom to m external field, we look at the pulse

I,roliagation in the medium.This work wm a result of a collaboration with the group 'Nichtklmsische

litrrLhlung' of the Humboldt University Berlin.
'lhe appendices provide information of either conplementay or technica.l nature, related to

rlr, rrnin parts of this thesis. Appendix A presents the definition of the atomic units, which are

rrrrl throughout. Harmonic generation and ionization within the weak-field regime are discmsed in
Alrlxrndix B, with emphasis on which mpects ceme to be valid for high intensities. In Appendix
(' rrr important formula concerning ionization rates s'ithin the context of static fields, which is

rrr.lirl in Pmt I, is brieflv recalled. The subsequent appendices concern the numerical methods used

1 A plrcndix D) and technical details of the derintions performed in Pat II (Appendices E and F).



10 CHAPTER 1. PREFACE AND GENERAL OVERWEW

Chapter 2

Physical framework

'l lrr object ofour investigations is an atom in the presence ofa sufficiently intenre I lmer field, which

rrrrry 5e described in the non-reiativistic regime by the timedependent Schrildinger equation in the

, lil xrler appruimation

,9!P:Hft)g,@) (2.1)

W, qse atomic units throughout. The timedependent external electric field will be treated classicaJly

nrtrl is msmed to be linearly polaized (i'e' E(') : E(t)c", where 6' denotes the mit vector in
il," x<lirection), of the general form E(t) : Eof (t), with 'Eq being the field mplitude and /(t)
,u,rrr.0rbitrmy function which equals zero for t < 0 and t > r, such that r defines the pulse length-

I tr.lxrrrdilg on the context it is convenient to dpress the Hamiltonim in equation (2.1) in difierent

*11t1qs. These gaugeequiulent Hamiltonians are comected by unitary trmsformations, which will
lu, rrr:trlled below and are extensively used in this thesis, particularly in Part II.'

2.1 Gauge equivalent Hamiltonians

lirhirrA .4i*;(l) to be a one parameter family of unitay operators, we may constluct the gauge

,rlrrivtltnt Hamiltonian fl (i) from IIi (l) by the mual gauge trmsformation

Hi(q : iatAj*t(t)4!n(t) + Ai *e(t) H i$)Ai!1(t) (2.2)

{'lrxxirrg the most conrentional gauge, the seca,lled length gauge, the Hamiltonian to describe the

rrlu,vr, nrcntioned physical situation is the Stmk Hmiltonim

Hf@:Hro+v(i)+i E(r) . (2.3)

| (rj) is the atomic potential and II,0 : f2/2 denotes the Hamilton operator of the fre particle- We

rrrt rr xlrr;cd here sub-md superscripts in order to keep trmk of the particular gauge we re il and to

i,h,rrtily a specific Hmiltonim, respectively. In our c.onventions f and i denote operators, whilst 1
,,rr,l rr trc elements in .R3. Other comonly used Hamiltonians ae the one in the velocity gauge

Hf (t) :]tf - a{,)a,)' + v tr) (2.4)

I ,$rlli(.irxrily" rcfers to thc validity of a classical tr*rtrnrDt of the lascr field. For vcry weak fields, a quantum-

lrrc lrnrrir tl tr(l1ttrent i$ soutetimes [eccssary (see for ilrstarrce [30] for a dircussion of Physicil effects rclated to thc

,rrriilrl u[r ril(x:hsnical [ature of the exterrral field).

11



T2 CHAPTER 2. PHYSICAL FRAMEWOHK

and the one in the Kramers-Henneberger (KH) frme 131]

Hf<n@ - Hf +v(i c(t)e")

These Hamiltoniars may be obtained from each other by using

A,*r(t) - eib{t)*,

A,*xa(t) : e ia(t) eic(t)tu ,

At*xn\) : e-ia(t)e ib(t)xeic(t)p"

b(t) -

"(t) -

a(t):

(2 5)

(2.6)

(:2.7)

(2.8)

in (2.2). p" is the component of the momentum operator in the x-direction. We have employed the

important quantities

t

I dsE(s),
0

t

/ dsb(s),
0

t

I I o"u',"r,
0

(2.e)

(2.10)

(2.1 1)

which are the clmsical momentum trmfer, the classical displacement and the classical energy trans-

fer, respectively. These quantities have a slightly different physical meming from the vector potential

A(i),itsindefiniteintegralI'(t)andtheindefiniteintegral !dsA2(s),whicharealsoused,withinthe
atom physics community2, in the transformations (2.6)-(2'8) and the Hamiltonians (2.4) and (2.5).

Bytaking de,fniteintegralsin(2.9)-(2.11) wearefixinginitialconditionsforthephysicalproblem.
In other words, we impose that, at t:0, the momentum transfer, the classical displacement and the

energy transfer caused on the atom by the field are zero. This ma.kes physically sense, since at t :0
no electric field is yet present. This condition is not always fulfilled by the vector potential A(t). For

instance, for an instantanmusly switched-on monochromatic field, E(t) - "Eo sinot, A(0) : Eola.
In Part I, these details are not relevant to the physical discussion. First, this problem does not

appem since we take, in all computations (see, Chapter 4, specifically Sec.4.3), A(i) to be smoothly

switched-on, such that in this particular case b(t) : A(t). Second3, the phenomenon we are

investigating is mainly originated by the periodic character of the field, imtead of its turn on and

of[. To emphmize this, we use (and refer to) A(t) in all Hmiltonians and gauge transformalions
tlxrrcin. In Part II, however, these distinctions will become importmt, since the tota,l momentum

transli:r and the classical displacement at the end of the pulse, b(r) and c(r), are the crucial

paraulctors for the description of the phenomenon we are going to discussa. These parameters

arc highly dependent on how the pulse is switched on md off. For severaf pulse shapes, it is not
only let:essmy to guarantee that no momentum transfer has occurred at J :0, but also that this
momentuur transfer takes place continuously in time. In some particular cases, the use of A(t) may

artificially introduce "kicks" in the electron at the end of the turn-on, or extra time-dependent terms

2The ilotAti(n$ prcsente(l hore are, however, cxtoxsively used within Mathematical Physics, for the reasons dis.rrrsRe{l

ir} this cLaptcr (srt also [32] ).
3For HHG illvolviDg ultrashort puls()s, thcsc l)tramctcrs uay havc a larger infloeDce. Studie$ on this subject have

been rcccutly iuitirtcd iD [33].
aThe classical drcrgy trausfer a(t) is xot a cru(,ial qrantity sirxt it enters all cxpressions oDly as a phase aDd will

therelore r:alcel iu all rclevnnt physical expressi<lts

' I (:AUGE EQUIVALENT HAMILTONIANS

rrr I lrr clmsical displacement, and yield misleading results 5. Some artificial results obtained by these

,lrrrrrrrrtinuities are discussed, for instmce, in 134], within the context of atomic stabilization.
lrr our considerations we will also ned the Hamiltonians

Hf(t) -HP +v(i), Hf" (t) : Hl + xE(t) (2.12)

n.lrrr.lr rlcscribe m electron in the atomic potential or in the electric field, respectively. Of course

rlr,,rr lltrmiltonims may also be trmsformed into the other gauges by (2.6)-(2.8)' Notice that
n'tjrtt(t): 4.

Arrrl,her useful unitay transformation, related to the elirnination ofthe purely timedependent
t, r rrr irr the Hamiltonian (2.4), is given by

Aa*,(t) : e-i"(t)

I lrr:r I rnrrsformation is used for instance in Sec. 4.3-

t,,r ,.,,i1,,rr!r, ftn a trapczoidlrl (i.r:. tirrearly switrlrtrl or aild ofl) clectric field, there is:1 discontimity for the
, , t,,,tr.rtirlltrtthccDdoftheswitdl-oDranrp,ixciBctheswitchrDtinrcdillcrsfrolranintegernumbcrofhalf
t . , l rl,, li,rl(I. This discoDtiDuitv (locs not exist for b(,).

13
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High-harmonic generation



Chapter 3

Introduction

llirrrrronic generation owes its existence to the nonlinem response of the time-dependent atomic
,lrpokr moment to an external lmr field. The emission spectrm is proportional to the modulus
,,,1rrrrrc of the Fouier trmform of this quantity, taken in its length (r(i))or acceleration form (i(t)).
I i ,r weak fields, it is a standmd and well-understood problem, well-explained by taking the electric
lr.|ltsapertubation. However,intheexperimentsreportedin[16,17],a"ftertheexpecteddecrease

',1 I lrr low-order hmmonics, the spectra presented a long frequency range with hmmoaics of roughly
llr,'sarne intensities, the so-called "plateau", followed by ar abrupt decreme in the hamonic yield,
I lri' $(Fcalled "cutof". Intuitively one wou.ld expect a monotonic decrease in the harmonic intensity
*rtlr humonic ordbr. Suprisingly, a computation performed in [35] using perturbative methods
, , ,r r, rrruing the field predicts a "mountain" (i.e. too strong harmonic yields) for the higher harmonics,
;,lt,.r lhis initia.l decrease. As m illmtration, Pig. 3.1shows memurements of the harmonic intensity
.r', ir lirrrction of the harmonic wavelength in the plateau md cutoff regions, obtained uperimenta.lly
l,,r Nrrrn at the Md Bom Institute [36], with a Ti:Sa lmer system. The hmmonic orders are a.lso
rrrrrrkrrl inthefigue. Oneclearlyseesanenissionspectrmcomtitutedof oddhmmonicsl,witha
ulrirrp iutensity decreme after H53.

lir:vcral experiments of the same type confrrmed that these featues are independent of the gaseous
,1u.r ir,s involved [37, 38, 39]. Detailed investigations shored the dsrea^re of the cutofi energy for
lrr1,lrr frequenciesanditsincreasewiththeintemityoftheextermlfieldandtheionizationpotential2
,,1 tlr.lrtomic species in question [38]. These results alrmdy suggsted the existence of a simple,
,, r grlicit, and universal cutoff law. Several models, such as the three-step model [40, 41, 42], a driven
rn'r, lrvcl atom [43, 44,45,46], the fully numerical solution of the tim+dependent Schrddinger
,,1rlrt.ion (TDSE) [47, 48, 49, 50], and the Floquet approrch 151], were concerned not only with
tlrl olrt,cntion of this iaw, but with the description and understanding of the me.ha'isms involved
rr lririlr-harmonic generation altogether. Pmticularly the three first theoretical approaches will be

'1r,., rrr.rrl in detail in Chapter 4.
'l'llr cutofflaw which showed the best agreement with the experiments wm first obtained em-

g,illllly in 1992 a.fter detai.led thmretical studies based on a TDSE computation [49], for several
,,rr. ril(l three-dimensiona.l model atoms, including rtre gasesj Hydrogen, atd varioN short- md
l',rr1i rrrrge potentials. According to this law, the maximal harmonic photon energy is given by

l€ol + 3.17Up. Here e6 is the field-free binding energy of the grormd state md Uo the
t,"rrrlcrorrrotive energy of m electron in the laser field. This latter quantity is proportional to the

' , ,,, ,r 
"tr, 

d.*. a*y**"y .i,]"*,ifrs, cvel harmonics are absent. For more details we refer to [6] and
1t,t,,,,,lix ll.

' I lr| ltrsos for which HIIG experirncuts wcre rrrost cfiiciently perfonned turned out to be r&e gases, for which this
.r,i,'rir rt y iH p:rrticulsrly high.

17
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Figue 3.1: Ilarmonic spectrum for Nmn, for a Ti:Sa lmer system with peak intensity of the order

of 70\5W f cm2 and wavelength of 795nm- The memuement wm performed by G. Sommerer et- al'

at the Mu Born Imtitute, Berlin.
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, lriving laser field intensity (defined as the energy flu per mit area) and inversely proportional to the

',,qrr:rre 
of its frequenry. The same cutoff law is not only recovered, but also explained by the thre-

rtr.p rnodel, which w m extremely important step twards the uderstanding of high-hmonic
l1,rrrration. The original idea for this model wm given in [40], md its full quantm-mechanical
,l,,vckrpment wm achieved in the early nineties [41, 42]3. Since then, the threestep model hm been
, h,rkcd md confirmed by several other methods, like the TDSE [50] and time-frequency malysis
l:r:1. ir3, 54, 55, 56, 57], with good agreement both for the spectral md tempora.l proflles of the har-
lr,'rric:s. This is one of the reasons why the thre*step model hm become the current puadigm for
,l,rrribing HHG. The other rexon is its simplicity: util its development, the TDSE provided the
, l,rtst reproduction of the experimental results [47, 49]. However, for a realistic, threedimemional
rrr,rlcl-atom, the fully numerica.l solution is extremely demanding in terms of computer time. In
lrrr'1, in order to reproduce experiments accurately, one must take into account a gaussian beam
rrrt,'rrrcting with m atomic ereemble. Therefore, the singie-atom response computation must be

lr,rlirrmed in each point of the gaseous sample, and these results must be propagated in the gmmus
rrr,'rlirrm using Maxwell's equations [22, 23]. Only the study ofthese collective effects already requires
,,,rrsirkrrable numerical efforts (in order to give m idea of the compledty of these computations we
r,.lr,r, lor instance, to [58]).

lrr this work, only the singleatom response will be discussed- However, one should keep in mind
t lrrrt. lxopagation may strongly affect the harmonic signal. In order to mhieve a good conversion

' lliliorrcy, the harmonics generated in each point of the medium must be phmenatched, i.e., they
rrrrrit lrc in phme, such that the corresponding electric fields do not ilterfere dstructively. Several
,,'ll.r'l,ive effects may be detdmenta"l to phrue matching. For instance, the phm of the emitted
l,,r rr,)rrics, with repect to the driving field, is extremely htensity-dependent [59]. Sirce the incideni
1,,.*r lrrnmhasagaussianintensitydistribution,hamonicsemittedbyatomsindifferentpointsofthe

'rr,,,lirrrrhaveinprincipledifierentphases. Phmematchingisalsoinfluencedbythespatialchange
,t tlr gcometrical phme of the laser beam, which may lead to a substmtial spectral, temporal and

1,,rt rrrl lrroadening of the hamonic signal [60]. Moreover, ionization introducirs dispersion in the
rrr,.,lrrrrrr, through depletion (which introduces a time dependence in the atomic density) md the
r,,l,.rrroffreeelectrons. Thisdispersioninfluencesthepropagationvelocityofthehmmonics. Other
1,r, '1,rr11r.l,ion-reldted effects me for instmce the enhancement or suppression of groups of hmmonics
,rr,l llrr shift of the cutofftowards lower energies. F\rthermore, phmematching effects in HHG can
,', 1,r rrriple be used in the production of attosecond pulses [61, 62].

I lililr-harmonic generation hm also attracted a lot of attention in the lmt few ymrs due to a
i, r, 1., rr r)ge of possible applications. For instmce, the fact that the plateau may extend to very high
lr,, lr u.r rr:ies ( see, e.g., [39], in which the obsermtion of the 169th hmmonic of m 800m laser, i.e., 4.7
,,,rr, lrrs bcen reported; in average, nowadays frequencies up to the order of 7nm have been reached
I'r ,r,vr,ral groups [38] ) makes HHG very attrmtive s XUV md soft X-Ray sources. The advmtage
,,1 lrr',lr orcler hmmonics over more traditional sources of XUV radiationa is that it preserves the
, lr,il r|t('ristics of the drivilg iaser field, i.e., of short pulse duation, coherent and nmrowband.

llrrl I is out]ined m follms: in Cliapter 4, we discuss the threstep model (Sec. 4.1), the two
l, \',1 rl()rn (Sec. 4.2), the TDSE (Sec. 4.3), md the time-frequency or wavelet analysis (Sec. 4.4),

1.r ',r rrlrrrg the necssary theoretical md methodical background for understanding ou results. In
',,'1,,r lo rnake this background complete, especially for Secs. 4.3 and 4.4, we discuss some mpects

l,r, lr lrrvc so fu received little or no atteltion in the current literatrue. The main results of Part
I 'rr,, ;rrcscnted in Chapters 5, 6 md 7. In Chapter 5, we perform a comparison between the TDSE

',,,,,,,,t,tn qr"nkirrg, ,il1ilJ*filooa"t 
"tatcs 

tlrab higl hanuorric generation is nainly a consequence of the
, ','1',l,1r,rl.i(niofailclectrondrivenbytheexternallserlieldwithitsparentioD. Amorepr*isedefinitionwillbe
, r, rrr jiir'. .1.1.

'l .,,rrt,lis of "l,raditioD8l XUV sources" dre syrrchrotolr radiati<n [63], X-ray lasers [64], or thc radiation from
!, ', I',',,l,rrxl plasrnx 110].
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and the thr@-step model using timefrequency analysis, with the objective of identifying the main
contdbution to HHG within a field cycle. The influence of the excited bound states in harmonic
generation is discussed in Chapter 6, in which, among other studies, we compile the TDSE to a
twolevel atom. Chapter 7 addresses HHG by bichromatic driving fields, with emphasis on the time
profile of harmonic generation (Sec. 7.1) and the investigation of an explicit cutoff law (Sm. 7-2).
These studies required a high degre ofnumerical analysis, with the development ofcomputer codes
for each theoretical approach of Chapter 4. The numerical rnethods used me discussed in Appendk
D.

Ohapter 4

'fheoretical approaches

.1.I Three-step model

I lr" rnost successful model for describing HHG, the so-called "tlree-step mode1" is based on a very
,rrrrlrlc idea: As the "first step", the atom ionizes through tunneling or multiphoton ionization, at the

.,r rr rr tinre to. The newly-fleed electron is then accelerated by the external field (the "second step" )
,,rr,l, clepending on its time of ionization, may be driven back towards the ionic core to recombine
n rt lr the ground state at the rcturn time f1, generating hmmonics in this process (the "third step").
lrrrlirrgtheelectron'sexcursioninthecontinuum,theinfluenceof thepotentiaiisneglected. Thisis

',rrouable for intense lmer fields and should clearly work better for shorter-rmge potentials. Thus,
llr' rlornactssimplymasourcefortheelectrons,forthefust"step"mdmanonlinearinteraction
l,,r I lr<r third "step", while the atomic internal structure, notably its excited states, play no important
r, 'lr. irr the process. The cutoff in the harmonic spectra corresponds to the muimal kinetic energy
, ,l t lrr electron upon retun.

'l'he ionization mechanism is determined by the important parameter

,G;,: \ ,,i'
(4.1)

,.rrrrccting the field-free ground state energy s01 to the ponderomotive energy [/o( given by the

I rr(, average of the squme of the vector potential), whose origin is related to the work of Keldysh
,,,rrtrrrning ionization processes in strong fields [65]. The Keidysh parameter separates regions of
,lrllirrcnt physical behavior: for 7 < 1, tuneling takes place, whereas for 1 > 1, multiphoton
r,,rrization occurs. For typical field frequencies and intensities re.iated to the obserwtion of HHG,
r l r. 

'irst 
step is predominmtly a tunneling process. Intuitively, this also explaim part of the success

,,1 t,lrr threestep model for describing experimental results, since, for 7 > 1, atom-laser resonances
( rrrrrl therefore the atomic internal structure) should play a relatively important ro1e. In a tunneling

1 
,r rrss, the external field considerably distorts the atomic potential, such that the electron, in order
t' lciLve the atom, must tmel through the resulthg timedependent potential barrier, given by

vtt -v(,)-i'E(t) (4.2)

I rrirrgthisphysicalpicture(i.e.,ofadistortedeffectivepotential),onecanalsointerprettheKeldysh
lrrrrrrneter m being roughly the ratio of the tunneling time (i.e., the width of the bmier divided by

sl rictly speakilg, 'y may be defirred witL respect to azy field-free bound_stat€, of energy e.. For our purposc, we

r,,l,i llrc Around statc.

21
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the electron velocity) to the period of the driving field. If the field frequency is very low (7 (< 1), there
is enough time for the the electrorr to tunnel through the burier, such that, to good approxination,
the field is considered as being static. In the opposite regime (1 >) 1) the atom is driven back
and forth by the field too rapidly for tumeling to occur. Thu, ionization takes onJy place due
to multiphoton processes. Strictly speaking, in most cmes an "intermediate" behavior is observed,

which, depending on ?, presents features which are either characteristic of tmeling or multiphoton
ionization. The larger or sma.llery, the more "tmneling-" or "multiphoton-like" the ionization
process.- 

Figures 4.1 nd4-2 present schematic illustrations of the thre-step model. In Fig. 4.1, we con-
centrate on the thrs-steps, i.e., ionization (S1), propagation (S2) md recombination (S3), wherem

in Fig. 4.2 we emphmize the tunneling process through the effective potential barrier, m well as the
relation between the kinetic energy of the electron md the emitted harmonic frequencies.

Figure 4.1: Schematic illustration of the thrre-step model. The electron, given by the wave packet

in the figure, leaves the atom at t0, when the atom is strongly distorted by the field, being driven
back at t1, emitting hmmonics. The first, second and third steps me given, respectively, by Sr, Sz

and 53.

Another importmt point concerning the multiphotorr or tmneling regime is related to the in-
jection of the electron in the continuum: The emission rate for an electronic wave packet in the

tunneling regime (7 < 1) is proportional to exp [-C/lE (r) l] t66], where the constant C depends on

the potential banier in question. In the multiphoton regime, the emission of the electron in the
continuum is equally probable for all times.

In the next iubs6cfiors, the semiclmsical [40] (also known m "simplemm's model") md quantum

nrechmical approaches 147,42] to this model will be discussed.

A,L.L Semiclassical description and graphical method

The "simplemm's model" mixes qumtum-mechanical effects, such m tmneling or multiphoton
ionization md recombination (the first and third "steps" ), with the propagation of a clmsical pmticle

1 I.'I'I.IREFiSTEP MODEL

I rl,rrrr' ,[.2: One-dimensional i]lustration of the tunneling and recombination processes in the thre
,rr,1, 11111191. The undistorted and distorted potential are giren, respectively, by the dmhed and solid
1,r,,. 'l'lrefrequencyoftheharmonicphotoncorrespondstosumofthekineticenergyoftheelectron
'',,,1 tlr cnergy gained by the recombination, i.e., le6l, and is denoted by f,lg. The upgoing arrows
,' t,r..r'r)l, the harmonic generation process, md the cwe connecting the "steps" 51 and,93 is an
,,r'rlrrrry construction, illustrating the electron trajectory in the continuum.

rrr tlrl lirrre-dependent continuum. Already within this framework, some of the most important
l, ,,rur.ri concerning HHG, like the cutoff 1aw, are already recovered, as shown below.

l,.l rs consider a clmical electron, msumed to be released in a time-dependent laser field at
r r,, wil,h zero velocity. Since the field is iaken to be linemly polrized, all the ensuing motion
r,,1,,.,' lrLrr in its dirmtion, to which we shall mainly refer. Clmsically, the electron propagates in
I l,r' , ,,rl irLuum according to the equation of motion

i (t) : -av@)ld"r + E(t). (4.3)

I ',r tlrr. inl,ensities involved, the first term on the right-hmd side of (4.3) cm be neglected. Beilg
,,1'1,r I .jrrst to the laser field, it returns at t - tt to the site of its releme (the position of its

1,,l,rt i,rr, at r :0) recombining with the potential md emitting humonics. In the whole process,

' ,,rr,,rrrlrrl trromentum is conserred, so that the electron velocity and its coordinate z m fmctions of
|,,,,,, lrr Aiven respectively by

(4.4)

(4.5)

. ,r lr .l (/) being the vector potential. At a certain time t the electron will therefore have the kinetic
,,1, r1,1 /'i 1,, (r,r0) : ; iA(t) "{(t6)]2, which corresponds to a harmonic photon with frequency
! r I l rti" (t1, t0). A pair (t1, t6) for which Eki" (t1, r0) is extremal will correspond to a cutoll
r,',lr' r, y. 'I'here emission and return times can be foud by means of a simple graphical method,
. Irr, lr lr:rr lx:en successfully used in the context of high-harmonic generation and above-threshold

22

a (t) : A(t) - A(to)

ft
rltt - ft - lu) A(to) 

J,.Ot 
O("),
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i,,rrizrliorr: s.ith bichromatic fields 167, 57] (see also Chapter 7). The advantage of the graphica.l
rr-'thod is that it allows to qualitatively understand, check, and predict sucli results on the back of
an enrrelope, for arbitrary field configurations, providcd only that the polarizatiorr is linear.

The return corrdition r(tr) - 3 u1"16.

F(r1) -F(ro)+(r1 rt,)F'(ro) (4.6)

t
rvith F(l) : / dsA(s) arrd tr" = d.Fldt. Tinis urears that, for a given emission time ts, thc retun
time t1 (11 > 16) is determined by the interscction of F(l) with its tangcnt at t -to for , > t0. For
the cutofi, using the condition AE\,i"(tr,t0) ldto: 0, where 11 and 16 me connected by the return
condition (4.6), one can write

,4 (to) : A (tr) (tn tt) E (t1) , (4.7)

which, this time, asks to find the intersection of,4(f) with its tange-nt at I : tr for I < 11. Equations
(4.6) and (4.7) tieterrnine pairs (ti,l6) ofernissiou and return times q']rich yield extremal kiletic
energies upon return.There is always arr infirity of solrrtions to equations (,1.7) and (a.6). The
urious t0 and t1 depend on the time-depenclence of the electric lield.

For a monochrornatic field of ampliiudc E0 arld frequency d, i.e.,

(,1.8)

- 0.957,

(4.e)

'lhe ponderomotivc energy L'o is deflned as the time,average of the square of the rrcctor poten-
tial within a field cycb T - 2rla, and, for the specific case of a monochrornatic field given by
Un - EAl4.2. A quick inspection of the cutoll expression (4.9) confirms all results observed ex-
perimentally, i.e., that the plateau should reach higher harrnonic orders for higher intensities and
ionization potentials arrd lower frcquencies. An illustration of the graphical method concerning the
cutoff e,,.* is presented in Fig. 4.3(a). In part (b) of the same figure, we show how this rnethod can
be e-xtended to bicluorratic fields, finding a cutoff trajector)' for a driving field which is a superpo
siiion of (4.8) with its second harmonic. The tuo straight lincs in both parts satisfy the conditions
of equatiorrs (r1.7) and (4.6), respectively, arrd thus determine a pair of emission and return tiures.

Equations (4.6) and (4.7) can also be solved malytically in the specific cme of a monochromatic
ficld using an adequate change of variables [42]. Thercin, alother simple argum€nt concerning the
cutolT law is presented: the time average of ,Uk;" (t, t0) for a monochromatic fie1d is given by

(f1;,, {/.i e)' U" (l t 2cos2r/6) (4.10)

Clealv, its muimm as a functiou of ts,3Up, roughly corresponds to the hmuronic photon given
by (a.e).

Apart from the well-knom cutoff energy e,,a*, additional cutoffs which correspond to longer
excursion times of the electron in the contimurn also e-xist. With ihe restdction h to S 27, these
cutolls are at et-* : 160] + 1.544/e and e2,n* : ls6l + 2.1Ur. For the former cutolf, ionization
and recombination ta.ke place at, respectively, t6 :0.3? and rl : 1.57, whereas lbr ez,.* the fre
electron "born" at the same time returns at i1 : 2?. These cutoffs do not contribute significantly to
harmonic generation, due to the spreading of the electronic wave packet. This ellect is of quantum-
mechmical nature and will be discussed in rnore detail in the following subsection.

2 "Abovc-tirrcsllold iorizaticrl' is rr strorg-fiold pixrrrncron in whi<rh ar atom absorbs morc phototrs that ar€
actually necessilry for it to iollize; see c.g. 18] for a rcvicw oD thc sDbjcci.

I I IIIIII'D-STEPMODEL

r ' ' l.il: Graphical method for a monochroruatic field of the form (4.S)(Pari (a)), with ,86 :
, , ,,,,rr.rr<1 abichromaticfieldof thefornrE(l) :Eo(sin(ot)+sin(2oi)),withE'6-0.04a.2.(Part
, l,,r lxrthfields,o-0.05a.z.Thethilstraightlinesinbothpartsyieldthereturnandthe
, ..rl , ,,1rrli1.io1s, given respectively by Eq. (4.6) and (4.7). Tire ernission md return times, given by

' 
, , t rr,ly ls and 11 in the figue. yield El;.(t1, t6) - 3.17Up(Part (a)) and Es;'(t1, to) - 4.86Up

' ,'r tl'l) Onc should trote that oF(t) md E(l)/o overlap for the monochromatic cme.

25

E(l) : 3:o 
";r1r1;,

this rnethod yields one pair of mdimal-energy emission and return times, ts r 0.37'and t1

which corresponds to the well-known cutoff energv

.-"" - lsol +3.17Up.

t (cycles)
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4.1.2 Quantum rnechanical description

The semiclassical description explains very well the cutoff law and thc emission and return times
for ar electron in a field, n'hich, within the threestep model franework, correspond to the rrain
contributions to FII{G withiu a field cr-cle ?. Howcver, it does not take into account important
quantum-mechanical effects, such as the quantum diffusion of the electronic wave packet and the
irrterference of two or more semiclmsical trajcctories for the returning electron. Throughout this
thesis, it will become cleu that such e{Iects play a very iurportant role in high-harrnonic generation.
Their study requires a fully quantum-mechalical threestep model. Two closely related theoretical
approaches exist. both of them keepilg the physical transparency of thc "simpleman's model" and
beiug of relatively easy numerical impleurentation: The model by Becker et. a.l. 142], which calculates
HHG ior a zerGrange potential atom-model, and the approach by Lewenstein et. al. 141], which
considers an arbitrary potential, but takcs into accoult only the ground state and the continuum,
using a series of approxirrations. IJoth models can be solved analytically up to a quadrature: In
the forrner case, due to the rnathematical properties of the delta potential, and in the latter case,

due to a saddl+point approximation, through which most integrations are perforrrred. A detailed
discussion of their diflerelces and sirnilarities can be found in {68]. Here, the approach of Lewenstein
et.al.l41l will be briefly discussed.

We start from the timedependent Schrdclinger equation (2.1) for a oneclcctron aton subject io
a linearly polarized electric field in the length gauge ('IJ - ff), considering the following apprxi-
mations:

1. The cortribution of all excited bound states to the evolution of the systern is negligible (we

consider a singl+bound-state atom).

2. In the continuum, the potential V(r) has practically no effect on the motion of the electrorric
q2ye pncket.

3. The depletion of the groud state can be neglected.

4. Coltributions to HHG frorn transitions between continuum states (the socalled "continuum-
continuurn transitions") cm be neglecteds.

Assurnption 1 is expected to be reasonable for the tuneling ionization regime. Its validity an<J.

the role of the atomic e-xcited bound states in HHG will be discussed in more detail in Chapter 6.
Assumption 2 clealy trolds for short-range potentials urd is also remonable for hydrogenlike atoms
in case Uo >> legl. Assumption 3 is nlid provided it takes many cycles of the driving field for
the atonic ground state to ionize completely, which is the cme for typical field strengths used in
HHG experirnents. Assumption 4 has been extensively investigated in 168] md hm proven to hold
rcasonably well. With assumptions 1 and 2, the time-dependent wave function can be written as a

superposition of the ground-state ]0) and continuum states ]z],

L)tr D p;r'"r/ (r-.(i ) lq' .l P,c,(,t.t) o)) . (4.11)

rvhere the ground-state and continuurn amplitudes are given respectively by Cg(t) - 1 (msumption
3) and C,(u-,t). For the amplitude C"(i,t), the Schrddinger equation can be solved analytically and

:r One of the mairr dillerurccs l)ctwccil thc Noclcts [,11] aDd 1,12] concerns th{j neglect ol th(,s€r traxsitioxs- Cotrcernirllj
thr: phvsical prcdictioDs of la1] and [a2], discrepaur:ies ir ihe behavior of platcau harxrotrics with thc cllipticity of the
drivirrg Iirtd wcre observcd fti8l.

I IIIITIiI+STEP MODEL

LI

1,, r l,r ,| rivation, also assumption 4 was taker into account. Equation (4.12) shows that all the
rr",,l,rrr?onthepotentialliesinthematrixelementd.("-) :(d] xl0). Thechoiceof thisma.trix
r,, ',,ri rr:r.y afiect the harmonic spectra qumtitatively [41], as rell m the time profile of some

' ,,l,.,,l lrarmonics(see.g. Chapter5of thisthesismd[5S]). Inthiswork,wewilladoptalD
r ,, r, t, rrrrdel, for which z(i), written in terrns of the canonical momentmp:3+A(t), is glven

, Ia,oroota"t;*Art) 
A-1tn1;o"p 

{ 
,1.'lr, r ,itr1 -Auo\)2tzr t."r]}. ta.rzr

t
tt

.,\t) - I dto I dpE(to)d"(p A(to))d:(p-A(i))exp[-iS(p,t,ts)]+c.c, (4.13)
.t J
0

l, r 1,,. I ir|(ldependent action

. ' ''', '2
s(p.r./o) .l 

0,"" ll|!)) t ,6

to

(4.14)

I 1,r rl i,rrr (4.13) has a simple physical interpretation: at t - fo, the electron maks a borrnd-

"',,r,rrrr l.ransition with probability amplitude E(to)d'"(p A(r0)). It is then propagated from
,, / rillr the time-dependent phase exp[-iS(p,r,to)] md recombines rvith the Bround state at

,rr, rlr,' lxobability amplitude d;(p- A(t)). The oscillatorv behavior of the tim+dependcnt
r,,,. 1, ,,,,)il)(xrt is mainly determined by ,9(p,t,r0), and the major contribution to r(t) comes frorn

r ,r r rnrr], points. These points correspond to

V"S (p. r. /61 i (r) r (/o) = 0. (4.15)

t l,,,rr;rllv,theconclition(4.15)meansthatthemaiDcontributionstoHHGcomefromanelectron
, ,t rr /11, rr:turning to thc origin at t, which is exactly the rescattering condition of Sec. 4-1-1.

i ,, I lrll ir coincidence: in c.lmsical mechanics, the equations of rnotion are determined by the
, l,i,,,i tlrirt the classical action be extremal [69]. With respect to the momentum p, there is a

I 
1 

,, 'il r1. /,r. which satisfies this condition. One can perform the integr:rl in momentum space iil
i r i) ,,,r v ,'mily expmding the action around p."1:

s(/.i.tu) - s(p,'./.i 0) r-l (p n,t'dlfi ,,-,., (4.16)

! i, i,,,,,ili,nlum md timedependent dipole mornent at the stationily point are given respectively

-7 [a6"161"
t -to.l

(4.17)

(4.18)r(i):1;'.; Gqn .a)''' j o';,(p- A(to)td:tp ,i(t)),
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where the constmt € was introduced such that (4.18) does not diverp;e for t - lo. The term
multiplying the integral on the right hand side of (4.18) corre-sponds to the spreading ofthe electron
wave packet. From its form, it is obvious that the larger the time difference between emission and
return times, the smaller the contributions to HHG. For a 3D model [,tr1], the saddle point integration
yields an exponent 3/2 instead of 1/2 in (a.18). Physically, this differcnce is related to the transverse
spreading of the wave packet. For the one-dimensional model, the higher-order returns to the origin,
{'ith longer *cursion times for the electron, tend to be enhmced in probability. Consequently, their
contributions to HHG are more pronounced in this case.

Equation (4.18) was calculaterl imposing m extremal condition in S (p, l, l6)only with respect t<r

p" According to the principle of the minimal action, a classical electron wouLd follon'a trajectory
satisfying (a.15), md the additional conditions

1 ntir:t') s'l'h)P MODEL

0.0 0.5 1.0 1.s 2.0 2.5 3.0 3.5

E (t.t) (u)
kid1 g 'd

I ,,,,,, I.l: F}nission and return times for an electron in a monochromatic field, as fuctions of
.. I !,,, t r( r'ucrgy upon retrrrn. The upper ald lower parts of the figue yield respectively the

. ',',,, ',,,,1 r.rrission times, given in field cvcles. The kinetic energy '8L;"(t1.i6) is given in terms

' ,t,, 1,,,|(l(,rornotive energv" The emission and return times corresponding to the cutoffenergics
. ,,,,,, and s1mdtre milked withthil arrot's. The splitting of the emission md return times

r ' rl, r,rr';:rl,r:nergeticcutof intoashorter(11 io-rl)andlonger(i1 -to:rz) excusiontimes
| ,f,r with thick tlmhed arrows. All traiectories me periodic wilhinTl2.

JS (p, t, to)
#:tJ.

dt
dS (p. t, to)- 

- l,
dto

(4.1e)

(4.20)

oo
o
(-)

which are fulfilled by seuerol pairs (t1,te). Thus, equation (a.18) for the timcdcpenrl"nt dipole
rnoment in fact comprises several classical trajectories. Nlore details on the saddle point method
cur be found in [41]. As m illustration, in Fig. ,1.4 we present the emission md return times (h,10)
for a classical electron in a monochromatic external field as a function of its kinetic energy upon
return, -Ep;, (rl, r0) . Eki" is plotted on the horizontal xis in uits of the ponderomotive potential,
and the msociated values of the emission and retun times t0 and t1 ile given in the lower and the
upper part of the figure, respectively. The diagrm was obtained from the numerical integration of
the classica.l equation of motion (4.3) using a fourth-order RungeKutta rnethod. The influence of
the binding potential was neglected in this calculation. Each triplet (r0,11, -Eki',(r1,r0)) is msociated
with a classical trajectory for the retrrrning electron. A similar diagrarr is also presented in [5a], The
extremal energies, mmked with ilrows, conespond to the cutofi trajectories e-"" - leol + 3.17Up,

e1-* : le{rl +7.54Ue and ez-* - l€o1 +2.4Up. Emh of these muimal-energy trajectories splits
into two, corresponding to a shorter and a longer excursion time for the electron in the continuum.
Thus, for a given -811. (11,16), ihere may be many possible trajectories for the returning electron.

Quantum-mechmically, the probability amplitudes related to the electron following each of these

trajectoriesirterfere. Forthernostenergcticcutoff,thesinglepair(11,f6)mentionedinSec.4.l.lcan
be clearly seen. The shorter and longer excursion times resulting flom the splitting of the rnuimal-
errergv trajectory e-*, denoted by respectively 11 artd T2t are also shown in the figure, marked by
thick mrows.The corresponding two retun tirrres have recently been observed in experiments [70];
see also Ref. [23, 59, 601.
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L i ' ,r r 1, l r n( [ excited state. The atomic Hmiltonian is

I{,a : l0) e6 (01 + 11) er (11 , (4.23)

.,r1, ,, tlrcfield-freeenergies, suchthat Hnlnl: e, ln). Theatom-fieldinteractionisrepresented

Hr - -rn E(r) (1)(01 + l0)(11) , (4.24)

. , , l,, ,rl1 the matrix element (1lx l0). The dipole moment md acceleration operators are given
,,1,,,tivclyby

0.8

06

- o4
l

si 0.,

.e
I 0.0
ocu -02

-o4

xI,L -: rto (11) (01 + l0) (11)

xrr: -u?oxrt ! 2an 116 t'(t) (10) (01 - l1) (1i) ,

(4.25)

(4.26)

0 25 0.50 0.75 1.@ 1.25 1.50 1.15 2.00

t (field cycles)

Figue 4.5: Periodic level crossings for a twelevel atom in a monochromatic field E(l) -
0.8sin(0.051).The dressed states 0o),1o) md the avoided crossings are shown respectively by
the solid and dotted lines. The mximal harmonic energy, which represents the cutoffin this model,
is rnaked with a thick mrow.

4.2 Two-level atorn

Harmonic spectra can also be described within a completely different physical picture, namely a
driven twelevel atom [43, 441, for w]rich bound-continuum transitions do not exist. This model
also yields a plateau and a cutoff for the hmmonic spectra. However, the plateau comprises a much
narrower frequency range in this case than in the thre-step model, the cutoff being proportional
to the field mplitude -86. Recently, the introduction of ionization rates within this model resulted
in a considerable extension of this plateau towards higher energies [44]. Within the twolevel atom
picture, the plateau and cutoff of the harmonic spectra tre related to periodic level crossings of the
timedependent dressed states, which occur at every half cvcle of the driving field, close to minimal
field. An illustration is given in Fig. 4.5 for a monochromatic driving field of the form (a.8). One

cJ.emly sees that the time-dependent dressed states follow ihe field adiabatically, except close to the
avoided crossing. This originates a highly nonlinear behavior in the timedependent atomic dipole
moment for this temporal region.We refer to 146] for a. detailed discussion of this mechanism.

We shall address now the driven twolevel atom cme in detail, with and without ionization. A
compaison betwen this model and results frorn a TDSE computation will be presented in Chapter
6. For a "closed" (non-ionizing) twelevel atom in m external field ,O(r), the timedependent wave

fuction and Hamiltonian me given by, respectively [71],

,r l, l lrrl cnergy difference u10 : €1 s0. The amplitudes C'(t) ue the solution of the following
t,.rrr of coupled difierential equations

,i(r:) : ( l:.u,,, :,'u,'' ) ( 3: ) 14.27)

t,,r r ',lucing now ionization 144, 72], we choose m atom with a ground state in the tmeling ionization
, ' r.,",,.rrrrd the excited state in the over-the-barrier ionization regime, with time-dependent ionization

'.',, r, slrctively .To(t) and 7r(t). The ground-state ionization rate ws chosen m the quasi-static

' ,,,rr,.lrrrg formula [66] for the one-dimemiona.l cme

^yo(t) - Dt exp(-D2llE(t)l), (4.28)

. r,, ', /), and ,2 ile positive real pmameters (see Appendix C for the derivation of this formula)
t , r t lr,. r'xcited state we took

't1(t): D3 exp( DallE(t)l2), (4.2e)

, r' r, /).1 and ,4 are adapted u discussed in Sec. 6.2.1. The equations (a.27) win now be solved
,,1, rlrronergies€zreplacedbythecomplexquantitiesin:6n l1-(t)12. Theenergiesof thetime

r, t,t,,,I,.ut dressed states me obtained by diaglonalizing the Hamiltonian (4.22). The instantaneous
, ',,,r ,rI i,rr frequency between these dressed levels is given by

uon(t) - {["0 - r, - r(?0(r) tr(t))12))2 + 4rlo9ip)2]1/2 (4.30)

rt,, ',rt.{)ll frequency is the muimal value of f?e[ooro(l)]. For rery high int€nsities, this cutoff is

i,"l,,,rf i<rna1 to the Rabi foequency o"n:2rnEo- The energy width introduced by ionization in
i ,,,,' rt,k' can cause m increme in the cuto{f frequency" F\rthermore, hmmonics cm be generated
r' t lr,. rronlilemity introduced by the frmctional forms of ^10 md 7r.

l.:l F\rlly numerical solution of the time-dependent Schriidinger
equation

r r t,rr,l rurd widely nred approach consists in solving the time-dependent Schrodinger equation (2.1)
r,,ttr rrrrrncrically (TDSE). Within the rcntext of atoms in strong laser fields, this method was first
.,.,1 rrr Lhelatereventies[47]. Sincethen,ithmbeenappliedtoawiderangeofstrong-fieldoptical
i!,,,,,,,r!xra, including high-harmonic generation [48,49,50]. The main advmtage of the TDSE is

'i,,,r ri (,rrcomp6ses all time-dependent physical effects arising frorn the timepropagation of the

-0.6

,0.8

0m

and

lil (r)) : co(r) lo) + c1(r) l1)

H-HnlHr.

(4.21)

(4.22)

The mrplitudes C^(.t), n:0, 1 are C"(i) : ("ll(t)). The indices 0 md 1 relate to respectively the
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Schrddinger Hamiltonian. Ntloreover, it can in priuciple be applied to an exterlal field and binding
potentials of arbitrary shapc. Its main drawback is of practical nature: For quantitatively describing
realistic svsterrrs, at least a twedirnensiorral computation must be performeda. This alrearly involves
considerable numerical efforts, and is extremely time-consuming. Furthermore, the multitude of
coupled phvsical clTects involved may sometimes be detrimental to the phvsical interpretation of a
particular phenomerron.

Particularly concerning higLharmonic generation, this approach takes ilto accout not only the
physical mechanisms discussed in Sec. ,1.1 and ,1.2, but also effects like bound-state depletions,
ionization and continuum-(:ontinurun transitions. Therefore, it will be taken s the full, ',bench-
nark" solution in the subsequent Chapters of Part I, against which all other approaches will be
tested. We solve the Schrcidinger equation for a one-clirrerrsional model atorr in a tim*dependent
external laser field. The one-dirrensional case is particularly interesting and widelv rrsed for model-
ing harrnonic generation in linear polarizatiorr 1501, since it requires much lcss computer time than
thre+dimensional computations, lrcirrg therefore amenable to an expedient, yet accurate numerical
solution.

We consider an "atom" in a box of lcngth L, with mbitrmy potential V (r) .In all computations
presented in this thesis irrvolvinpl the TDSE, rve take as initial condition the atom in the ground
state, i.e., /, (l - 0)) - ]0). The initial atomic wave function is calculated fully numerically using
the inverse iteration method. The time-propa5lation is performed in the velocity gauge, using the
standmd finiiediference Crank Nicolson method. The time,depcndent Hamiltonian is

i tti\!t) I"I|EQUENCY ANALYflS

, (i ) * ll(t)) instead of the dipole length r(t) - (/(t)l*l{(t))
, , , ,r r , , llr:ulated using Ehrenfest's thmrem lT3, 74], and is given by

.. dV (x)x- 

-+1,\t)
o.l

({](r)l i l,t(r)) - (+'(t)l- ^*-.- lit(r)) + E(t).
I(*/J), + rl"''

1.. 1 rjrntlc poteltials, the corresponding mairlx element decays even

(4.33)

r , ,r ,r ri,r) above already provides some information about the high hmmonics; the second term
r , ,lrr lrarrcl side of (4.33) only contributes to the fundmental, sirrce it oscillates with the field
. ,, r 'l'lrc high humonics are originated by thc quantum average of the operator -CV (x) /dr.

I ilr, rlipole length, TDSE computations yield the appearance of a large backgromd and
. , ,' I'Lr,.lr.frequency harmonics, as intensc as those ofthe plateau, provided there is appreciable

' ', A simplc argument concerning the appearance of l;his backgroud, which we will briefly
, ,.,,, lrrr:sented in 173]: Let us consider a time-dependent dipole mornent, induced by an
,, tl' lrl switched on md off at respectively t - 0 md t : r. The Fourier transform of the

l, rr t lr rLnd acceleration are relatecl by

(4.3.1)

r r i(0) - 0. The first term on the right hand side of (4.34) is responsible for the backgrourtd
,l l'lristermispmticularlylargeincasethereissignificantionization,sincethisimplieslmge

,,,,1 ,(r). Otherwise,itisnegligibleandthepowerspectraofthedipolelengthmdmceleration
,, ,r l,,rrt . apart from a factor o4. A detailed investigation ofthis background based on the TDSE
, ,. r,rt l.hat it might be related to the influence of excited boud states on HHG [74].

r j , , ,.r,.riltion of spurious harrnonics lbr the r(ri) spectra is the consequence of the reflectiorr
r rr,,r'(l('irclrdent wave furrction at the boundaries. Their absence for the power spectra of

, ,1 r'rLsily explained: The dipole acceleration weights the timedependent wave fuction in
, ,, rr rlrirt the contributions of (/(t)l x ]1r(t)) from points fm away from the atomimomre
,r'1, li)r irstance, 1br a on+dirnensional soft Cortlomb potential V(r) : -a1Jffifi|,

, ' , . t, rrsively used in the literature. the d\nle acceleration according to (a.33) is given by

-oo

The dipole acceleration

(4.35)

more rapidly with the

I ,I
/ .i1i.1expi-irfl d1 - .i(r) ,ar'qr )l expr irrl u' / r(t) expf iail dt.
IJ00

n :t; -p A(t) + v (x) , (4.31)

obtained from the rrelocity-gauge Hamiltonian H.f (t) of Sec. 2.1 tlnough the unitary transfortrration
(2.13),.4t*" - expf iJ'{2(t)dl]. In order to minirnize mrmerical transient effects, the vector
potential A(t) must be switched on smoothh'. Ar important technical detail concerns the reflection
of the time-dependerrt wave function ry' (t)) on two hard walls at the edges of the box, artificially
introduced by its linitc size. These reflections rnay lead to unphysical ellects, as for instance spurious
high-frcquency harmonics, and therefore must be minirnized. This can bc done by:

1. Choosing the box several times larger than the clmsical excursiol length of the electron wave
packet in the continuum, defined m thc tirne average o0 - (tr'(r)), F(l) defued in Sec. 4.1.1.
This way we assure that just very little of the propagating wave packet will reach the boundary.

2. Introducing a function close to the boundarics, u'hich "absorbs" part of the reflecting wave
function. In our calculation, we mrrltiply 

] 
q (t)) ly a mask function /(r), introduced from an

arbitrary point z:r0 until r - tr, such that /(+I):0and /(*ro) - 1. In all simulations
presented in Part I, we take

( r. lr'l . lrg/r/) t ",r l; (;::)l ,rt- 
1,ol

which, for our parameters, has proven to yield the best results,

Specifically for calculating harrrrorric spectra, the above-stated conditions sometimes are not
enough to prevent spurious effects. In this cme. one nlust additionally take the dipole acceleration

4For lirearly ard (iirculnrly polerrizccl lighl., tiis is possil)lc usiilg svnrmefry properties of the elcctric fieid nnd
atomic po|ertial. I'or elliptically Polarizecl iiglrt, h{)wever, thc whoh :JD problcn nust l)e solved-

I I 'l'irne-frequency analysis

,, ,1,.r, rrrriue in which frequencv itn atom responds to an external lmcr field by ta.king the
,1,r;'r,.cl of the Fourier transforrn of the timedependent induced atomic dipole- However,

, ,rrrr1,, i,hc power spectra, all the temporal inforrnation about harrnonic generation is lost-
.,, t, , r u r1'ri of harmonic generation, which yield considerable information ol its physical mech-

L, lr ;s ttre semiclassical return tiures in the threestep modei [54], or the time-dependent
r,1.: irr the twalevel atom [46, 56], can orly be revealed by a tirrt+frequency or wavelet

r r 1,, ,,r.t ir:al rnethod hm been first proposed by Gabor in 1946 [75] and ]ru ben extended and
, , , I l,\ inurrnerous groups in the subse<|rent decades. Since then, it hm been used in several

, , , ir'( lr, as diverse as for instance imagc processing, acoustical phenomena, or rnedicine
l,rrrrrrlrr.rlvwithrespecttohighintensityopticalphenornena,severalgroups[52,53,55'56'

(+.32)
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5l have employed timeresolved spectra for analyzing the tim*dependence of harmonic generation.

These spectia are obtained by performing a Fourier tramform with a temporally restricted envelopes,

defined, for an arbitrmy function /(t), as

w(t,a,Q = (4.36)

In (4.36), o md f,) denote respectively the time width md the center of the window fmction. These

parameters, as well m the shape of the window function W(t,'/,f,),o) must be chosen accordilg
to the problem at hand 177]. Clemly, by introducing time resolution, as a direct consequence of

the uncertainty principle6 we lose liequency information. The frequency width o. of the window
finction cm be foud by perforning its Fourier trmsform, and is related to a by

o.o > 7f2 (4.37)

In the subsequent chapters of this thesis, we perform a wavelet transform with a Gaussian window

function (Gabor transform), which is given by

W6(t,t' ,Q,o): er.p[ (, -.t')" 1""] expf-ifll'l ,
(4.38)

of width a and centered at a harmonic frequency f,l : Ir'o. For this choice of window function, the

temporal width o corresponds to a frequency bmdwidth o- :2/o' The usual Fourier transform,

in which a1l temporal information is lmt, is obtained for o - m.
We choose the time width of the window function narrower than a period of the externa"l lmer

fie1d. The center of the window function is then "moved" in time such that at least one period of

the laser field is taken itrto account. The Gabor yield, given by

9v -lw(t,{t,o)|2, (4.3e)

is then calculated for each timestep within this interval. In this way the contribution from a pmticulm

group of harmonics to the emitted radiation can be determined as peaks in the time-dependent

spectra. This procedue difiers slightly from the timefrequency ana.lysis performed by most groups

152, 53], which take this width larger than the lmer period ? in order to investigate the time profile

of a single specific harmonic.
In principle, the harmonic generation process is almost periodic, with the period of the driving

l*e. fiequ"tcy, or with halJ this period, depending on the field in question7. For instance, within
the three-step model frmework, for a monochromatic field, one exptrts, in the cutofi region, a single

peak at t1 : 0.95 ? mod, T 12 . At the end of the plateau, this peak splits into two, as discussed

in sec. (4.1-2), corresponding to a shorter and longer return times. Depending on the time width

r, these substructues may or may not be resolved. This is illustrated in Fig. 4.6, where the return

timm predicted by the threstep model as functions of E1;" (t1,ts) ile shom, together with the

timefrequency regiom delimited by the generic window functions wt ndwz. The window function

I4!, for insta.nce, can not resolve the splitting of the cutoff return times, but includes harmonics

only in the cutofi region. only in regions where the two return times me further apmt, i.e-, for

SSome authors adopt a rnore restrictive definition ofwavelet according to the time resolutioD ofthe window function,

wlric.h must be variable in order to contaill a (:onstant uumber of oscillations [76].
6This priuciple states that the cnergy spread of a functioD and its Forrrier trursform can not be simultaneously

arbitrarily srnall.
TFor instance, for lronochromatic ficlds and bichromatic fields cotrsistilg of a monochrornatic driviDg wave and its

(2n+1)-th harmonic, this periodicity is reduce<l to ?/2.

I ar' tu'lw(t,tt,s,o)
.l

t t t'TNTT,LFRfQUENCYANAIYSIS

2.O

1.8

1.4

_ 1.0

o8

0.6

0.4 0.5 1.0 1.5 2.O 2.5 3.0 3.5

E (t tlru)kinl0 o'

I r1, rr r,. l.(i: Arem defined in the tim+frequency plme by the window functions W1 and W2, together
-. rt lr t lrr. rcturning times t1 as functioro of the kinetic energy -81;,(11, 16) predicted by the threstep
.,,.,,1,,1 lirr an electron in a monocbromatic field. We give 11 in terms of the field cycle ?, such that
., -tl,iurdEp;(t1,te) intermof theponderomotiveenergy. W1 isshominthecutoffmdhigh
r.l.,t,.iilr Irxluency region-

1,,., r lrrrrrnonic frequencies, this would be possible. Another possibility is using I,72, but then a
,,,1' lr l,r,rxler frequency rarge is taken into account. In fact, for this latter window function, one
l,,r' rr rrrrrr:h complex pattern for the timeresolved spectra than the two return times seen in Fig.
I lr I lris is clear, since the semiclassical trajectories corresponding to this whole flequency region
r,,,r1lv irrtcrfere. llorover, longer return times may also contribute to the Gabor yield. However,

.ti,' I', wrrve packet spreading, the peaks corresponding to there trajectories are not *pected to be

t ',,,rrr,.rl in the time profile.
lrr rlrr, rr:sults that follow, sometimes the wavelet yield is only approrimatelg periodicinT or Tf2.

I lrr'r lr rcl:rbed to efiects, such m, for instance, turn-on trmsients md ionization. This is the cme
t.,, tlrr. lirlly numerical solution of the Schrddinger equation md, in Subsec. 6.2.1, for the twolevel
qtrrlr rvrl lr ionization,

0.0
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( 'lr;r;rter 5

( lornparison between the TDSE
;urr[ the three-step model

, 1.,, l(, t,lrc threestep model, the main contributions to HHG within a field cycle correspond
, , rrrr, lirssical return times of an electron to its parent ion. Concerning the plateau md cutoff
.", r,,,. llrisrnodelyieldsclempredictionsrelatedtothetineprofileofHHG:

. tr rlr, r'rrtoff, a single retun iime for the recombining electron is present.

. \ t l rl crrrl of the plateau, this return time splits into two, corresponding to a longer and a
1,, 'r I ( r ('xcursion time for the electron in the continuum, denoted respectively by 12 and 11.

- I ,, { lrr, plateau as a whole, there are several possible trajectories for t}re returning electron,
,Lr ilr( ()l)es related to 12 atd 11 ae dominmt. As the harnonic energy decremes, these

' Lr rr I irues get further and furiher apmt.

I r, , l(,irlures can be clearly seen in Figs. 4.4 and 4.6, and were investigated in detail withil
' r ,, ' it,'t) physical picture using a time-frequency malysis by Antoine et al- l5a]. Clearly, if
' I . , ,. r Lirl,cd temporal behavior can be extracted fiom both the three-step model and the fully

,,, ',,,'l :rrlrrtion of the Schr6dinger equation, the sarne physical mechmisms are responsible for
!!'t, r, l!,llr rnodeis. This compmison, using the Gabor transform discussed in Sec. 4.4, is the

, ,,,! i,r n of this Chapier (see also 155]). In this investigation, we used, as numerical methods,
i , , ,,,1, Nirrrlson scheme and the sk-point integration, both discussed in Appendix D.

\ \ ' r , I I lrc qumtum-mechanica.l thre step inodel against a one-dimensional TDSE computation,
'' ',r.,rr1'. r uronochromatic field (a.8) of mgular frequency o:0.05 and amplitude Eo:0.08.

r r '' , ,, ,1u ,rrrliug vector potential is tuned on smoothly within two cycles of the driving fie1d. For
' ,,.,', ',1,|r, wecalculatethewaveletyieldof thedipoieaccelerationi(l).

I .' r l,, lrrlly numerica.l time-dependent complrtation, we consider a short-range potential of the

Y(a) - -s.76."(-x2 17.76), (5 1)

,, , rrrrilr. licld-free bound state, denoted l0), at ener€iv eo : -0.401. Thrs, we exclrrde any

'r'1, rrllr(rrce of the excited bound states in the process, concertrating on the ground-state-
,,,,,rrrr,r I nnsitions, and expect a negligible influence of V(z), as soon tr tire electron is outside
,, ,1, ,rl i,lre potential. This potential choice is therefore a very adequate test cse for the
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threestep model (see approximations 1-3 in Subsec. 4.1.2). Within this latter framework, for the
monochromatic field (4.8), the stationary action (4.16) is given by

39

s".(r, 11 -,l,ol- in?,ft , t + f; l' -,at 
d" p,7,

while the stationmy momentum (4.17) is given by

n"t(t,r) - -r& [.tr{rr) - "t^1r, ar))

(5.2)

(5.3)

(5.4)

(5.b )

In equations (5.2) and (5.3), with respect to Subsec. 4.1.2, we introduced the change of mriable
r : t - to (not to be confused with the pulse length r used in the previous chapters), which yields

the electron excusion time. These expressions are then inserted in (4.18), which gives the time
dependent dipole moment for the threestep model, within the stationmy phme approximation.
Equation (4.18) hffi a clem physical interpretation: the dipole at time t receives contributions from
all trajectories that stilted at the origin a time r earlier, "picked up" the action ,9"1 md retuned to
the origin at t, which for a free classical evolution is possible only for a definite average momentm)
Pst.

In order to compute the Gabor transform of the dipole acceleration from the threestep model
dipole length r(l), one must use the formula

1.0

0.5

0.0

0.5

0.0

0.5

0.0 5.75 6.00 6.25 6.50

Time (cycles)

| , r r r i. jr I : Wavelet malysis of the time-dependent dipole acceleration over one cycle of the driving
t. ', rr,,lrl, Part (a): f,l-49u, o:0.1I' Part (b): Q:45w, a-0.055?; Part (c) : Q:37 w,

r)024f. Solid line: full tim+dependent (TDSE) solution, dmhed line: threestep model
lr ,l rvith gaussim dipole approximation, dotted line (only in pmt (c)) : thre-step model with

. ,, r ,lilrrlc matrix element.

,"r (o)

where

,-)
:f

d
t_
o

-o
q)

F
.9c
o
Et-
o
I

I a, op1 wlft,tt,e,o) - I or,n wc(t,t',a,o),

w6ft,t"a,Q - {(21o2) + lio'2(t - t')lo2l2}wc(t,t', ,a,o),

W6(t,t',Q,o) being defined in (a.38). This is obtained by pmtial integration, noting that W and

its derivatives mnish at the inte$ation endpoints.
Figure 5.1 presents the results from the time-frequency malysis over one cycle; we show the

squue of the magnitude of the Gabor trmsform of the dipole acceleration, for l/ varying from 5.77
to 6.7 T. The dmhed lines in the figure correspond to the results obtained using the threestep model

[41], while the mlid lines me the results of the fully numerical solution.

Peaks in the harmonic time-frequency spectrum gy arise from classical trajectories returning to
the origirr, leading to strong nonlinear response within the range of the potential. Thee classical

return time peaks me clearly visible in the harmonic response centered on the cutoff humonics
(O - 49 o, o : 0.17), for both the TDSE and the three-step model, shown in pmi (a). This hm
been observed before in [52]. When more plateau humonics are included, m in Fig. 5.1-b, (0 - 454,
a : 0.055 7) the single peak splits into two, whose temporal positions correspond approximately to
the two (semi-) clmsical shortest return times, 11 md 12 (see Fig. 3 in [54] and Figs. 4.4 and 4.6 in
this thesis)- It is however apparent that the two peaks are farther apmt for the fu]l solution than
for the three-step model. F\rthermore, the r1-peak has gained additional substructue in the fu-l1

solution.
When most of the plateau harmonics are included, in Fig 5.1.c, there me still two dominant

peaks; the "shortest clmsicaL return" peak (denoted by 11) is composed of many sut>peaks since

many harmonics me ircluded. In fact, the shorter retun time wries more rapidly with harmonic

energy. The return peak 12 is prominent in both sets of results. This is compmable to the case

considered in [54], Fig. 2.

Ou results shw that the threestep model contaim the essential physics leading to high-harmonic

generation in a linealy polarized laser field- The multiple peak structure of [54] is reproduced in

(b) r
2

\

rir
,
I

2

\\
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- 
exoct

- plone-
--..' go!sston

\.:.

41

l',' ;rlrcady been discussed in Sec. ,1.4.

t \ rrrcluding, the general plateau harmonic generation spectra, with the expected cutofi energy at
leo *3.17Ilp,mereproducedbyawidevarietyof choicesof thematrixelementd.(p) within

r1,, Ilrr(re-step model framework. But the tim+dependence of the harmonic generation is a rnuch
,,,,,r, ,lif{crential and thus sensitive rneasure) in which not simply the magritudes but the relative
I,l ,.., s rif all contributing harmonics are involved. When only cutoffharmonics ate involved, as shom
,r l rt' 5.l.a, the time ofharmonic generation isjust 0.45 and 0.95 in units ofrhe laser period, that is,
,' tl,,'li;rethefieldminimrur. Thisresultagainisnotverysensitivetowardschangesind.(p): most

' 1,,,r,r's for the dipole matrix element correctlv predict the tirne-dependence ofthe czfol harmolics.
I r, 

'1 lr rcsults are in agrrement with the obscrvations in [a1, 5a] concerning the independence of the
,,i,,ll slrcctral and tenrporal behavior with respect to d"(p). However, when more md more of the

,.i"/,rl harrnonics are superposed, a much more cornplex time-behavior emergesJ which this time
l, r,, nlls on the matrix element chosen. Ftorn tho full tirne-depenclent solution, it is clear that the

t l,r,r'slql1v picture which prcdicts two dominant shortest return time peaks is qualitatively corect,
' .lrrrvrL by the solid line with the peaks r.. and 12 in Figs. 5.1.b md c. The exact shapes and
,,l,.lilrctureof thesepeaksishowevernotquantitativelyreproducedbythethree-stepmodel. Fiftt,
' l',urrd that a spurious pea.k can appear at E(4: Eo when d,(p) is chosen too peaked in the

, L r , , slcp model. Second, the shortest-retun time 11 peak splits into several peaks with comparabJe

", ,1 rrrl rtrlc. The threestep model indicates that one of these is dominant, which is not the casc in
, lrrll solution. Third, the longer-returrr tirre 12 pea.k is narrower in the fuil solution. Despite

,1,, , rtrriurtitative differences, the results obtained with the TDSE cornputation can be traced to
, t,, , rrrir:lassicaL return times predicted bv the threestep model, strongly suggesting a cormon
,", ' lr;rrrisrn for HHG in both cases.
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Figure 5.2: Dipole matrix elements d,(p). Dotted rine.: exact; dashed line : plare-wave continuum
approxirration; short-dmhed line :,,gaussian', approximation.

qualitatively similar fashion in both results, with peaks at sirrila positions and ofsimiim nagnitude.

However, the agreement is good onlv for a special choice of the ,,ato'ic dipore,' function d"(p) -(p zl0), nmelv d',(p) - pB-'r' , with a - 1, shown as the short-dashed line in Fig. b.2. This
"gaussian dipole" approximation to the dipole natrix element corresponds to a g.ulsi* g.om.r
state wav€ function in position-space and planen'ave continuum wave functions. If rie tak n G a,61
the "exact" dipole matrix element bets'een the bound state and the continuum state at ene.gy 1r;/2,calculated fully numerically for the gaussia. potential (5.1), (given as the d.otterl ii"" i" pje. s.zt
we obtain the dotted line in figure 5.1.c, exhibiting a strong spurious peak near f1t) _ ,Uol fnis
spuious peak appears generally in the stationary phase approxirnation when the wid'tir (nr lspace)of d"(p) is urade so small that the contribution near the i'zeretime,' trajectory is strongly peaked:
nhrsically this would correspond to contributions near the origin from pa.ts Lf the *aie frnction
that are being 'accelerated' by the field within the range of the potential. It is evident from the fully
rumerical solution (solid line) that this is not m important mechmism of harrnonic g"r"ruiio, i.
the present cme. Ftirthermore, for such a peaked d"(p), the stationary phase approxiiration startsto become ina.Iid.

In the actual physical process of high-harmonic generation at low laser frequency the ,,rescat-
tering" ware packet appears through a tunnel ionization process and thus it is not mionishing that
the modeling through a dipole 

^atrk erement is rrot adequate. on the other hand, for the recond
interaction in equation (4.18), which "generates the irarmonics,', the dipole rnatrix elernent should
be quite appropriate.

our time-profile from the fulr sorution is only approximately symmetric uder a shift of 0.5T.This is clear since in ou furr time-dependent case there is strong ionization md thus the dipole
moment decays in time, in addition to other explicitry iirne-depmdent erfects. Finally, although
we are probing the hamonic response over tirnes shorter than the larer field period, the harmonic
generation process must happen over several cycles of the raser fierd in a q.asi-pe.iodic fashion [7g].In fact, when calculating the tirne profile of a singre harmonic, one must take a window fu'ction
several times larger than the period of the driling fiettl I53]. The mathematical reason for this choice
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a

Chapter 6

lnfluence of excited bound states
on high-harmonic generation

l lrc threestep model md the twalevel atom describe HHG as a result of completely different

l,lrysical mechanisms; the former states that this phenomenon is due to freboud trmitions of an
,,l.r't,ronic wave pmket, wherem the latter relates HHG to bound-bound transitiom. In the previous
, lrirlrter (see also [55]), we considered the cme of m atom with a single bound state. We used

r rrrrefiequency analysis in order to compare the fully timedependent solution of the Schr6dinger
,,lrrirtion with the threstep model 1411. The time profiles of the plateau and cutof hamonics
r r.rr qualitatively similar for both models, corresponding to the semiclassical return times for the
, Lr:lronic wave packet. However, for an atom with more than one field-free boud state, such a

,,,irrt:idence is not always observed, especiallv for the lower order plateau hamonics.
'l'herefore, in the present chapter, rve address the question of whether the two pictues of rescat-

r,'r irrg and boudlevel trmsitions can be compatible and what are their respective rmges of ap
l,lrcrrbility concerning harmonic generation, for atoms with several bound states. The goal of these

I q,lics is to gain some insight in the process of generation of hamonics whea several bound states

,rrr. irrvolved. md to ilclude inJormation about the complementmy temporal stluctue of the har-
,,r,,rrics, with the eventual aim of being able to control this emission for tailoring harmonic pulses

,,1 rlrsired characteristics. For that purpose, one needs of course to consider further computations
,,1 I lyr propagation of harmonic radiation, for which the twalevel atom, TDSE or three-step model

n,i'v provide ihe initiat conditions [22].
Again, we bme our discussion on the fu1ly numerical solution of the time-dependent Schrddinger

,.1rrtt,ion. This approach includes all bound-bound, bound-continuum md continuum-continuum
I r rrrrsitions, thus incorporating time-dependent efimts like ground- and excited-state depletion, ion-

rrrrt ion and recombination. Therefore, m a first step we must define and isolate the difierent mecha-

rrr,,rrrs and investigate their contribution to harmonic generation. To fust approximation, we project
t lrc l,imedependent wave function onto the field-fre bound states, the remainder being an efiec-

trvl timedependent continum. Using spectral and timeftequency analysis, we perform a detailed

rrrrcstigation of the radiation emitted by the atom. The case of a system with two bound states
,rrl a continuum is alalyzed il detaii and compmed with a twelevel atom model. A pmticulm
rrr, ,t ivation for this specific malysis lies in a recent work, in which the inclusion of a "threesteplike"
r,' orrbination mechanism in the bound-state populatiom of a twelerel atom was able to reproduce
,, plrLteau ud sharp cutofi at oro f 3.17 Uo, where 61 - 60 - o16 is the energy diflerence between
rlr, lnund states [45]- The "bound-bound transitions" from the TDSE include such recombina-
rr,,rr rlechanisms. Futhermore, we consider ionizing bound-state populations in the twolevel atom
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model. Recent studies have shown that this procedrre may prolong the plateau in the harmonic
spectra, depending on the functional forms of the ionization rates [,14] (see also discussion in Sec-

4.2). Therein, a similm rate as in Sec. 4.2 (i.e., Eq.(a.28)) and a step function were used for,
respectively, the ground- md excited-state populations.

The Chapter is orgmized as follows: in the next section, we discuss a theoretical projection
method, which is used to isolate different "classes" of transitions from the TDSE solution. In
Sec. 6.2, we have taken several model potentials to investigate: two bound states in a short rmge
potential (Subsec. 6.2.1), onc deeplv bound and many weakly bound states in a long-range (soft
Coulomb) potential (Subsec. 6.2.2), several deeply bound (and many weakly bound) states in a

deep soft-Coulomb potential (Subsec. 6.2.3), and the same potential as in Subsec. 6.2.3, but wiih
its Coulomb tails cut off (Subsec. 6.2.4). In Sec. 6.3 we state our conclusions.

6.1 F\rlly time-dependent projections

The tim+dependent wave function l{'(f)) frorn the TDSE computation (Sec. (a.3)) can be expanded
into the field-freboud-brare bffiis

where the bound states ue denoted by ln), ihe remaining continuum part of the wave function by

ld"(t)) and C"(t) : \nlt!(t)|. These timedependent amplitudes are calculated fully numerically.
The advantage of taking such a basis concerns the orthogonality between the bound states and the
continuum. In cme this property is not fulfilled, the computation of the mplitudes C"(l) is not
straightforward.. We took as initial condition the atom in the ground state, i.e., Ll (t :0)) : 0).
The average dipole acceleration r(t) : (d,(r)] ii ll(4) cm therefore be split into

(,,,(t)l x lq(t)) {b6(/) i6, (/) I /""(r) (6 2)

Inserting the expression for i (l) giren by Ehrenfest's theorem (Eq. (a.$)) in (6.2) , the bound-
bound, bound-continuum and continuum-continuum contributions are mitten m respectivelv

lt(r)) - tc.(r)ln)+ i.i.(t)),

ror (r)' f c'-(t)c',,U)\ml 
dvlx)ln; -r1i,)f c,1r;i'z
0J

rt" (t ) |zn" [c,1;1n"t'r l-'Y(*)l,ll';Llorll

u. (t) : (o"ro;flf + E(41d"(,))
and

(n.1 )

(6.3)

(6.4)

(6.5)

As discussed in Sec. 4.3, the E(l) ierm nr (4.33) contributes only to m enhancement in the fu-
damental in the spectrum of the full acceleration. However, for the bound-bound and continum-
continuum contributions (6.3) md (6.5), there is the introduction of m extra time-dependence in
this term, coming from the bound-state and coiltinuum populationsl. This term does however not
introduce any important contributions, as rvill be shmn in Sec. 6'2.

We perform the decomposition (6.1) iaking the time-dependent wave fuction both in the velocity

and in the length gauge. For the length gauge wavc function, we apply the uituy trmsformation

rA.ldirs (6.3) aud (6.5), siDce t- lC;(t)|'?-f <.,r.(t)1+"ft) ): 1, this extra tirnc-dcpendcncc disappea$.

" I r, r' not only the separate contributions but also their relative phases play an importmt role, srnce

t lr, rl are crossed terms.

(;.1. FULLY TIMEIDEPENDENT PROJECTIOAIS

A1*u - s-i'Al.t1 on lr/ (t)) after each step of the time propagatior. In bcth cases, we use the same
lirne-independent states ln) calculated for the field-free atomic Hmittonim. This approach is widely
rrscd in the literature md is well-known as a "hybrid procedure" [79]. One should keep in mind,
lrowever, that through keeping the field-free eigenstates, one breaks the gauge inmrimce for each
isolated projection 180]. Only for the full acceleration, i(t), this property is maintained. In order to
l<rrp the gauge equivalence for the projections t66 (f), 16. (f), and i.. (t),lt, is necessmy to perform
llrc same unitary transformation also on n), such that changing from a representation (;r) to a
rcpresentation (z), one would have time-dependent states for one of the representations, according
r,, n(") (r)) : A"*pn1r)). Using the hybrid procedure, one obtains, instead, for the mplitudes
( ;, (t) in the different representations,

45

c -vt (t) - \ \"1 a, *, ljl c 
1 i,1 (t) + \nl A, -, 1.,,",,, trt )

rvit,h the continuum being

lr",,,fA) - ;'1,y (t)) Ic.r,r(t)1")

(6.6)

(6.7)

'l'he choice ofgauge for which the field-free bound state basis yields physically reasonable results,
,rs well as ajustification for that choice, is a highlv controversial issue. There are two main arguments
rn fhe literatue irr favor of using bue bound states in the length gauge: The pictrrre of the qrrasi-
'i:rtic distorted potential considered in Sec. ,1.1, r'hich is rrsed in the physical description of the
t I r rr-step model, corresponds to the length gauge Hamiltonian. Thus, m a first approximation, one
lr,irrld do the projections on the undistorted bormd states in the length gauge [81, 82]. Anot]rer

.rn,,rrrrrent uses the fact that lhe nechattical rromentum fI md not the canonical momentum p is a
l,lrvsical observable 1831. In the absence of the field arxl irr the length gauge, such quantities coincide.
lrrl,lrerelocitygauge,however,theyarerelatedbyll-p-A(t). Accordingtoseveralauthors,
r lris discrepancv is responsible for unphysiczrl results projeciing orrto the eigerstates of the field-free
ll;rrrriltonian in the velocity gauge, Hf [79].

I,)ren though the arguments above are not conpletely agreed upon, we could in fact observe
rrrrlrhvsical behavior for the mplitudes C",(t) using field-frec bound statcs in the velocity gauge. The
,'rr:lcading results obtairred using the velocity garLge are presented and discussed irr Subsec- 6.2.5.
t ilrviously, the expmsion into a f,ekl-.free boud-state basis vields just an approxinate picture for the
l,,,rrrrl-state subspace, since in a real atom the higher excited bound states are strongly distorted
ll tlre fieid and coupled to the continuum. Moreover, the projections (!(t)ln)(nlxlml\m$(t)l
,rr, lot equivalent to the respective second tempornl derivatives of the dipole length projections,
,t:lti'(t)ln)\nxlm)(T44,(t)lldt2, since the projection opoators In)(nl do not comute with the {ull
I lrrrrriltonian (4.31). Therefore, for m atom with two bound states, a direct comparison between
,r,r, (/) of Eq. (6.3) md the dipole acceleration of a two-lelel atorn is questionable. This crror is rrot
rrirotluced ifwe compare the bound-bound projections ancl the twelevel atom dipole in the length

l,,r rrr. used s a t€st in Subsec" 6.2.1.
,lrrst as for the time depenrlent dipole, one can split the timedependent porrer spectra discussed

rr Srrr. 4.4 into the corresponding bound-bound, bound-continuum and continum-contimrum con-
irrl,rrl,ions. We thus obtain the wavelet transforrn of the dipole arceleration (6.2) md its projectiom,

l)ry(r,0,o) 
2 : 1woo1t,9,o)2 r lWt"ft.Q.o)2 + 1W".(t,{7,o)12

!2 Re{w66(!., Q, o)w["(t, o, o) -F v\tu(t, a, dwl"(t, ('t, o)

1W66ft , I, o)Wi.(t, {1, a) }, (6 8)
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6.2 Results

6.2.I Short-range potential

In order to lest the twelevel atom against the funv time dependent solution of the sc.hrodinger
equat ion. wo chose a Garrssian short-rmg. polpnlial

V6(x) - -9.76.'p( "2/4) (6.e)

II.I')SULTS

I rl,rrrr:6.1: Porver spectra for the short-range Gaussian potential (6.9) and its twolevel atom model.
l r,l lcd linc: full acceleration; solid line: bound continuum part; squares: bound-bound part; tri-
,',.'los: tpelevel atorn including iorrization (for thc latter two, only the harmonic pcak heights are
I r, ,rvrr, corurectcd by a thin Line)

I r r( l i()n tLs a rnodel of thc ovcr-thtrbarlier ionizatiorr process yields urore lu[moui(:s since it is more

'r,,rrlirxx [44], but it is arguably less realistir:.

I he ground- arrtl erxcited state populatiols clepictcd in 6.2 show remorably sinilar beltavior for
r 1,,, frili sohrtiol ald the trvelcvel aton rnodel. 'fhe exr:ited-state population of the full solution is
,r,'si-perioriic in tirne, with a zero at thc timcs for rvhich the field is zero- There ue small dips
rltr.r the second cycle) at thc times for rvhich the lielrl is rnaxirnnl. Thc sma.ll dips in the excited
rrtc populatior are rlirrored bv corresponding peaks in thc ground state pol)ulation Tirese dips,

,,lrr,:lt are abscnt in the twolevel atom resuits, are an indication that a norrlincar proccss is taking
I l;rrr: arourrci thc pcak field irrtensitv, rvhicli inrohes just the two bound statt:s. Both thr: fuil and
i l',' tnsierel atom calculations coni:rin irreversiblc iolization, partially over-the barrier ionization,
tlr, r.<cilcd statc haring rhe fturction of arr intermediate statc bctween the ppound state and the
,rrriuruurn, ald partially turneliug ionizalion. It must be loted that. even though recombination is
,r ,'sr:rri in the bound state part of the tirne evolution for the full results. the bound-bound part of

L Ir, spectrum irr Fig. 6.1 does not exhibit the cutoff at ul6 * 3.17 I/o observed bv 115]"

fhc Gabor transform allows a rnore detailed uralysis of the harmonic generation process. In
t Lr1. (i-3. parts a to ti, u.e preseut results obtaincd for low harnronics taking a timewidth o - 0.1T.
Irr ir'ig. 6.3"a, wc plot the wavelet trusforrn for O - 7 ar . In this case, the main cottrihrri,ion
r, , lr:rulonic generation within a fielcl cyr:lc for the full solutioo occurs close to ther fleld perk. Ther

lrrll trnri the bound-bound srntributroris have rcry sirlilar shapes, same anplitudes and coincident
r','iri<s. Ilowevel, the bound-bourrd rvavelet trausfonn of tlc fuliy iimr:-dcperrdent computation and
t lrr. i:u'o-lcvel atorn w:rvelet transfoim are remiukablv clifferent. TIte twolevcl atrim results exhibit

',;rks at i =. 0.5 T mociuio Tl2, t,h^t is, wherr ihe fiekl E(f) is zero. The full or the bourd-bound

',.rrrlrs irare alsr: a srnall shoulcicr at t - 0"57'notl'|12, but thcir main peak is 90" out of pirase with

This potential supports two fielrj-free borrnd states, at €0 - -0.4gg a.u. and e1 _ _0.0g9 a.u. We
consider an dternal field of frequency ut :0.0b a.u. and amplitude E0 : 0.0g a.u., which is clearly
in the tunneling regime for the ground state- These conditions o.".";;.u;;;;irr" 

".".."".ro*"ain l4'1], i.e., grrund state i'the tunneling regime, cxcited state in the over-th+barrier."gi-o 
"rddipole rnatrlx elemeni (Olcl1) - 1.066 a.u. AJ"urdirg to the three-step models, the 

"*p""t?,i "rtonfor t'e present cme should be at 0 : 49 o;, which-is in very good ogr""_"ri with the spectmm
for the full acceleration, shown m the dotied liue in Fig. O.l. in fact, the aottea fine befna the
harmonic 21 sup€rposes eractly on t'e solid line, which gives only the bountr-conti^u- put. or tn"
:p"":.:*,*:'ilr11f,I.1 ia. (t), Eq. (6.4). At lm er..gith" bounct-continuum part rmderesrimates
the tull rcsults' wnrte the bound-bound part gives the dorninant contribution. The bomd-bou'd
spectrum presents a completely different cutofl (at rorrghly o: J5 or) and no clear indication of
a plateau, in contrast to the full dipole accelcration. An interestingi."t"...r1lr"'l.rJl.""o
spectrum is a Pronounced increase in the hunonic intensity, a socalled ,,low_energv hump,, around
the 7th harmonic, which resembles the features obserued fo. molecula, HHG specTra lzi,'zsf. rrri.resemblance is related to a comrnon harmonic generation mechanism, which will be discussed firrther
in this subsection

1. o.4"r 1everify whether these features correspond to a twolevel atom, u€ compare the bound-
bound part with the corresporrding twolevel atom,'with and wiilrout ionization. lVe solved the Bloch
equations (4'27) numerically usi'g a standard fourth-order Rung+Kutta method (see Appendix D
foradiscussionofthismethod). Theresultirrgtime-dependeniampritudesc,(i)ur"tr,"nir.".t"ai,
the two-level dipole acceleration, Eq. (4.26), from which the power spectra are calculated.Without
takirrg ionization into account. we do not olrr"rtn u plateau structure at ar in the emission spectra
for the field parameters above. In fact, the only peaks observed correspond to tn" f_a_r"it.f, u
few very *"6tr harnonics (up to_the bth) and ih".".orur"" peak aro.nd the transition pj * tUHarmonic spectra with an extencled plateau structure are onlli observed for much higher intensities,
where anv real atom would ionize practically ilstantaneously and the twelevel atom dnsc.iptio, is
unrealistic. 1lese results are not showl in the figure.

As a further step, we introdtrce ionization rates for the bound-state populations as stated in Sec.
4.2. 'Ihe tunnel formula for the ground state yields Dt -0.72 and Dz - 0.66b in (4.2g). For the
excited state {e choose Dl - O.Os and ,4 : 0.0026 in (a.-29). ,I,he harmonic spectrum obtainedi' this case is very different frorn *re full solution sp."tr.- u from the bound-bound pu.i or ,n"
full solution flarrnonics up to the 9th are visible, which is in agreement with the instmta'wus
fwelevel,trarsitiof {tauo.ncy (4.30), but t}rese harmonics are much weaker than those of the lurlroiult. Wcconrludetnatlhpdrivonrwclevcl atomisnotagoodmodel forcompuringthpharmonic
response, not even for the low harnonics which can be exiracted m the boui-borind part of the
spectrum. 4 5trongly nonlinear ionization rate within the twolevel atom model car enhance the
hmmonics u1t1 prolong the plateau, but then the field-dependent ionization rate does not reproduce
the full solution's time dependence for the populations of the bound states, obtaine. by the tirne
dependent projection onto the unperturbed states, shown in Fig. 6.2. Actually, the raie 7r(E(t))of Eq. (4.29) for^the-excited state is just an ad-hoc adjusted quantity since a turrnel formula is not
too appropriate for this state whose binding 
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Figure 6.2: Bound-state populations. Solid heavy lines: full tim+dependent computation for the

short-range Gausim potential. Dashed heavy lines: twelevel atom with ionization. Solid and

dotted lighi lines: full time-dependent calculation rvith projections in the velocity gauge. The upper

curves are for the ground state, the lower ones for the excited state. The small dips related to the

abrupt population transfer close to the field peak are muked with arrows.
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tlro tw+level-atom results, being at t - 0.25T nodT/2. In order to test whether this discrepancy is

rnl roduced by the fact that the proiection operato$ onto the bare boud states do not colmute with
ilrr, full Hamiltonim (11.31), we performed the same calculation using the boud-bormd projections
.rrrrl the twolevel atom dipole, both in the length torm; the result is shown in Fig. 6.3.b. The
I u rrrnd bound contributions fiom the full solutiol in the length and acceleration forms in parts a

,,rrrl b exhibit pea"ks at the same tirnes. This shows that the error introduced by the fact that
,r)(nl,I1l I 0 is of no qualitative importance in this situation. Once more, the twolerrel atom

r.rrrlts in part b present peaks at times different from the 266. The shape and location of the peaks

, ,l ,t rLiued for the twelevel atom are not sensitive to 'nriations in the ionization rates 16 and 7r.
'fhese results, together with the large difference in the nagnitude of the harmonics, visible in Fig.

r, | , strongly suggest that the process of generation of these low harmonics rnust be quite different in
rl'' tiwo cses, even though the full results are recortred in their twobomd-state projections. Ihe
r , ur:ration of harrnonics within the twclerel-atorn model has been investigated by Gauthey el al.

Iti (See also Sec. 4.2 in this thesis). They conclude that hmmonics occur due to a crossing between

rlr. trvo dressed states. The wavelet trmsform for the pmmeters used in [46] exhibits indeed well-
l, u rrlized sharp peaks at t : 0.5 T nod, T f2. In our present case however, the timewidth of the

'r 
voirL:rl crossing between the two dressed levels becomes conparable to (a,lthough stitl smaller than)
lr, luscr field period and thus the peaks me no longer so sharp. For the full 1-D atom results, on

1,,' other hand, the field is driving the bound part of the electronic wave packet primarily rvithin the
t rr o Iowest bound states, m cur be seen in Fig. 6.2 (the slow decrease in the ground-state population
,.,lLrctoirreversibleionization). Apartfromarnainoscillarion,inwhichtheboundpmtofthervave
1,:r, ki:t follows the field adiabatically, there is an abrupt population transfer between the two bound

L r, I cs close to peak field, arising from a "charge oscillation" of the wave packet between dipoles of

',1,1xrsite puity in the atom, seen as the srna,ll but sharp pea.ks in the TDSE populations, rnarked
. it lr arrows in Fig. 6.2. These peaks can be interpreted m follows. The anii-symmetrical wave

l'rrciion gi - (r l1) is more concentrated at the edges of V1;(z) and the symmetrical ground-state

',rrrr: fruction go - \r l0) ai its cernter. Thus, the overlap between the bound pat of the wave

I rrrr'fiori (r tb(t)t - Co(t)po + C1(i)9, nnd 91 1i.e., Cr(t)) decremes as the bound wave pacl(et

.,1,1,roaches z - 0. Simultaneously its orerlap with 96 ircreieses. Subsequently, there is a shmp
rr,.r:ase in C1(t) m ihe ware packet reaches ihe other sirle of the atorn. It is only a small pilt of the

';Lvc 
packet that performs this motion, but this is the significuit pat producing the lower plateau

tL.u rrionics. trn fact, the time irrterva.l between the iwo sma.ll peaks in the excited-state oopulation,
I rrlxrut 10 a.u., is rougliiy the time it takes for a classical particle to be taken frcm one "eclge" of

rl',, a.tornic potential to the other (a distance of approximatelv 4 a.u.), rvith constatrt accelcration
,',,,,,, - Eo. This mechanism is not taken irrto accout in the twelevel-atom rnodel.

'I'he sme mechanism is present in the einission of harrnonics frorr a diatomic molecule when
,,,rrsirlering the two Iowest bound even- ancl o<1cl-parit1. states [24,25]. Intuitively. this c]rmge

,,r,illationisclemerinthemolecularcase: ifeachatomoftltemoleculehmasingleboundstate,
rlrr.ruolecule has a syrnmetrical state pr : (r J-") ald arr anti-symmetricai statc rp, - (r; lo), with
Lurilar spatial distributions as 96 and pr. The generation of the low plateau harrnonics is describeri

r ;r tlrreestep process, in which an electronic x.ave packet tunnels frorn one molccular center to the
,,tlrcr when the field is at its muimurrr 125]. Clearly, the borrnd part of the eler:tron wave fnl:ket

,rr rilso be written as a superposition of ls) and la), ancl, as tbe eiectron mo!€s, one worrld expcct
, irrrilar populatiol transfer between ls) and a) x for the two-bound-state potentiai Va(a;). Also
,,r ilr: molecular case, thc tirne profile ofthe lcw plateau harmonics prcsents peaks aroultd times

r,,r nlrir:h E(t) - h f261. Hcwever, for a dialomic molecule, the'bound-bound contributions occur

trr.lrr,lv after the peak-field time 0.25Tmor-L?12. This is possibly related to ilie spatial dirnensions
,l ilrc molecule, which are imger thu the lalge of Va(:r). Thus, lhe bound pa,rt of thc wave packe+'

L,, ro (:ross a larger distance, spending slightly morc tine.
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Figure 6.3: Wavelet analysis ofthe timedependent dipole over one cycle ofthe drivirg laser field for
the short-rmge Gaussian potential- Pats (a), (c) to (f) give the dipole acceleration, whereas part
(b)givesthedipolelength. Pmts(a) and(b): (l:7ur,,o:0.1f; part(c): e:7baL;pmt(d):
Q : 17 wr Part (e): Q:37 au o - 0.0247 (plateau harmonics), pmt (f): ft - 49 w1, o - 0.77
(cutoff harmonics). Solid line: ful1 dipole acceleration. Dmhed line: bouncl-boud contributions.
Dotted line: bound-contirmrrn contributions. Dotted-dmhed line: in pmts (a) and (b) results from
the twolevel atom with ionization (multiplied by 3000); in paris (e) and (f) continuum-ground-state
contributions.
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( lrnsidering now the wavelet transform certered at the low-frequencl' end of the plateau harmon-
,, r. (2 - 15 @r., shown in Fig. 6.3.c, one observes that the full wavelet has significant contributions
r,,rrr both the bound-contirtuum and the bound-bound parts. Increming the center frequency just
lrl,,lrt ly, to Q : 77 a u the bound-bound part rapidlv loses its importance. In Fig. 6.3.d the bound-
,,'l irruum and the full wavelet almost coincide, the bound-bound contributions now being out of

l,lrrrsc with the full solution. Thus the dominant contribution in the full results shifts frorn the
1,, ,rrrr<l-bound part for the low harrnonics to the bound-continuum part, over just a few harmonics,
, i , ,.videnl also from Fig. 6. l.

Irinally. in Figs. 6.3.e and f we analyze the plateau ard cutoff regions. In Fig. 6.3.e, we consider

,r rlirrrlow function of time width o :0.021?'centered at 0 : 37 uL, so that most of the plateau

l,.rrrrrrnics are included. For this situation, we observe a near-perfect coincidence between the bound-
, , )il( iluutrr (dotted line) and the full (solid line) results, iI accord wit]r the results in Fig. 6.1. The

,,rrrirr roltributions to the bound-continuurn part come from the groud-statecontinuum transitions
t, l,,i ted-dashed line).

f,igrrre 6.3.f shows the wavelet transform for the cutoll hmrnonics, Q:49 at' with time width
, 0.1 ?. Here the full result and the contributions involving the ground-state-continuum tran-
rri,rrrs (dotted-dashed line) and the bound-continuum transitions i6"(t) are aimost identical. The

,,,rli irr part f corresponds to the classical return time of an electron with mximm kinetic energy

r ,,' e.g. 154] or [55] and references therein). W-e observed small wialions in the position of this

1 ', rr k between t - O.4 T md i : 0.5 ?, n'hich is reasonable since this retun time is rery sensitive

r ,r'rrrris sma.ll uriations in the electron energy' as discussed in [54].
l,irr ail cmes, the continum-conlinuurn transitions yield very small contributions, in accord with

, t,,, ,uralysis of [68].

ti.2.2 Shallow long-range potential

trr rl[: iirliowing t}o subsections, in order to investigatc i,]re influence of the potential shape ort

tr rr [rruic geueration, qe consider model atorns with the rvidely used soft Coulomb potential

vc(,) - .nf{,lEt'*t) ''' (6.10)

\\, lnkc a - 0.38 and 13: t).76 which leads to one botrnd state ofenergy €0 - -0.19 a.u. antl

, \ (,r1rl {,eakly borurd states (binding energies of the order of 10 2 a.u. and smaller) in m external

,, 1,1 oI amplitude Eo - U.08 a.tt. and frequerr:Y or - 0.05 a u. This case is rery close, apart from
rlr,, lrrtential shape, to the singlebound-state short-rarrge potential discussed in 1551, since in the

|,,,,sr1ce of the external field the excited states me strongly coupled to the continuum. For the

L,,r;uneters stated above, the cutofi predicted by the three-step rnodel is at Q - 45 ar.
Iirr this bincLing potential, a striking aBreement betu'epn the wavelet transforms for the grcrrnd-

r.rl(',(ioltinuuffr projection and the full acceleration wm observed, at the cutof{ and for the whole

l,l1lc1u regiol. once more, tire semiclmsical return times predicted by the tlueestep model have

LtrL recmred in thc time prcliles. These rcsults are in agreement with a computation done by [84]

t,,r ;r. ihrre-dimensional long-range single-active-electron model involving ultrmhort pulses, at the

rr r , r{I harmonics. md also with the results in l54l and Chapter 5. The present res,rlts (not shown) for

l,, plateau an4 r:utoff regiols are agair in agreement with tliese calculations, showing their generic,

1,,,rr,1tial-indepencient nature for m effective singleborurd-state atom. As in the short-range cme

,,lrr.ssed in 155], the main wavelei peak corresponds to a letwir time of about I - 0.'15 T, Periodic
,,, r 0.51J T. If ihe highlyJying excited states are taken tlto account, we obtain a spuious peak at
/ {:) - E6 for t}re bound-continuum wavelet. This feature is also obsened in the next subsection

r,:t l]). .J/.e regud it as uphysical, since a projection onto a fielcl-free bomd-state bmis is not a

, , u ! atriproxiriation for the weakly bound states.

5t
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6.2.3 Deep long-range potential

After discussing harmonic generation for models with just ore oI two bound states, we now wish to

address the qrrestion of whether the spectral features observed me present for m atom with more

tharr luo slronglv bound stalcs.
\fu.e consider a - 0.76 and p - 1.1 in the potential (6.10), resuliing in a ground state energy

of e6 : 0.501 a.u. This case difiers from the one considered in sec. 6.2.2 in the sense that also

the first and second excited states, of energies respectively et - 6 199 a'u' md e2 : 0'108 a'u'

are relatively deeply bound and strongly coupled (the dipole matrk elements between the states

are respectively (0:rl1) : 1.19 md (t]riz) - 3.02). The crrtofi for this potential is, with the field

paramete$ taken as in the previous subsections, at 0 - 49 or,.
In Fig. 6.4, for the part of the spectrum above thc 13th harmonic, we observe a perleci agreement

betpeen the spectrum of i6" (t) inclrrding the three most deeply boud states (c) and the firll

acceleration spectrum (a). The inclusion of the higher excited states (b) makes the agrrement mtrcJt

worse, ildicating the inadequacy of the fiekl-free basis for this intensity regime. The bound-bomd

transitions involving only the three strongly borrnd states (d) exhibit a cutoff at a mrrch krwer

tiequency, the term proportional to E(t) in the dipole acceleration expression (4.33) modifying

orty the background in this cme. The harmonic intensities ane mrtch lower thm those of the full

result. The spectrum of i66 (t) involving oll tlie bound states (e) (their nurnber is finite within our

discretization) yields a smeared out cutoff, which is also observed by 144]. Moreover, we observe

that the spectr:a corresponding to continuum-ground-state transitions are at least two ordr:rs of

magnitude higher than bound-continuunt spectra involving only the excited bound state pmts- The

harmnic yields from these contributions decrease with increasing bound-state energy. This is shown

in Fig. 6.4.f. where the contributions from the transitions inrolving the continuum and the borrnd

state 2) arepresented. The contributions to the b-c spectrurrr from the {irst excited state l1) are

sliglrtly larger, nmely otre to two orders of rnaglitude smallcr than those involving the ground state.

simitai resirlts were obtainetl by [85] in a time-depenclent computation, in which the initial atomic

State was taken as a coherent superposition of ground and lowpst meta.sta.ble e.xcited state- Indeed,

in three-step models for high,harmonic generation the excited bound states are usually neglected,

which is iustilied in view of the present results.

The corresponding wavelet analysis in Fig. 6.5 shows that the bound-contirtum part which

includes only the lowest three bound states arrd the full acce]eration yield almost indistinguishable

wavelet trmsforms for both part a and b. The bound-contimrum part includirrg all bound states is

also in agreement with the other two sets of results, apart frorn a spurious peak at muimal field

(, - 0.2b ? modulo 0.5 ?). This spurious (unphysical) pea-k is rhre to the contribution ofthe highly-

\ing excitetl states in the time-dependent projections. This peak is Bot present irr the harrnonics of

ener:gy higher than the cutofi, indicating that it arises only from the high-plateau harmonics. Once

,rorJj i, f,urt b, the cutoll return time t : 0.4? is recovered for the full acceleration md i6" (t).

For the lower-energy pafi of the spectra, however, the hmmonics appear to be a "mlxture"

of bould-continuum mrl bound-bound transitions, and it is difficult to draw conclusions about

which mechanism plays the most importaDt role. This is clearly observed in the wavelet transform

centered at the 7th hamolic (not shown). In this case, the warelet transform rro Ionger exhibits

the 7'/2 periodicity of the drivilg field but there are other timescales present, plesumably drre to

resonant processes irrvolving several bound atomic statcs. Concerning the term in i66 (t) which is

proportional to the field: as briefly mentionecl in Sec. 6.1 it introduces an orer-enhmcement of the

peak at mximlm fiekl (i - 0.25 ? rnodulo 0.5 Z) when all the hrrrrrd sta.tes are taken into account'

th. ."uror is that the projections on all these states become large for muimal field. If just the

three most deeply bound states are taken into account, the term in E (t) plays no important role

in the wavelet transforms, the result with and without tiris term being alrrost identical. Morewer,

evel though the excited states l1) and 12) are strongly coupled, the wavelet transforms of t6. (r) for

RXSI,ILTS 53

L' rrrr, 6.4: Porver spectra of the tiue-depelclenl rlipole acccleration for the derp Coulornb poteltial.
t ,rt (a): fuli acceleration; Part (b); bound-conlinrurrn part: Pari (c): bound-continum pmt from
1,,. r lrree fiiost deeply bound states; Part (d): bounci-bound part from the tinee most deepiv bound

,t,'s: Part (e): bound-bourrd part ; Part (f): bound-continuum part.[or the second excited lrtate
1r. AII subsequent cur\€s ha..,c beel shifted b1' 15 v-uis units hom their respective uppef

, lrlrors. The harrnonic peak heights frorn crrne (a) have ben repeate<i as the filled circles for all
l,, r live curves, as a point of reference.
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Figure 6.5: Wavelet analysis of the tim+dependent dipole acceleration over one cycle of the driving
laser field for the dep Coulomb potential. Part (a): Plateau harmonics, f,l - 37o7,, o - 00277.
Pmt (b): Cutofi harmonics, f,l : 51o1, o - 0.1087. Solid line: full dipole acceleration. Dashed

line: boun{-continuum contributions from the three most deeply bound states. Dotted line: bound-

continuum contributions.
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,,rrly the two or only the thre most deeply boud states present no significant difference.

ti.'2.4 Effects of the Coulomb TaiI
I r l rrder to investigate quantitatively the effects of the long-rmge Coulomb tails in the deep Coulomb
1,,,l.cntial of the previous subsection, we now discuss and compare results obtained with the same

lu,t.rntial, where the Coulomb tails have been cut off,

(6.11)

I i,r rcgiom close to the atomic core, this expression yields the deep Coulomb potential V6 from
'irrlrscc. 6.2-3. For lrl > oe, its tails are cut off smoothly. We take a6 - 5, rr - 6 and L - 2ao,

',,, lxring the excursion amplitude of the electron (oo: Eolr2 : 32.). Thus, within its excursion
rrrrplitude, the electronic wave packet will experierrce a very different potential tail betweetr yc atrd
I i. tbr the parameters above, the ground state energy e0 of V1 is the sme as the one for V6
tlirrlrscc. 6.2.3), while the first and second excited states'energios of Va me at e1 : 0.192 and
, 0.063. The energies of the higher excited bound states ile of course quite di{lerent between

ilr, two poteltials. (Also the matrix element (1lrl2) :0.499 is very different.) The truncated
1',,tlrrtial V7 has only a finite number of bound states, seven within ou discretization. We apply
,. ;r' lly the same field pulse m for the previous results shom.

'l'he effects of Coulomb tails on harmorric gerreration spectra have ben discussed ir several pa-

1 ', r r lrcforc [86]. Mainly, however, these discussions were concerned with elliptically polarized driving
l', l,ls, investigating harmonic energies close to the ionization energy ("threshold" harmonics). Un-
,, rrrr! r'llipticity dependence was observed, whose origin was usually surmised to lie in the dominant
, ll,r'1. of e-xcited bound states. Coulomb conections to the free wave packet evolution within the
,,rrl,'xt of multiphoton ionization md above-threshold (high photoelectrotr energy) multiphoton

,,,'rrzrt,ion have also been addressed [87], again mairrly in the coiltext of elliptical polarization and
L lrrrr rrrnccrned with wavepacket spreading transverse to its principal excursion arnplitude. In the
,r, srrrt study, we ae uiquely concerned with the long'itud'inal spreading of our (1D) wave packet

,', :r liuearly polmized lmer fieid. Even within this restricted contexii, one should expect qumtita-
r', rliflerences in the harmonic yield, since the Coulomb tails a{fect atomic ionization [87] and the

1'r, ,lrrr.gation of the electronic rvave prcket in the continuum.
When compming the harmonic geleratiorr spectra from Vg and V7, there are no najor differences

r:.rlrl'oI the scale of Fig. 6.4 (the results for yT are not shown in the figure). However, there are
yrr;rrrlitative dillerences of about one order of magnitude. The V7 harmonics at the cutoll are

ir1'lrl.ly (a fact<ir 2-3) lower thm the V6: harmonics. On the other hand, there are a few groups

'l l)rrrnonics, in the plateau (aound the 35th) md at threshold (aroud the 11th) where the V7
l,.,rrrrxricsareaboutonetotwoordersofmagnitudehigherthantheT6:hmmonics. Again,thereis
1 " r lrr'{, agreement between the full md the 16. (i) high-energy spectra for V7, where only the lowest
rl,r,rr ltoud states me taken.

W: uow consider the wavelet transforms for the two sets of results. Fbr the low harmonics, for

' t Tut and o : 0.108 T, we observe that the results for ft me rnuch less structured than the
,, ,rrli,s for Vc. The results for y" are dominated by a single smooth peak, near 0-25?, periodic

""',ltlo Tf2, N was the cme for the short-range Gaussian potentia.l, discussed in Fig. 6.3. This
,r1'11'sls that the non-periodic wavelet yield of V6 for the low harmonics is inherent to the long-

' "rr11' tail of (6.10). However, for the potential (6.11) ii is not clear whether the low harmonics are

'",1'rrrated by the bomd-bound or bound-continuum transitions, since both contributions present
, , ll tlrlined mmima at peak-field times.

( t lrl .oo
v7 lr1:l/.{rt{ cos'f 1." rr- "rl 

. as1'\t 1 L

[ 0 Ir r.
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For the plateau region, Ibr tl : 37 ur and o - 0'027 T' Vr exhibits much lms-structttred

t"-p*Jp.onf"" thm"V6', this time dornimted by a peak near 0'50 T' At the cutoff' finally' very

similar rvavelet yields are obtaiDed for v7 and yc, once more indicating the potential-independent

nature of the cutoff harmonics. The cutofi returB time is stiglrtly shifted between the different sets

of results:i/6yields O.42T,Vryields04?T,whileVcgm.045?.[55] forthe,(single) pea'kof the

;;-;;; "ig;;L 
The width or irt" p"ut', however, is much-larger than these difierences' and thus

tfr"'*u""f"ti-"ot really (neither in practice nor in principle) resolve such a small difference'

According to our analysis, the long-range taiL of the.Coulornb potentizrl influences. mainly low-

and threshold hmmonics, and, ti"petdilng otith" potential in question' might affect particulm groups

"iotri"r" 
lr-*."i"". ri n 

"nu"t'or 
truncating or not the long-rmge potential, even quantitativelv,

does not have a significant influence on the cutoff harmonics'

6.2.5 Gauge dePendence

AsdiscussedinSec.6.l,thetimedepenrlentplojectionsinafield-freebound'statebmismegauge-
a"n""a*randonehmtoU""utntttut'outthechoiceofgarrge'-Inthepreseltlow-frequencyregion'
the projmtions make sense ""lt 

;;; tutt"t i" the leng-th lauge' as has also ben argued in [81]

*a'tszl. In this subsection, *" prn"ert misleading results obtained in the velocitv gauge as an

cxample. We take the short-range potential frm Subsec' 6'2'1' whictr has two deeply bound states'

md calculate the tim+dependeii i'o.j""tiott in the velocity gauge' In this cme' t'he- plateau- and

cutofi-structure is recovered .it" ftt tft" 166 (t) spectrum This can be seen in Fig 6'6' where the

il;;; f;;;;;(,i, ;0. p) ana ; (t) in the velocitv.gauge are presented' The full line gives the "exact"

.i""1 , ,fr" ,*" * tfr" d*n"a fi* i" fig. 6.1. Th" key point of the present figure is that the various

or.:"Jti"" ".",.tbutions 
(bound-bouoJmd bound-contiruum) are much luger than those of the

fuil result (the continuum-c;;""; contribution is roughly of the order of magnitude of the full

result). This indicates that the frojections in the velocitv gauge camot be expected to vield much

nhrtfJ"l r"i.*"tion lnditidualiy, sin"e tttey cancel each other to a large extent when surnrned to

give the full result.

Moreover, performing the wavelet analysis for the present case' shown in figure 6 7'a for the

plateau harmonicr, ot" ob.".tut that the t66 (t) contribution is similm to the full i (l)' wherem

the rb. (r) wavelet is 
"o-pt"i"ty ""t "f 

pttut" with the full result' This appears to lead to the

conclusion that, lbr uto-" *i"th"ttotgly coupled bound states' the bound-bound transitions play

a very important role in the g"t"tutiol""of plateau harmonics' However' it must be troted that' s

shown in part 6.7.b, all the c&tributions (although most prominently the bound-free contribution)

reproduce the return time t - 0'5 T at the cutofi'

Considering the grourrd-state ud excited,state populations obtained by projecting the velocitv-

gauge wavefunction, shown * ttt" tttit lines in Fig 6'2' the former presents muima for times

t :0.2b T modulo 0.5 7 , ";;;;";i"g 
to muimrirn field streugth E (t) : ED. These resrrlts me

obviously unphysi"ut, *r,", ,io",Jain a riuasi,static field pictue. This justifies the gauge transforma-

tion intro6uced in trr" p.".uot -rJv.i.. 
'strdi", 

concerning the gauge dependence oftime-dependent

;;j;;1; *"t" ako performed rv 1At] *ittti" the context of population transfer'

6.3 Discussion

Wewishtodrawthefollowingqualitativeconclusionsorrhigh-harmonicgeneration,basedonthe
results within ou projection method:

There is no signilicmt qualitative influence on either lor- or high-harmmic selgratiol from the

long-range shape of the potentia.l. In other words, for long-range poientials, the highly excited bomd

I rllrrre 6.6: Porcr spectra of the ciipole acceleration for the Garrssian potential' All projections (but

,,,r:, sec below) are performed in the velocity g:ruge- Solid line: spectrum of the full acceletation

(::rrtre as in Fig. 6.1). Filled srluares: bound-bound contribution. circles: bound-continuunr con-

I r rlrutiol. Crossed dimonds: contiluum-continuurn contrilrution. Tliangles: conlinuum-continuum

,, rrrtribution froin length-gauge projection.

iltrlTr:',i?dl!i.o;o.

Harmonic number
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Figure 6.7: Wavelet transform of the time-dependent dipole acceleration for the Gaussian potential.

The projections are perforrned in the velocity gauge. Pat (a): Plateau harmonics, I : 37at,
o : o.o24T. Part (b): cutofi harmonics , {l - 49u r, o - 0.17. solid line: full dipole acceleration.

Dashed line: bound-continum contributions. Dotted line: boud-bound contributions. Dotted-

dashed line: continuum-continuum contributions.
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strtes do not play a significant role. \\4ren observing 3-D effects, however, as for example in the
.llipticity dependence of harmonic generation 186], the potential tails may become important.

For atoms with more than one bound state, both the bound-bound and the contitruum-bound
I rimsitions play a role in the harmonic generation process. The generation of high harmonics corre-

ri;rords to a threestep physical picture, in which the main contributions within a field cycle corre-

slnnd to the semiclassical return times, even for long-range potentials. For all the potentials studied,
only the bound-free transitions originate a cutoff at the semiclassical energy ]e6 * 3 17 i/o. Roth
s1>r:ctral md timefrequency ana.lysis demonstrate that the main contributions to high-harmonic

t(rneration come from transitions involving the ground state. This shows that the electronic wave

1ra<:ket not only rescatters with the atomic potential, but reallv recombines to the ground state'

On the other hand, the low harmonics appear to be the result of several mechanisms, depending
vcry much on the potential in question. Our malysis shows that indeed the excited bound states play
;r significmt role in the properties of these lower hmmonics, in agreement with the interpretation of
sorrre of the results in [86, 87].

Specificalil', for arr atom with only two deply bound states, the bound-bound transitions play

t 1e dominmt role in the generation of hmmonics at the low-energy side of the plateau. Similar
rcsults were also obtained by 145]. However, the plateau and cutoff at o16 -F 3 a/p reported in this
prrblication are absent in ou computation. It should tre noted that we do take recombination into
irr:countfortheamplitudesC.(r). Onlvinthevelocitygauge,forwhichthetime-dependenceof the
ground- and excited state populatiom yields uphysical results, a plateau md a cutoff within this
liequency regime is observed" The mechanism of harmonic generation in a twelevel atom leads to a
It:mporal structure in the low-harmonic generation which is completely out of phme t'ith the rnain

process of hmmonic generation in a spatially extended atom.

In the low-frequency regime we observe strikingly di{Ierent bound-bound and twolevel atom
spcctra and warelet transforms. The spectra can be made to appear more .similar if one chooses

rrrrch higher ionization rates in the twalevel atom rnodel. This indicates that the high-frequencv
rr)rnporents in the amplitudes C,(r) of the bound states from the full solution are very different

lron the corresponding compcnents in the amplitudes from the twolevel atom model, due to the
r:ontribution of the continuum states in the dynamics of the Criven atom, even though the dynmics
involves primarily only a chrge oscillation between the lowest two bound states. A critical influence

rif the boun'.1-state population transfers on harmonic gereration was alrc observed by [88], as well

;rs iorrization-related effects in the bound-state populaliion dynamics'
Fbr the particular cme o{ an atom wit}r only two strorgly coupled bound staies, we conr:lttde

Lhat the low harmonics are not well represented by a twolevel atom. Even the insertion of effective

iorrization rates yields a completely inappropriate model for the low-energy spectral region. As the

lrarmonic frequency incremes, the three-step model becomes the applopliate picture for the high-
i rarrnonic generation process.
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Chapter 7

High-harmonic generation with
bichromatic driving fields

For HHG with monochromatic driving fields, the existence of a simple cutoff law for the atomic
emission spectra is m established fact. Moreover, the mechanisms responsible for HHG in this cme
are the bomd-free trmsitions of the thr*step model. However, for nomonochromatic flelds there
are still several open questions concerning an explicit cutoff law and the validity of the rescattering
picture. The existence or absence of a simple cutoff law of the form logl+ aU, in the bichromatic case

has been extensively discussed [28, 67, 89], but no general expression exists. Moreover, the harmonic
output hm a more complex structue in the nonmonochromatic cme, depending on the shape of
the driving field. The more parameters the latter hm the more knobs can be turned. For instmce,
a linearly polarized bichromatic fieid already provides tro additional pmameters in comparimn to
the monochromatic case, viz. the ratio of the two field strengths and the rmpective phase- Thus,
the possibility of controlling the length of the plateau or to enhance or suppress a selected group of
harmonics bv adiusting the ptrmeters of the coherent fields has attracted the attention of several

groups, originating several experimental 162, 94, 95] md thmretica.l 128, 6L, 67,89, 90, 91, 92]

studies on the subject. Special features of harmonic generation with bichromatic fields, such m
the enhmcement o{ the plateau hmmonics in at least one order of magnitude with respect to the
rnonochromatic cme [92, 95], the extension of the plateau towarCs higher energies [28, 89' 96] and
the production of attosecond pulses [61, 62] have been identified md investigated within the past

few years.

With the same motivation m these groups, i.e., to gain useful information for high-intensity-
coherent control, we performed the investigations presented il this Chapter. We restrict ouselves
to a-one dimensional atom model, for which qualitative featues concerning twecolor HHG with
linearly polarized light ae present. We mlve the TDSE for a oneboud state atom with the same

short-range gaussim potential (5.1) m in Chapter 5, subject to a bichromatic fie1d ofthe form

E (t) , gor tir lr yt) ! Eg2sin (a2l I Q) (7 1)

The frequencies are taken to be commensurate, a2 -- nab with n being m integer, so that the phase

@ has physical significance. For this field, the ponderomotive energy is giwn by

ue- Eill4a?+ E\rlkra (7.2)

We take the driving field (7.1) with n:2,t.e. one of the driving wares m the second hamonic of
the other. However, one should keep in mind that the formalism used in our invetigations cm in
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principle be applied to o?y nonmonochromatic field' Clearly' for our Iield choice there are also even

harmonics in the enission spectra. The chapter is riivided in two main parts, with emphmis on two

difierent asPects of twocolor HHG:
In Sec. 7.1, the reliability oi "i-pf" 

semiclassica"l (thestep) pictues for-bichromatic driving

fields is investigat"a. wu ,"" 
"p""trui 

uod ti-of."qo"tcy analysis to determine the main contribution

to high-hmmonic generation *i'ftit u field cycle fm bichromatic fields' extracting the semiclassical

retun times from the TDSE computation'
In Sec. 7.2, *" 

"o."urtrut" 
o.'how the relative phme md the relative intensities of both driving

waves afiect the muimal-energy tru;""toriu" of th-e retuning electron md, consequently' the har-

monic spectra, for bictromatic-iriving fields' We also address the question of whether there is an

"".G 
Jiirr" ,l_ole cutofi lm p"r,i"""", to the monochromatic case. within the twocolor flme

work, it is clear that tir" r"r.ii.I" n"ri rlr"rgti* Eot, Eoz, the flequency ratio n md the re'lative

phase / are the importmt parmeters deteririning the strema'l-energy emission ud return times

(to, ,t )'' ''cJr""rrirg these muimal_ (and sometirnes minimal-) energy trajectories, there is an important

d.ifierence between the monochlomatic and bichromatic cmes' In the rnonochromatic case' it so

happens that the start th" ;;i th" muimal energy solution with shortest travel time is verv

close to the time where ttt" "i""tti" 
naa is muimal so that' in the tumeling-regime' iniection

of the electron into the fietd is most likelyl' This is not nmeqsmily so in the bichlomatic case'

There are solutiom (16,t1) that lead to extremal return energies' but fu whom-the field E(i6) is

comparatirely weak. Hence, *ithio 
'h" 

tmneling regime' the corresponding cutoff frequencies may

not be promilent in the sPectrum'

In both parts, *tt"o iot".tfiuiing phmerelated efiects' we take fields of equal amplitude' for

which these should be -o,t pt|to''i""a' High-hmmonic generation with compuable bichromatic

driving fields wru uaa.".."a o*puri-""tatty ln iO+]. We consider excursion tines t1-t6 for the electron

in the continuum tp to t-o pJ'ioJ ' i - i" lt' of th" lo*-fr"qo"ncy field' Thm are infinitely many

return times for which tf." "*"otJt 
tme t1 - 1o i' longer thm two periods: Howmr''due to wave

packet spreading, even in fU,ift"'" longer return ttl: *", of minor irnportance in the harmonic

generation spectra. For S"".' ;.i;-fipose the additional cond.ition h < 2T, since we did not

observe significant contributions for the wavelet yield from longer retun tines'

7.t Time-frequency analysis of two-color HHG

For the studies performecl in this section, we take E9L- Eo:.: Eo - 0 04 a'u'' and ur - 0 05 a'u' in

Eq. (7.1). This field ftu" u po"i"'o-otire energy of tle :0 2 a'u'' which gives a Keldysh pilmeter

; :'{Am= 1. We present results for d - 0 md 6 : r 12'

7,I.L Classical return times

In Figs. 7.1 md 7.2 we present the complete picture of the-emission and retun times obtained from

a numerica.l solution of the ti-*1"p""i""t imsical equations of motion of an electron in the fie1d'

for qJ : 0 and d : t7z, 'utp""iii"f,l'"ti"slh" 
f"""h-orier RmgeKutta method (a discussion of this

method can be found t" Ap;;il1';t.-li i" *-rfr nothg thatlhe introduction of a second driving

field results in a much more ""-ni"" i.t*r" r.r the semiclmsical trajectories (for a comparison, sm

for instance the same aiugru* ior monochromatic driving fields, presentedin.sc 41'2^and [5a])'

The figures have been oUtuir"J* iotto*s: we cover the interral b a to < ? (wiih ? :2r lat lhe

ffid4.4inthisthesis.InFig.1,3.(a),thegraPhifa1ltrethodexplaiuedi[
Chapter 4 shows that tfr" fi"fa ut ?fr. "*i!ion 

tirne corresponding to it'J.,otoff e-*, Siu"" ir Fig 4 4, is close to its

rnuimurn.

7.1. TIMLFHEQUENCY ANALYSIS OF TWO-COLOR HHG

Figure 7.1: Clasical emission and return times s a function of return energy for an electron rn a

fielrlminEq'(7.1),with'Es1:Eoz-Eo,forQ:0'Lowerpart:emissiontimes;upperpmt:
return times. The solid ilrows comecting both parts irdicate the extremal energy trajectories, in

accordance with Table I. The dashed arrows indicate non-extremal trajectories which give rire to
peaks in the wavelet yield of Fig. 7.4.

period of the low-frequency driving field) of the start times with a closely spaced uniform grid. For

cach to we calculate the associated return time rl and kinetic energy.Epi.(l1,ts)' In general' there

will be more thm one solution for each t6. Each triplet (ts,t1,Ek;'(tg,t1)) provides one entry for

Fig. 7.1 or 7.2.

Occa-sionally, we will refer to a triplet (le,i1,EL;"(16,i1)) as a "trajectory"' Indeed, a classical

electron trajectory starting with zero velocity from the ionic core (r :0) md retuning to it is

uniquely specified by 16 and t1- Extremal values of the return energies (mmt1y muima, sometimes

minima) in the cuwes of Figs. 7.1 and ?.2 speci{y the cutofi energim and the corresponding emission

and return times. In this cme, rve will cavalierly speak of "extremal trajectories". A11 others will

lrc referred to m ,,nonextremal trajectories". The density of rl-points in the figurm allows to draw

conclusiorrs about the relemce of the mrresponding trajectories to the hmmonic response- Both

figures 7.1 and 7.2 show the retun timo only for returns during a time sholtel thm 2'f.

For 0 ! t{r ( ? and. t1 - t6 12?, extremal energies, fl; with their msociated enission times t67

an<l retun times f17 me given in Table I (for @ : 0) md Table II (for @ : rl2)' the subscript j
labelhg the solutions in increasing order of Q7. The corresponding hmmonic number is obtained

as O1/J1 * 8, since it results from a recombination eaergy of.Aki.(r1, t0) * le6l(where Ito_l : 8lr"t).
,fne"fi{th column gives the kinetic energy of the returning electron in units of the ponderomotive
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7.1, but for O: r12' The relewnt extremal energy trajectorim are listed

7.1. TIA,IEFREQI]ENCY ANALYSIS OF TWO-COLOR HHG 65

energy. In the next subsections, only trajectories rvith return times 0 < 11 < 27 will be taken into

account, since only these contribute to the harrnonic vield. The longer return times in Table I. m
well m the respectil€ cutofi frequencies, corresponding to j : 3,6 and 9, will be only necmsary in
the discussions of Sec. 7.2.

Table I: cutoff emission and return times,
and the respective harmonic frequencies, for /: Q.

.1 to;/l tt; /'J Sl; + l€nl) /a {t; /u-
1

2

3
4
5
6
7

8
9

0.20
0.27
0.85
0.20
0.83
0.85
0.50
0.82
0.85

1 .5t)

1.67
2.5r
7.32
1.53
2.60
0.85
1.65
2.30

,.04
r0.0
r0.4
r0.7
I 1.5
t2.7
t2.5
t2.6

0.22
0.50
0.59
0.67
0"88
1.02
1.13
1.14
1.43

TU

ll
t2

0.81
0.88
0.20
o.22

1.99
7.29
1.99
0.98

19.9
20.2
24.4
27.4

2.9E

3.05
4.t2
4.86

Table II: cutoff emission and return times,
md the respective harmonic frequencies, for $ -- r 12.

J to; lT L;lr (0; * leol)/or a;lU"
I
2

U.dU

0.82
I.JU
1.18

10.5
11.7

u.oz
0.92

J
4

5

6
7

U.JO

0.76
0.30
0.77
0.42

r.57
1.90
1.86
1.56
0.88

1 6.3
17.0
20.7
22.0
25.9

z.lo
2.24
3.20
3.54
4.48

Figue 7.2: Same as Fig
in Table II.

The cutoff energies fall into two caregorim, the high-harmonic peaks, abore harmonic 16, md the

Iow harmonic pea]<s, below harmonic 16; this dividing line is indicated in the tables. Tables I and

II show that there are regions of th€ harmonic spectrum without my e.xtremal energies f,)j, so that

in the clmsical picture harmonics in these regions can only be due to "nonextrema.l" trajectories.

In fact, Figs. 7.i ad,7-2 show that a given return energy can be mcomplished by several start and

retun times ts ild t1 such that the return energy is not extrenal. The corresponding times ts

and t1 satisfy ihe return condition (4.6), but not the extremal energy condition (4.7)' \\&enever

possible, we sha.ll discus the results in Subsec. 7.7.2 and 7.1.3 in term of ertremal return times-

However, in *veral situations one must refer to non-extremal trajectories for the returning electron

(cf. subsec. 7.1.3). Dmhed mrows in Figs. 7-1 and 7.2 mmk thce nonextrema.l trajectories whme

return times are observed in the time-frequency yields prcsented in Subsec- 7.1.3. We shall refer to

them by (r6(p),r11p;), where the index p incremes in alphabetical order with tbe energy'

1.n".uailuUy iilierent patterns in Figs. 7.1 md 7.2, where not only the cutofi energies, but alm

the number of extremal-energy trajectories (for Fig. 7.1, ten cutoff frequencies ee present within
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10 12 14 16 18 20 22 24

Harmonic number

Figure 7.3: Harmonic spectra lbr a field (7.1) with -Eor : Eoz - 0.04 and phses d:0 (triangles)
and 91 - rl2 (filletl circles). The cutoffs for which an abmpt intensity decrease is present are

indicated. Only the harmonic peak heights are shown, connected by a thin line to guide the eyc.

The solid and dashed lines relate, respectively, to d : 0 and O - T 12-

the additiona,l restriction t1 < 2T) vary dramatically with respect to thc phase, already suggest

the inexistence of a simple cutofl law of the form e-"" - le6] + a(f)Uo. The cutoff frequelcies are

connected in arr intrincated way, which will be discussed in Subsec. 7.2.2.

7.1.2 flarmonic spectra

In Fig. 7.3 we show the harrronics' power spectrum for the tvo cases, ry' :0 md ry' - r/2, obtained
through the numericil solution of the time-dependent Schr6dinger equation. Some of the muimal-
energy cuto{fs of Table I (d - 0) can be clealy sren: around t}re frequencies f,l1, Os, f,)11 ard Q13

muima are observed with subsequent abrupt decreases in the haruronic intensities. Similm results
are obtailed for the case ,f - "12 

(filled circles in Fig. 7.3). Nea most of the cutoff energies of

Table II (except da), again significant decreases of the harmonic intcmities in the power spcctrur
are observed. The fact that orrly some cutoffs are followed by abrupt intensity decremes in the

harmonic yield is not surprising, since there are several semiclmsical interfering cutoff traiectories
within a very close energy range. Nloreover, this interference pattern is a.lso strongly affected by the
intensity of lhe entire field (7.1). This miglrt seom strange at first sight, since the start and return
tinres presented in Figs. 7.1 md 7.2 are unaffected ifthe entire field (7.1) is multiplied by a constalt
factor. 'Ihe kinetic energy upon returr just scales with the squme of this factor. The haruonic
spectrum does not fully reflect this scaling property of the classical equations of motion. The reasorr

is that the first step of the three-step model, viz. the probability that an electron is emitted into the

freld, scales exponentially with the field in the forrn exp(-C/lE(t)l), which favors start times where

ihe field is strong. This dependenr:e of the harmonics on the field at tlte emission time ts is also

shown by the variatiorr of the harrnonic yield with the relative phme /. An example is presented

7.1. TIMDFREQUENCY ANALYSIS OF TWO-COLORHHG
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-20

22
0.2

iln

Figure ?.ttr: Harmonic yield m function of the relative phase ql, for f) : 2&u1(soiid trimgles),
f) - 27or(cross-centered diamonds) ard O - 2Sor(dot-centered circles), connected by thin lines,
compared to the qumi-static ionization rate (solid diamonds connected by a thick line).

it Fig. 7.4, where the iutensities of the harrnonics {l - 26ut, {l - 27at and 0 : 28o1, given m
functions of /, are compared to the qumi-static tunneling rate, expl Cl E(to)|. Both ,E(to) and i0
depend on qr. Particulmly for / : 0.35r the emission tirne jurnps from ts : 0.2T to ts : 0.4 due
to the mergilg of two semiclxsical crrtoff trajectories. This is discussed in more detail in the next
section. The global behavior of the harmonic yielC and the predictions of the quasi-static rate are
strikingly similm, show-ing a pronounced dip near ry' : Q.Ja.

Another featue of the spectrum for / : 6 appems noteworthy. Figue 7.1 shows tfuere is a
significaut range ofcnergies between {)s and 016 I'ithcut any extrenal energy2. A glance at the
spectrun of Fig. 7.3 draws attention to a sttppression of harmonic interNities within this range.

7.1.3 Time.frequency analysis

A detailed analysis of the hmmonic response in a certain frequency rangc with regard to the corre
sponding emission md return times cm be performed through the wavelet analysis. Since we are
rrrairily interested irr the cutofi trajectories, we center the window furction approximately at a cutofl
frequency. Figue 7.5 gives the corresponding wavelet yields. The width of the analyzing wavelet is
chosen as o - A.l T- The corresponding window in frequency is 2/a, covering about two harmonics
on either side of the center (or 0.8 L/n on the scale of Figs. 7.1 nd7.2). The temporal structures
in Fig. 7.5 which are qumi-periodic in the field cycle'I represent the main contributions to the
generation of this group of harmonics. Ole should note that for monochromatic driving fields this

'In thhlc I, thore is st'ill the cutoff OgJ witl slightly larger euergy than Os. Hon-ever, no coutribution 1.o thc
h:rrrrrrni<: yir:l<l is givcn by thc returD tinie in questiox.
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periodicity is reduced toTf2s. The fact that ihe temporal patterns of Figs.7.5(a) md 7.5(b) are
only approximately periodic in ? is due to the turn-on of the field md to ionization which is inherent
in the TDSE wave function.

We will now try to interpret the wavelet pattern mainly in terms of the "extremal trajectories".
Inspection of Figs. 7.1 or 7.2 shows that for kinetic energies below a mximal energy (or above
a minimal energy) O the extremal tra.jectory splits into two nonextremal energies. As long m
.Eri, is still close to 0 the corresponding separation of the associated retun times is small and
will not show in the wavelet yield. (It can be made visible, however, by nmrowing the window in
time at the expense, of course, of increasing the window in frequency.) This sepmation is, however,
responsible for a slight disagreement between the position of a mximm in the rvavelet yield and the
corresponding mximal return time of Table I or II which we will observe in some cases. Occmionally
we obserre the effect of trajectories with energies far away from their *tremal mlues f,). In such
cses) we will mcribe bumps in the wavelet yield to nonextremal trajectories, or rather to sets of
these.

There is a close connection between our trajectories md those identified in the Lewenstein model

[ai, 5a]. In addition to the classical kinematics, the latter also incorporates the initia,l (tunneling)
ionization process, m a result of which the start time becomes a complex rather than a real quantity.
As a consequence, the trajectories of the Lewenstein model are much more difficult to calculate. In
the preceding pmagraph, we described the splitting of an extremal trajectory into two nonextremal
trajectories when the energy decreases below a cutoff energy. This ib a feature that is shared by
both models.

Let us now discuss in detail the correspondence between the peaks in Fig. 7.5 and the retun
times of Tables I and II md of Figs. 7.1 md 7.2. We first consider, for / : S, the tim+dependent
wavelet yield for the window centered at o : 20o1 (Fig. 7.5(a), dashed line). We observe two bumps,

^t 
t\ :0.27 7 (mod ?) and t1 - 0.97 T (mod ?), which are very close to the extremal return

times t111 and t113 = trr: ofTable I. The energy fl11r is at the center ofthe frequency window, hence
it makes the largest contribution. Another very noticeable feature is the absence of any significant
yield between t1 r 0.5 ? (mod 7) and tr = 0.8 7 (mod 7). Indeed, Fig. 7.1 confirms there are
no retun times (extremal or other) contributing within this frequency window.

A very similar situation occus for the frequency window centered at u - 27wt, the position
of the highest cutoff energy (Fig. 7.5(a), dotted line). Bmps are observed at treilly the same
positions as before, but their magnitudes have been uchanged. This is expected from the simple
graphical method, since now the dominmt contribution ought to come from the retun at 1113. A
quite noticeable contribution is still rnade by 1111 even though the corresponding energy is only
in the wings of the frequencv window. Just as for the window centered at 20o1, there is again
a range of return times which generate no contribution at all, which hm expanded lo 0.47 < t1

(mod ?) < 0.8?.
The analysis of the results for the frequency window centered at u : 72 o1 (Fig. 7.5(a), solid

line) is more involved. This is in the low-energy rmge, and a glance at the region around.El;. : LIo

in Fig. 7.1shows that due to the large mount of structure at low energies a detailed interpretation
of the wavelet yield will be difficult and ambiguous. The most conspicuous feature of the wavelet
vield is the absence of any contribution from retun times tr (mod 7) aound 0.9 ?. This is in
good agreement with Fig. 7.1 which does not exhibit any trajectories returning aroud this time
with m energy nem the frequency window. The frequency window includes the extremal return
energies from Oz to Oe (given in table I, with the associated retun times). These times can be

3Recallthatforamonochrom{ticlieldE(t)wchave-E(t+?lZ): n(t)aidA(t+T/2)= A(r).Forbichrqmatic
lields this corditioD holds for odd frequercv ratio n: d2/dt, but uot for even n. The different periodicity is alie6dv
observed for Eo2 two orders of nragnitude snraller than -Eor. This is rrot explaired by the classical rnodcl which does
ilot hold whcn ore of the iwo fields is too wehk.

7.1. TIMEFREQUENCY ANALYSIS OF TWO-COLOR HHG

1.0

0.2

0.0
1.0

0.8

0.6

0.4

o.2

(a)

O =o
tt

1,,0.

Figure 7.5: Part (a): wavelet transforms for rp : 0' Solid line: window function centered at

Q : \2u* dashed line: window function centered at f,l - 20ur; dotted line: window function

centered al, Q:27ur Pari (b): wavelet transforms for 91: rl2. Solid line: window function
centered at Q - l2ut, dmhed line: window fuction centered at Q : 22ur dotted line: window

function centered al, A:2&ar In all the plots, o : 0.1?.
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fourd represented in the wavelet yield, with the notable exception of 117 to be discrrssed bclow.
They interfere in complicated ways which carnot be infcrred fron Fig. 7.1, but the fact that they
do is evident from the quite different wavelet yields within the two periods of the drivirrg {ield
which are covcred by Fig. 7.5(a): the phvsical situation within these two periods only differs by the
amount of ionization reached. Herrce the fact that the wavelet yields are so dilTerent must be traced
to interfereuce mcchanisms.

The corrspicuous bump near lr - 0.12 (rnocl 7) (Fig. 7.5(a), solicl line) cmnot be explainecl by
any extrernal trajectory in Table I- This is an example of thc importance of nonextremal trajectories
as dclined and explained irr Sec. 7.1.1. Within the frequelrcy rarge of concern, Fig. 7.1 shot's a very
*rell developed sct ofnonextrerniil trajectories mound tr - 1.1 T (m part ofthe currre that ultimately
reaches the extremal energy f)11 outside the frequency wirrdow), and it is this set ofnonextrernal
trajectories that gererates the buup.

\Arithin the sarne frequency window, we identify in Fig. 7.1 another very marked set of trajectories
lear ,1 : 0.85 ?. These trajectories correspond to harrnonic encrgies mrying from the ionizatiol
tlrresholcl to thc cutoff frequency O7, which is uell in,side: the frequency winriow. This, however, does

not show at all in the wavelct yield. The reasoD lies ir thc range of start tincs t0 couesponclitrg to
this traiectory. It comprises about 0.4? < t0 < 0.6f, and in this range the driving electric field is
very weak. In the tunneling regime, start times within this ralge are strongly uldcrrepresented, md
consequently, their contributions do not show in the harrnonic response. This argumert suggests

that they rnight becorrre visible in the nmltiphotorr regime (that is, for lowcr driving intensities)
where all start times hare roughly the same wciglrt. We havc checketl that this is indeed the case.

Information about the field strength at the start tiure for this sct of trajectories can be gained

using thc graphical method discussecl in 4.1.1. If one draws a tmgert to ihe F(t) - JA(t) curve,
such that the rescattering condition (4.6) for 0.,1? < r0 < 0.67 is satislied, one clearlv notices that
-F(l) in this region is approxirnately linear. This means that the electric fi.eld for these timcs is

approximately zero.

In general, we expect a traiectory to rnakc the strongcr a contribution to tlie wavclet vield, tlie
higher the density of relcmnt return times, the shorter the travel tirne 11 i6, and the stronger the

electric field is at the stmt tirne ls.

As a frrrthcr exaurple, we perform the sarne analysis for 11 : rl2, shown in Fig.7.5(b). The
classical trajectories' start and return times ile depicted in Fig. 7.3.

Again we obtain a complete cxplmation of all spectral features in tcrms of the classical return
times. Concentrating on the wavelet yields in the higLenergy part of the spectrum, a - 22ut
and o 26oi. Wc observe httmps ar i 1 l;6 and / 17 ffi expocl,ed. Howcver. thp hump at irc is

dominant even for the frequency window centered at the higher energy of 26d1. S-ince the <rrtolT

energy ()7 - 25.9wt is jrst at that point, one would have expected the bump at trz - 0.887 to
be the strongest, which is not the case. The explmation can bc found again in the value of the

electric fielct at the start time t0. At the start time corresponding to f17 the field is near its wcak

muimum while at the start tinrp correspondirrg to t-16 it is near its overall muirnum, md the latter
exceeds the former bv a factor of two. In fact, m we decrease the lield strength -Es, the pcak at i16

decreases much faster thal thc o1.,at irz. Fina,lly, we notice a small shoulder in the 22o1-wavelet

rrear i1 - 0.757 (rnod ?). This can be traced to a norrextremal trajectory (returning in this time

rmgle with a culmirrating point at the extremal frequency 07 in Fig. 7-2). Also for u:12ot, we

recover the extremal semiclassical return tines ir1 aud i12, and some groups of nol-extremal retun
timcs, which are indicated in Figs. 7.2 md 7.5(b).

7.2, PHASF; AND II{TENSITY-DEPEAIDEAICE OF'IHE CUTOFFS 77

7.2 Phase- and intensity-dependence of the cutoffs
In this section, we investigate the dependence of the cutoff cnergies arrd their associated stdt and
rettrrn time on the relative phme arrd intensity of the tpo driving waves and we discuss the cou-
sequences lbr the resulting harmonic spectra. We try to match featucs of the calculated spectrum
to the properties of the serniclassical cut-of trajectories. While keeping the total ponderornotive
encrgy of the field (7.1) constant we vmy either the inteDsity ratio of the high-frequerrcv over the
low-freque-ncv component for constant phase or wary the phase for equal and fixed field components.

7.2.'L Variation of the relative intensities
Wiih the otrjective of investigatirrg how the ratio tl - Eozl 861 influences the cutoff energies, we
kep the ponderomotive energy and the phme / Ilxed and cqual, respectivelv. to L/, : 0.31 and

d:0. Wiih eo - -0.4 a.u. this yields a Keldvsh ptrameter 1- l[€i/2ur:0.8. For a given 17,

the amplitudes me, for a o-2o bichrornatic field,

(7.3)

and. E62 - 11flot.
Figure 7.6 shows some of the cutoff energies as functions of the field strength ratio 4. Firsi, let

us consider the monocluomatic cde Z - 0. Apart from the well knowr rnuimal cutoff energy e**
:le0l -l- 3.17tlp, additional cutoffs which correspond to lorrger excrusion times of the electron in the
continuum also exist. With the restriction 1r fo S 27, the next two cutofis me at e1-* - legl *
1.54Uo and e2-* : le6l +2.4Up. All three cutolls have almost identical stmt times nem to:0.37,
-while the retun times tre tl :0.95?, 1.52 and 2.0?, respectively. In the monochromatic case, not
trtuch attention is paid to these additional cutoffs since. due to the spreadirrg of the clectronic wave
packet and rescattering effects, their contribution to harmonic generation is insignificant. Howerer,
for twecolor fields, their role in the harmonic generarion process is rnuch more prominent, m we
will se next.

For a monochromatic driving field proportional to sitt2rtfT all temporal patterns relevant to
harmonic generation have a period of 7/2. That is, if 16 and 11 form a pair of start md retun
times, then so do t6 i nTf2 and t t nT/Z for any integer n. This syrrrmetry arises because the
Iieldsatisfies E(t+1:/2)- E(t), mdthechmgeof signhruno€Ifectonharrnonicgeneration-
'firis is also evident fiom Eqs. (4.6) and (4.7) which determine the stmt and return times. The
:rddition of the second field in Eq. (7.1) destroys this symretry. As a consequence, start times te
ard Lsl-T12 no longer lead to retun times 11 md 4+T12- Tlajectories stmting at ts ndts,tTf2
are independent and lead to different kinetic energies upoll return.

The consequences can be observed il Fig- 7.6 which depicts the cutolT energies m a fmction of
the field-strength ratio 4. With the addition of the second driving tield, 6-u, 6r -* and 62 -* emh
qrlit into two branches. T'he upper branch of e-.* provi<ies the highest cutoff for all values of the
ratio 17. The lower branch of e-* almost merges with the upper branch of e1-* when the ratio 4
approaches unity. The growth of the most energetic cutoff towards higher energies (roughly 5 I/o)
is in agreement with the extension of the plateau in the bichromatic case which has ben reported
bv several groups {89, 28, 96]. X'he effect is already visible with the superposition of a very weak
sccond driving wave. In additiorr, a group of lower-e'nergy cutoffs appears foralues of 4 excmding
0.6. Renarkably, m6t of them also split for increasing 4.

Table III lists the expected harmolic frequencies for the cutoff at e-* for several values of 4,
nlrng with the respective va.lues of the tno field componerts. The harmonic number results from
El;;"(t1, ts)/o1 with the addition of legl - ti;p,t .

n"r-+,ffi
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Figure 7.6: Cutofi energies m functions of the field-strength ratio q, fot a u-2a driving fiel<l and

d : 0, calculated from the semiclmsical three-step model'

Table III: Field strength ratio, the respective amplitudes, md approximate harmonic frequencies

for the cutofi trajectories corresponding to e*"'.The relative phme is / - g'

n Fln. x 70" Enc x 702 6-"* + l€ol)/dl
0
0.2
0.4
0.6
0.8
1.0

5.59
5.56
5.48
5.35
5.19
5.0

U

1.11

2.19

4.75
5.0

27.8
30.6 25.7

33.0 24.4

35.1 24.6
36.9 25.8

38.4 27.1

5.0

4.5

4.0

3
aro
E
I 20
lo ,u
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Figure 7.7: Harmonic yields calculated from ihe TDSE for Urlr, - 6.2 and le6 | /o1 : 8, for different
field-strength ratios 4 and d : 0. Part (a): complete power spectra, for all ra.lues of 4 display'ed in
Table I; part (b): high-energy paxt, for T - 0,'? - 0.4 aud 4:0.8. The thre most energetic cutoffs)
for respectively q : 0, Il - 0.,1 and ? : 0.8 me indicated m solid, dmhed and dotted arrows. The
thickest mrows show the most energetic cutoff. Thc nmbers on the upper edge of pmt (b) specily
the kinetic energy upon return in nniltiples o{ Uo lor the 22nd, 26th, 30th, 34th, and 38th harmonic.
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In Fig. 7.7 we present the power spectra of the dipole acceleration from the solution of the

TDSE, fd several values of 11. we observe the increase of the cutolT with e-* for increasing r7. The

most drmatic feature is the *tleme seDsitivity of the power spectra against small mriations in ri'

Extremeexmplesare0-20otandfl-14or,which,from4-0to4-0.2sufferavariationof
roughiy 5 orders of magnitude. For 17 I 0, also even hmmonics me plesent, m expected. In part

(b)"rre show the cutcff region in order to illustrate the splitting of the most energetic cutoff, for

i : O, O.+ md 0.8. Ihe corresponding cutofl energies (narnely the two branches of e-.*' as well

as the upper brurch of ez-*) ue marked with arrows. In each case, the very highest cuto{f e-*
accurateit identifies the onset of the fina1 dropofi of the piateau. The other two cutoffs me typically

followed ty dmreming harmonic intensities as well. Moreover, the lower one of these two crltoffs

marks the position oi'the absolute intensity muimum of the plateau. one should bear in mind,

however, that the one-dimensional calculation overernphasizes the contribution of the longer retun
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2.O 2.5 3.0 3.5

E (t t )tu )iln10 p'

Figure 7.9: Classical start and return tirnes as a function of return energ,v for m electron in a field
E(l) - 0.05lsin(0.05i) + sin(O.101 + d)], for d - "13. Lower part: start times; upper part: rerurn
times, calculated fiom the semiclassical threestep model. The solid arrows connecting both parts
sho'w the e-xtremal-energy trajectori€s, labeled in accordmce with Fig. 2.8 and Table I.

On the other hand, the kinetic energies exhibit a much strolger irrfluenco of tirp high-frequency fie1d,
due to their quadratic dependence on the field and since Aoz: Ar,rl2. Hence, the start md return
tirnes dispiayed in Table I for y'r - 3 can st,ill be uscd as points of reference lor Q I 0- we consider
oniy traiectories for which the kinetic energy of the electron is of the order of or larger than 0.5Ilo,
so that we consider cutoff energies higher or equal to 02 in Table I.

The niost energetic cutoll is given by the twc trajectories Q13 and fls which intersect at roughly
<f - 0.67r (rrodulo r). Its absolute maximunr of i1.86t/p, occus at d == 0.0br. The envelopilg
pattern s a function of the phme <y' for this most energetic cutofl agrees with the curue given in
Ref. [28]. Interestingly, a third trajectory (f]7, diunonds) merges with 013 at d : 0.3r (modulo
r). More information about this rnerging can be inferred from Fig. 7.9, where the start and return
tims a"s functions of the kinetic energy of the returning electron are displaved for d : 0.3tr As
a function of the kinotic energy Epi"(ts,l1) upon return, the upper and lower pmts of the figure
display, respectively, the start md return times ,0 and fr. The cutofi energies are easily identified,
and we will refer to the corresponding electron trajectories as "extremal trajectories". They are
marked by arrows and labeled according to the notation of Fits-. 7.8. For the rrerging trajectories,
there is an extended range of start tirnes between 0.2T and 0.47 all of which correspond to reiurn
tirnes netr rr - 0.93? , and energies near f)13.

Tire results stated above are in general confirmed by the nmerical solutiorr of the TDSE. We
reslrict ourselves to the upper part of the piateau where only few cutofi trajectories are present. In
Iig. 7.10 wc plot the high-energy pari of the power spectra for several ral.aes of the phme in the
iritcrml 0.05r < ll < 0.25r. The power spectra show an overall intensity decrease of the harmodcs
near the cutoff by severa.l orders of magnitude. Partly, this illustrates the decrease of the highest
cutoff from 4.86Llo l.o 4.65L/, shown in Fig. 7.8. However, the very pronounced decrease of the
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Figure 7.8: Cutoff errergies m functions of the relative phase / for a o-2o driving field with both

drivingwavesofequalfield,t,".gth,"ut""rutedfronrthesemiclassicalthreestepmodel.Thecutofi
energius .re labeled according to Table I fot rf < r'

times, owing to the reduced significance of wave packet spreading' In a'11 the spectra one sees the

p1ut"u*""tJ"ti"" predicted by the threestep model very clearlv'

7.2.2 Variation of the relative phase

Next we consider field strengths Eot - Eoz - 0 05 a'u' (or : 0 05 a'u') and vary the phase q1'

We take the field to have the same ponderomotive energy as in the previous subsection. The cutoff

energies {)-; at O - 0, in increming order, are tlisplayed-in Table I' along with the respective stut

."J ?"t"ti ,i-* (tor, tr, )a. Ttte ti'o ltatchts of e-"*' for example' are given bv 013 and { )11'

Figure 7.g exhibits the cutofi frequencies f), m furrctions of the phme @. For q5 : 0, the crrtoff

"r".G-iirr"a 
i. Table I can be reai ofi. E en though the curves merge or cross' we will kep the

notation of rable r th.ougho.t. 
-w" 

i"pr"y m entire period of 2r for the phase @ although the

trajectoriesactuallyobeythesmallerpe;io;of r: theremortliesinthesymmetry E(t'd+r):

-E(t-T]2,4))of thefield(?'iti;;";cmeu:2' Thechangeof signhm-.noetr;cto1 hmmonic

uJ.i*ri.i, -,i ,he shift bv ftif u p"tioa just resets the^clock' The labelling of the trajectories

is determined within the i"t";; i ; { t' Fig*e 7'S^shows that due to the periodicitv the

trajectories06,Os,()12t'""ott"tt"a' fhisisalsot"hecaseforf)s'C111'[)l3andforOr'Oa'Olo' The

start md return times .1.. *;;;-f*;tions of the phase'-but this vmiation is much less drmatic

than that of the correspondi"g'ti"*J"u.tgies. Thil cm-be understood by inspccting Eq'(4'6): it

is the function F(t) thai go 
""* 

ttt" reiurriondltion (4'6) whose solutions yield pairs of start and

return times. since F62 : h;)-;,it " 
."trm condirion is rnt.very strongly a.fiected-by the addition

of the high-ftequency field (and thus neither by its phffie with respect to the low-frequency field)'

ffiIurrlrr.,[tllistab|e'lruwcu'l.dullulapplyil'llli5suhs..'tion.si)ll.plhes.
are calculatcd for ?: l The rt"t"ttJ""t"bt"" for']:0'8trc iudir:ated il thc lower axisolFiAs 7 7 and 7 10'
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23. DISCUSSION

energies predicted by the semiclassical three-step picture. Moreover, the main contributions to
high-hmmonic generation come frorn the classical extremal return tines obtained from the clmsical
trajectory analysis. The relative heights ofthe peaks in the ternporal harmonic generation profile can
be explained by invoking the first md second steps in the thrre-step model, namelv ernission throu6lh
tunneling, which is exponentialiv improbable at tims when ihe field is weak and the time delay
between emission md return to the origin, which allows tlte wave packet to disperse the more the
longer this delay time. It is surprisirrg that all peaks observed in tlte temporal profile can be traced
back to classical return times md that futhermore all proninent peaks have a simple explanation
in terms of short-delay classical retuns.

However, even within this simple picture, the second driving field introduces a lot of complexity.
It distorts the semiclmsical trajectories of the electron in the continuum, such that, in general, the
number of extremal- energy trajectories considerably increases with respect to the monoc.hromatic
c*e, their number and energy wrying with respect to the relative phase I and the field-strength
ratio 4. In Figs. 7.6 and 7.8, this mriation carr be clemiy seen. Each point in the figues represents a

semiclassicai orbit for the electron, within the threestep model framework, which yields mximal or

minimal kinetic energy upotr return. These "cutoff trajectories" split, merge or cross each other in
a complicated way as each of these two pararneters are changed. As a consequence there are several

"cutoffs" in the hmmonic spectrum whose individual siglificance is, however, ]rard to predict. The
question of the existence md form of the cutoff of the harmonic spectrum in ihe twecolor cme

has been repeatedly discussed in the literature, that is, the question of whether there is a simple

bichromatic analog of the well known 3.17 [/o cutoff law of the monochromatic case. The results of
this chapter indicate there is no sirnple mswer. For any value of the phme / and the ratio'1 of the
two componerts of the field, there is, of corrse, a highest cutoff trajectory, but the resulting cutoff
a(q, rh)U, is a cornplicated functiorr of these tu'o parameters. lv{oreover, the highest cutoff may be

not the rnost important cutoff: a cutoff which hm a lower energy may dominate the spectrum, and

the higher one while visible in the spectrurn just shou's as a minor bump sitting on the shoulder of
the former, The existence of the two additional parameters provides options of coherelt corrtrol of
the harmonic output. For exaniple, we con{irmed an extensiou of the plateau due to the addition of
the higbfrequency component of the driving field. Experimental confirrnation of these predictiorrs

depends on efficient and reliable control of the relative phase between the two compcnenis of the
drivirrg field.
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Figue7.10:High-energypartoftheharrnonicyieldofao'2obichromaticfieldwithequallystrong
aritlrg -ut"", io. tariJ*s relative phases 0 05r < { < 0'2,5r' calculated from the TDSE for E61 :

Eoz :"0.05 a.u.) d1 - 0.05 a.u., u'ia ]t3l - 8o1 Thc numbers on the upper edge of the figure give

the kinetic energy upon return in multiples of I/n for the respective harmonics'

harmonics arormti the 36th is surprising. As shown in Fig. 7.9, electrons starting at any time within

0.27<tol0.4Treturn*ithi.atarrtl-rangeabouttr-093?withmenergycloseto36dl'Yet
the36thharmonicisnotorrlynotinanywayenhanced(nordoeiacalculationofthewar'eletyield
show any particu-lm concentration at this tirne), it is in fact strongly suppressed The remon can

be found in the fact that the electric fiel<i withirr this entire range of emission times is qrite teak

-hi"hp,"'"'t.sigrrificmtinjectionofelectronsatthesetimes.Thiscanbeinferredbyinspection
.iif."haa(2.1),"butis,iniact,ageneralconseqmceof thereturncondition(4.6). Inorderto

have a situation like the one we colsider '. electrons from a whole range of start times t61 1 lo 
< toz

all returning at about the same time the function I'(16) must be appruimately linear within this

;;;.T;;;, h.;"ver, E(te) is essentially zero, md uv-few electrons are set fre within this range

of siart times. A similar situation occurs for the cutoff 07 in Sec' 7'1'3'

7.3 Discussion

We have investigated hmmonic production in the simplest and, possibly, practically most relevant

.*" of u t*ecoLr driving field, namely, for two parallel linemiy polaized fields with frequencies u

and2o.Thisfieldprovidestwoadditionalpalametelsascomparedtothestandmd.monochrornatic
fleld: the relative phme betw€n the two components of frequency u nd 2a and their intensitv

ratio. Also for such fields, the semiclassical three-step model describes high-harmonic generation

very well, in terms of its speltral md temporal profiles' and can be ernployed as a useful guide

to the interesting regions of the p*u*"t"t space with high preclictive Pou'er, Fo1 imtmce' the

cutofi structure in ttie spect.a ottl.ined with in" fOSB remlts corresponds well with the extremal
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Atomic Stabilization



Chapter 8

Generalities

8.1 Introduction
For many dcades, Fermi's golden rule hm been successfully applied for the cornputation ofionization
rates or probabilities of atoms in external radiation fields- In fact, until the late eighties, all externa.l
field strengths involved in such procesres rere much we.aker thm the atomic binding fields. Thus,
an approach bmed on pertubation theory around the solution of the Schrddinger equation without
the presence ofthe lmer fields [97] is actually expected to yield reasonable results. With the advance
of laser technology, however, nowadays intensities higher than 1021Wf m2 me possible and pulses
may be reduced to a duation ofr - 10-15s1. Such intensities me no longer in the region ofvalidity
of conventional perturbation thmry - md consequently of Fenni's golden nr-le. This new regime is
tackied by expmsions mound the Gordon-Volkov solution [98] of the Schrddingff equation [65, 99,
i00, 101, 104, 105], fully numerical soiutions of the Schrodinger equation 134,47,48,50, 106, 107, 108,
109, 110, 71L,112,113, 114], Floquet solution [115, 116, 117], high irequency appruimations [19, 118,
119] or analogies to clmsical U20,12I,722. l23l and semi-clmsical [124] dynmical systems. Some of
these methods suggested there may be physical mechanism which suppress ioniza.tion, leading to so
called "atomic stabilization". This thmretical prediction has become one of the most controversial
effects related to the interaction betwren atoms md strong laser fields, not only concerning its
definition, but even its \.ery existence altogether. For reviews on the subject re refer to 1725,126,
r27, 7281.

Also the conditions for which stabilization might occu, as well as the physical mechanisms
originating this phenomenon, have raised considerable debate. According to the physical mechanisms
which lead to the suppression of ionization, stabilization is usually classified as:

L. "Interference Stabi.lization": In the late eighties, Parker and Stroud 1129], and Fedorov and
Movsesian [130] suggested that the ionization amplitudes of closely-spaced atomic Rydberg
states may intedere destructively, such that ionization is suppressed. Concretely, this corre
sponds to a reduction of the ionization rate below Fermi's golden rule. These mechanisms me
ereected to be destroyed at intensities higher than 10r4W f m2 , rcsrlting in the total ionization
of the atom.

2. "Ad,iabatic Stabilization": For very high frequencies and intensities, the atom is distorted in
such a way that the electron gets trapped in a dichotomous effective potential, such that
ionization is supprcred. This wm first suggested by Gawila et al. i19], uing the high-
frequency approach. In the limit of infinite frequencies, the eigemtates of this potential are

-t F* *t"- 
""d 

tl*-p*ir*, ion of such pulses see for instance [103].
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olthogonaltothecontinuum,withnolesultingionization|118].For{inite,but-}righf}equerrcies'
this tiappi'g mechanism is associatcd to the decrease of thc ionization rate with field strength,

after a critical field intensity above 7017Wf m'2 [119]' The atomic Hamiltonian w* taken

in the Kramers_H"rn"b"rg". frame, md tlie clichotomous poteltial is thc first term of the

Fourier expansion of the ;ifted atomic potential V(i d(t))' The other terms ue negligible

for very high intensities arrcl frequencies2. within this picture, stabilization has a stationaly

..ht u.t"r, i-. th" ""tr" 
that it does not depend on how the field is switched on md off' In fact'

criticisnsconcerningtlristheoryaremainlyrclatecltoitsapplicabilitytoarealisticpulse,i.e.,
with a turn_or and ofl and therefore a finiie banclwidth. This is m important issue, since the

intensities for which stabilization is supposccl to occur can only be achieved using pulsed lasers'

It is courrnonly accepted, however, ttni tt i, physical picture should be valid for pulses which

are switched on adiabatically, i'e', in a time 'sca'le rnuch longer thm the field period' vithout

su{Ierirrg100%ionizationi."th"p.o"",.[110,126].Sonreclassicalargumerrtsarealsorlsed
inthiscase,relerrirrgtoa"quasi-free"electronicu'avepacket'whichcannotabsorbenough
;i,;;" ir.; the fiji (noteihat a free particle does rrot emit or absorb photons), trut is not

in a continum state.

3.,,DynarnicStab,ilization''.,Cornputationsbmedonthe{rrllynumericalsolutiorroftheSchrodinger'"q*.io'alsoobscrvedud"",nu."irrtlreionizationyieltlafteracriticalficldintensityofmore

than 1 a.u. for ultrashort pulses [109] The ilglmrelt is in principle the sam€ m abm' but

in this cme stabilization is ,nt ."go.d".t as a siear:ly-state phenomenon: the electron, initially

i. th" g.o*td state, evolves to ote ot rnore fieltl-dressed states' The trapping state must be

achieved through an appropriate tun on of the field [112' 122]'

One should keep in mird that this clmsificatiol is not completely agreed upon within.the scientific

corrmunity. For instance, selcra] authors regard rlcfinition 1 as ..dynnnic stabilization,,-150, 1251, and

sometimes computations using pulscs with a short turFon are related to "adidbaiic stabilizatioil" m

;;;;;;; ";;"pt 
uf a, effniire dichotornous potentiat is applicable [125]. Nloreover, "interference

,iuf;itirutio.,, is sometimes only rcgarded as "suppression of ionization" , whose physical implications

are not so dramatic m those of defi"nitions 2 and 3. In fact, the two latter subdivisions are much mote

counterintuitive uta .ottrotouitl: m stated in [126], in cme such predictions are experimentally

confirmed. ,,a dramatic sh,i,Jt irt uieupoint i,s retluired. to erplain the physics o.f atoms in uery stronQ

laser' .fi'eltls".
Experimentally,strongdeviationsfromFermi'sgoldenrrrlehavebeenobserved'butthefields

involvedinthesecxperimentsarebelowtheultra'intenseregimeconcerningthetheoretica}strrdies
[20, 21]. In Fig. 8.1, *e p.eseJ results obtairred recerrtly by the Amsterdam group concerning the

:;r;_irrg popu'lation of a circular 59 Ryrlberg state of neoil [21], in conparison with the pretlictions

ofFermi,s golden rule. In their mealuremcnq the ionizatiorr probability seer$ to saturate towards a

finite value, such that 70% of the bound-state population surtives a fieid of rotghly 2O1TWfon2 To

ourknowledge,thisisthestlongestexperimentalSupportSofarfortheexisterrceofstabilization3.
In this thesis, we will neitheir be concerned rvith the rnechanisms sketched in 1-3, nor with the

_",il;;;;; most grbrrps in the investigation of stabilization. Instead, we will perform a non-

o..t'oa*analysisoftliisphenomenon,providingrigorousmathematicalargumentsforitsexistence
or absence. Analytical ,r"tt oi" *ill b"'use.t *,hermr possible. This is a complementary approach

ffieroclerivtxlin|119],oneofthescbein€ikilownasthe..ligh-{requcnr'y
condition". According k it, "t'i;ili;;i; onlY occurs if the irec|rencv of the drivirrg fiekl is much higher ihan t'he

birrcling ercrgy of thc electron. r;;;";i,r; lme. fr,,.1u.r"i"s, this corxlition is nrore easily fulfillcd for lnghllt cr.ited

"oltiir".,, is a rnrnerierl nntrputatior which prcsetrts quantitaiive agreement with thc results of this exPcrinent,

using Floquet an.l the TDSE nrethods 11:11]'

8.2. DEFIMTION

o 100 2q,
lnrcnolty Cfwdtl

Figure 8.1: lonized and surviving fractions of the 59 populatiorr as functions of the main pulse
intensity, memured by N.J. vm Druten et al [21]. The experimental results are given lry the solid
and open circles, and the predictions of Fermi's golden rule by the solid and dmhed lines-

to most of the studies corrcerning stabilization, which are bmed on numerical treatments. Analvtial
ilguments ue desirable, sirrce a high de.gree of uumerical analysis may sometimes be detrimental
to the inteipretation of the physical conditions responsible for stabilization. F\uthermore, several

results have beer disputed (lmt ref. in 11091) with regard to numerical convergence problems [105]
and the possibility to a.llow distortions of the electron trajectory, which is believed to be rrecessary
for the occurence of stabilization 1341.

Mormver, most discussions of stabilization refer to the physical picture of an electron trapped in
a dressed atomic potential. Therefore, alternative views of the problem, presenting other physical
arguments, would certainly contribute to a more complete understanding of this phenomenon.

In puticulm, we concentrate on the influence of the pulse shape on ionization probability- Some
authors [104, 109] put forward the claim t]rat in order to observe atomic stabilization one requires
puises which are switched on, sometimes also oll, smoothly. It further appears that, among these

authors, it is not comronly agreed upon, whether one should associate these pulse shapes to the
laser field or to the msociated vector potential. Even though there are detailed studies concerning
the tun on and off [112, 122], and even discussions of which turn-on would be most efficient, we did
not find my rigorous explanation why such pulses should produce so surprising e{fects. Geltmm

[105] and also Chen md Bernstein [34] do not find ev-idence for stabilization for these types of
pulses with smooth and turn on (and off) of the laser field. As it will become clear in this work,
the existence or abselce of stabilization involves deeper physical considerations, beyond the smooth
switch-on and -ofi.

8.2 Definition
Evel though the rough idea behind stabilization is the sme, i.e., that atoms may survive ultra-
intense laser 6elds, there is no agreement upon a rigorous definition of it. For some authors, "sta-
bilization" mems that the probabiliiy of ionization by a pulse of Imer radiation, which for low
intensities incremes with increming intensities reaches sorre sort of muimum at high intensities
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and commences to decreme until ionization is considerably suppresscd I3,1, 101, 105, 109, i22, 128].

Others adopt the same defirrition in terms of thc ionization rate. 'Iheir main argunent is that, since

this physical quantity decreases, the average atornic lifetime must increase after a critical intensity

[18, 19, 99, 102, 112, 114, 116, 118, 119]. Furthermore, sorrre authors claim that, concerning rrltra.-

short and adiabatically switched-on pulses, orre must use respcctively the ionization probability and
the rate, without a justification for their staterrenis 1117, 123]. Some doubts about the rate being a

rell-defined concept in this intensity regime have also been raised in the litcrature 1101, 105, 1281.

Therefore, since stabilization mears diflerent things to dilTercnt authors, we will precisely state
our definition of it. We will not discuss the behavior of ionization rates as some authors do, but
we shall consider exclusively ionizatiorr probabilities. Detroting bV /]]'- (r{rlt) : I lt!(i)2d3r rhe

usual Hilbert space norm, the ionization probability is defined m

P(1ir:1 llP+st2
lVe used the scattering matrix

S - ,,1i1_exl(it+H+) 
.U(t+,t-) -exp( it H ) ,

where fI1 - limr*+d fl(r), / is a norrnalized bound state of I{-, P1 is the projector onto the

bound state space of Ifu and, Ll(t,tt) is the time evolution operator from time l' to , associateda to
I/(t). The time evolution operators may be transformed from one gauge to another by

u : (t, t ) - Aj *tft)u: (t, t' )A;:t(t' ). (8 3)

The ionization probability P(l:) is a glauge invarimt quantity 1134]. Note that for the gauge equiv
alent Hamiltonians quoted in Chapter 2 we have in general

, !+Laf (t) I , 
riTLHf (t) l, Lm 4flo14 (8.4)

Florvever, (recallthatb(0) - "(0) - 0),equalitvilthefirstcascholdswheneverwehaveb(r) - 0and
in both cases when in addition c (r) - 0. We will encounter this coldition of a particulmly switched

on and off pulse below once more as the necessary condition for the presence of what we refer to m
asvmptotically weak stabilizations. \['e would like to point out that this condition does not coincide

necessarily with the notion of adiabatically switched on arrd o{I pulses, because we may achieve

b (r) - 0 and c (r) - 0 of course also with a very rapid srvitch on and off. Since we are interr:sted

in the behavior of the atomic boud states l,r(, - 0)) : lry') uf the Hamiltonian I1,A we should

commence the discussion in (8.1) in the length gauge (in this case we have liml*1- Hf @ - Hf)
such that in our situation

P(t):l llP+L'isk,o)/ll'? (85)

Regarding the ionization probability as a function of the field amplitude Es, stabilization means

that

(8.1)

(8.2)

Chapter 9

Upper and lower bonds for the
ionization probability

Concerning bomd-state stabilization through short-pulsed laser radiation, the standard analytical
and semi-analyticai methods present sereral limitations md drawbacks. For instance, the Volkov

solution requires the binding potential to be much smaller than the externa,l field, such that its
applicability to the turn-on and off regions, where both pmameters are comparabie, is questionable

[101, 105, 128]. F]oquet computatiom 1115, 116. 117] should work well for strictly periodic fields or
very smoothly sp.itched on and -off puJses, but are expected to get worse as these pulses get shorter.

Also the high-frequency approxirration I19, 118, 1191, m its nme says, is applicable only w-ithin a

certain frequency range. These limitations, together with the fact that fully rrumerical computations

supggested that the turn-on and off regions are irnportmt to the occurrence of stabilization, rnotivated
the development of the method discussed in this chapter. One of the nain virtu€s of this approach is

that it may be cmried out purely analytically. Nloreover, it is u)id for arbitrary frequency and pulse

shape, including the turn orr and olI regions. In diflerent contexts it has tuned out to be extremely

fruitful, for instmce in the proof of the stability of rnatter 1132] and the stability of matter in a

magnetic field 1133]. The essence of the method consists in treating bounds which restrict a physical

quantity rather thm looking at its actual va.lue.

We will provide rigorom analvtic expressions for the upper and lower bound, P'(rf) and Pr(l)'
respectively, for the ionization probability in the sense that

Pt({)<P({)sP-(1i.,) (e.1)

Surely one should treat these expressions with care urd be aware of their limitations in the sense

that about the actual shape of P(/) no decisive conclusion can be drawn whenever P7(ry') differs

stronglyfromP,(/). However,itseemsareasonableassumptionthattheana\''tice-xpressionofthe
bounds reflect qualitatively the behavior of the precise ionization probability. Nonetheless, there

exist certain type of questions in the present context which can be answered decisively with this
method. Concerning the question of stabilization we may consider the bounds m functions of tlte
fielcl mplitude and can conclude that stabilization exists or does not exist once we find that P"(r/)
for increasing field amplitude tends to zero and Pt(r/) tends to one, respectively. linfortunately, one

does no.! always succed in deriving andytic expressiom which are of ihis restrictive form.

We would like the reader to keep in mind that the outcome of every theoretical investigation

will attach some sort of error to any physical quantity. In the minority of cases this error cm be

precisely stated, since it may either be the colsequence of various qualitative msumptions based

on some phvsical remoning which are diflicult to qumtify or it rnay be of a nore teclmica.l nature

dP (tb\
<lt

dEo
tor P (t!) l7 (8 6)

for -Es € 10, m) on a finite interul" Hence the occurrence of a saddle point does not quaJifu m
stabilization. Also we would like to introduce some terminology in order to distinguish in (8.6)

between the case of equality and strict inequality. If the former sign holds we call this behavior

"weak stab'ilization" artd in the latter cree "strortg stabilization"- In case weak stabilization only

occurs in the lirnit ,86 + rc, we shall refer lo it as "asymptoticaLly ueak stabilization".

1.Asso(iatcd" is to be uudorstood in the sensc that the tiu€j evolul,iol operator obeys thc Schrddinger equation

iotu(t,t') = H(t)u (t,t') .

iTherr,,rrc doubts cxprcssr:d bv exporilxcntalists al)oui ihe possibility to rcalisc pulses havirrg sirlultaneouslY

b(r):0 and c(r):0 [152].
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oriBinating in the method used. Examples concerning analytical rnethods were already given in this
chapter. Alm concerning the fully numerical solution of the Schrddinger equation, one is forced to,
for instance, discretize II(t), insert the atom into a finite box, obtaining a "discrete continuum",
and introduce absorbing mask fuctions at the boundary (we refer to Sec- 4.3 in Chapter 4 and

Appendk D of ihis thesis for more details on this method). Even the main physical frmework
(i.e. non-relativity, dipole approxination, classical treatment of the external field, neglect of the
magnetic field) introduces some error, which may lead to inconect results for relativistic intensities

and ultra-high frequencies. Therefore, one is oluag"r dealing with some form of bounds.

9.1 General expressions

We shall now briefly recall the general expressions for these bounds, derived by trling, Kostrykin
and Schrader using rnethods of functional malysis [134]. These expressions are mlid for any bound

state, arbitrary externa"l fields and a wide rmge of binding potentialsl. In order to give m idea

of the estimations involved, one of these derivations is briefly sketched. We refer to [134] for more

details and further derivatiom. In this reference, the lower bound

(l
pr(,b) - r- i / 111v1'--.1,;""1 v(iD{ldt

u
2 -..- ,. 2lblr)l l'| 2t,:b\rtr l(vif -c(r)c") v(r11ult t ,.ifrzlln"ult] (s.2\

wm obtained. This bound is valid when the clmsical energy transfer is larger thm the ionization
energy of the bound state, i.e.,le'l < b(r)212. Here, e., b(r) and c(r) denote, respectively the
binding energy, thc momentum transfer and the clmsical displacement caused on the electron by
th€ field. The wave function ty' refers to a normalized bound state of the atomic Hmiltonian ff .

The restriction upon b(r) appsrs as a techdcal requirement in the computation, but in faci has

a deeper physical meaning. In order to prove Eq- (9.2), one must start from Eq. (8.5), which
gives the ionization probability. A lower bound for this equation corresponds to an upper bound on

PUf tr,01u,. Firsl we write

llpur(r,o)r/ll : llpAt*xn(t)u*Hk,0)$ll
: llP xp -i.b(r)x. expic(r)p, .UfasQ,O)t!ll

< llPexp -ib(r)x. *pic(r)p,' (t/Pn(r, 0) - exp -ir H+ d$ll
+llPexp -i6(r)x'exptc(r)p" r/ll. (9.3)

The first term on the r.h.s. is estimated usirg Du Hamel formula- This important expression gives

a relation betwen two time evolution operaton Ui(t,t') and {(t,l') asmciated to two different

Hamiltonims lli(t) and flj(i), reslectively

't
I

u i ( t . t' \ : ul tt . t' I - il ds IJi tt. r) ui:| t s)u ! ts. t' t.".1
(e 4)

t The olly restriction upon thesc is that they arc "Kato potentials" . This means that, if each a with 0 < 4 < 1

tlrereisacorsrarrtb<o,such*ratllvrlll <oll -Alill +blllill holdsforalldinthedomainD(Ho)ofHo=-L/2,
see for instauce {32, i371. This guarantees that each tern ix the inequalities (9.2), (9.11) and (9.12) is frnite. In
particular the Coulomb potential aDd its modifications, which are very often employed in nuntcrical computatioDs,

such as suroothcd or screene{I CouloDl) potextials, beloilg to this category. Howcver, the delt+poteDtial, whi(:h is

widely uscd ill toy-rnodcl cotnPutatiors, is Dot a Kato Pot{irtial.

879.1- GENERAL EXPRESS/ONS

Here we use the notation Ui:i@ : ni!) - Ilr!(s). We take now U:(t,tt) : Ufg(r,0) and

u:(t,t')- exp irHPr, such that ll(ufs(r,0) - exp irHrtr)tl,ll is rewritten m

ll l"', f ^ 
r, uy e - cQ) e,) - v(i)l exp -z(r * t) H I H,t' dtll

Now, using the mitmity of UEH?,I), one finds an upper bound for Eq. (9.5), given by

1," t rr r, - c(t)a,) - v (i))4,lldt,

(e.5)

(e.6)

achieving the first term of the lower bound (9.2).
The second term in (9.3) is treated m follows. By msumpLion PHrtu < 0. Let 6 > 0 be arbitrary.

"Ihen P(Hf, - 6) 1 is a well defined operator with operator norm ! 1/6. Hence

llPexp ib(r)x'xpic(r)p" l;ll
: llP(H*" 5)-t(HIt - 6)exp-ib(r)x expic(r)p,'ty'll

1

s ;l(H+H-6)exp-i6(r)x exptc(r)p" ry'll. (9.7)

We now ue the frct that

exp ic(r)p,.exp ib(r)x' HNu exp-ib(r)x expic(r)p,

- t 
f-u, -bQ)e,)2 +v(i-c(r)a,)

- HA* -b(')p'*lruf'Y +v(i c(r)c,) -v(i)'
lnserting rhis into (9.7) w" obtain

llpexp,ib(r)x.expic(r)p,ltll < ollltu{u- "t')u,) v(i)),ill

+]ttt." - b(r)p,+;bo)2 6)/ll

d:,^+iu(,)"
which by assumption on b(r) is ) 0 md rvhen inserted into (9.8) immediately yields the retraining
two terms in the bracket of (9-7), thus concluding the proof of the lower limit.

Using similm methods, it is also possible to derive the upper bounds

(e.11)

We now make the choice

md

+14,)t lp,/l * t'ffsrr",+rr)

p.(,t) -- 
{ i,',r,u- c(t)e,) -v(i)),rttd,

(e.8)

(e.e)

(e.10)

P.(,h) : {j ttrrru - ouu,, v(i))\bldt

+lc(r)l llp"4,1 + lar')l ll*/ll) (e.12)
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The upper bound (9.11) was obtainecl within the restdction e.l > b(r)2 12, whereas no conditions
upon the energy $'ere needed in the derivation of (9.12).

5.2 Upper and lower trounds for the Hydrogen atom
In the following (see also [135]) we will consider a rea.listic cxample and take the potential y to be
the Coulomb potential, concentratiilg our discussion on the Hydrogen atom. In [134], the upper and
louer bounds were calculated for its grourrd state ?1100. For increasing intensities, the lower bound
increases and the existence of atomic stabilization can be exchrded il the sense that the iorrizatiol
probability tetrds to one. The shortcorning of the analysis in 1134] is that definite conclusious
concerning the above question may only be reached for extremely short pulses (r < I a.u.), which
are experimentally unrealistic. In this Section, these bounds are analyzed in further detail, and
we demonstrate that atomic stabilization can also be excluded for longer pulses. In this case it
is well known that the binding energy for a state 4:,,1,- is e,. : -#, llp"l",oolz - ,) and

ll"/,ooll'? : *(/,oolt'ld;ou) : +(.5n,2 | 1) (see for instmce 166, 1381). We t'ill emplov these
relations below. In [134] it was shown, that the Hilbert space norm of the diflerence of the potential
in the Kramers-Henrreberger frame 131] and in the laboratory frame applied to the state I

9.2, UPPER AND LOWER BOUNDS FOR THE HYDROGEN A1-OT4 89

t.2

Figure 9.1: The Hilbert space norm of thc difference of the potential in the KramersHenneberger
frame and in the laboratory frme applied to the state {rm m a function of the classical displacement
c.

Here we have simply inserted the explicit valucs for tr, li*rltoo]] md llp"fioo]] into (9.11) and (9.2),

and understmd N(", /roo) to be given by the analyticai expression (9.14). The formulae presented

in Appendix E allow in principle also the computation of N(c, /"i*) for difierent values of n, I and
m. However, lor I I 0 the sum over the Clebsch-Gordm coefficients becomes more cornplicated
and due to the presence of the Laguerre polynomial of degree n in the radial wave function r?'1

this becomes a rather complex analytica.l computation. We will therefore be content with a cruder

analytical estimate here. In fact, we have

N'("(r),/.oo) < z(\t^oo,vG)21),.") : *
In the appcndix of l13a] this statement wm proven for z : l. The general proof for mbitrary n rray
be cmried out along the sme line. Therefore, wc obtain the following new uppff and loner bounds

(e.1e)

(e.20)

which are "weaker" than (9.17) md (9.16), in the sense that

Pr.,(d.oo) < Pz(/,oo) < P(l.oo) < P"(,|'"s; < P"-(/-oo) (9'21)

ir order for (9.19) to be mlid we must have b(t)" > #. We will now turn to a detailed analysis

of these bounds by looking at different pulses. The main purpose fcrr considering stares of the type
r!.1,- with n f 1 is to extend our discussion to pulses with longer duration. The remon that longer

pulse duations me accessible for states with higher n is the n-dependence in estimate (9.18) and its
etfect in (9.20) md (9.19).

0.6

4.2

N(d,,/) ,: ll(y("--d) v@),tll (e.13)

is bounded by 2 when t - tno for arbitrary ( - c€,. We shall now investi€iate in more detail how
this function depends on c. In orderr to simplify notations we ignore in the following the explicit
mentioning of €". In Appendlx E we present a detailed computation) where we obtain

N'(.,/,oo) :2+(1 +lcl-1)e-l'lE?(cl) +(1 cl 1)e1'lri1 1,0+1(.-'t"t 1) . (9.14)
lcl \ I

Here -Ei(z) denotes the exponential intepJral function, giverr by the prirrcipal mlue of the integral

lc t
fl(r)- l-;dt lor r.0

.tt

Consitlering now the asymptotic behavior of ,/r-, re obtain as expected lt$ N : 0 u"d jg N - f.
Noting further that lr' is a monotonically increasing function of c, (one may easilv compute its
derimtives r'.r.t. c, but we refer here only to the plot of this lunction in Fig. 9.1), it follows tliat
rhe [134 esrimate may in lacr be improved to |y'1r. u,r,,t r u4. lt. imp,'rrilt thing to nolic| is.

that since N(., /roo) is an overall increasing function of c, it therefore also incremes as a function
of the field strength. The Imt terur in the bracket of the lower bound P1(/) is a decreming function
of the field strength, while the seconcl term does not have an obvious behavior. Hence if the first
tern dominates the whole expression in the bracket, thus leading to a decreme of fi(!), one hm in
prirciple the possibility of stabilization. Wc now investigate several pulse shapes for the possibility
of such a behavior and arralyze tlie expressions

(e.15)

(e.16)

(e.17)

(e 18)

h(tnil -

P.,(droo) =

,- 
{/n,",,,.u 

oo d/ :Hf:P -i#\\

{i',0u, 
r,.., dt + #+ rb(')r 

}
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Figue 9.3: Upper (three curves on the lefi) and lower bound (P" md 4) for the ionization prol>
ability of the /1 s6 state through a linearly polaized monochromatic lmer field E(t): no"i"1rt),
with o : 1.5 a.u. as functions of the pulse length r. The dotted, dmhed and solid curves correspond,
respectively, to Eo :5 a.u., Es: l0 a.u. md Eo:20 a.u.

field strength the ionization probability also incremes- Keeping the field strength fixed at Eo :2
a.u., a compmison between the case for o - 0.4 md o - 4 shows (Fig. 9.4), as expected, the
lower bounds for the ionization probability to be decreming functions of the frequency. The peak
on the left, which sems to contradict this statement for that region, is only due to the fact that
the expression for the lower bound is not valid for u - O-4 in that regime. Clearly, this is not
meatrt by stabilization, since for this to happen we require fixed frequencies md we have to analyze
the behaviou for mrying field strength. The claim [19, 109, 118, 119] is that in general very high
frequencies are required for this phenomenon to emerge. Our malysis does not support stabilization
for my ftequerrcy. As mentioned above, the shortcoming of the malJ,sis of the bomds P"(ry'roo) and
Pr(ly'roo) is that we only see m effect for times sma.ller than one atomic unit. Figs. 9.4 md 9.5 also
show that by considering P(ry',gs) for higher values of n our expressions allow also conclusions for
longer pulse durations. Fbr the remors mentioned above, in this malysis we employed the slightly
weaker bounds (9.20) and (9.19).

9.2.3 LPML with a trapezoidal enveloping function
'We now tum to the simplest cme of a pulse which is adiabatically switched on and off. These types
of pulres are of special interest since mmy authors observed (see, e.g., [109, 110, 112, 1M]) thai
stabilization only occus in there cmc. We consider a pulse of duation r0 which has linear tun-on
and tun-o{f ramps of length ?. Then

9t
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Figure 9.2: Upper (three curves on the left) md lower bound (P" md Pi) for the ionization proba-
bility of the ry', 66 state through a static laser field -Us m functions of the pulse length r. The dotted,
dashed and solid curves corresponds, respectively, to E0 : 5 a.u., -86 - 10 a.u. and Eo - 20 at.

9.2.I Static Field
This is the simplest case, but still instructive to investigate since it already contains the general
feature which we will observe for more complicated pulses. It is furthermore important to study,
because it may be viewed m the background which is present in most experimental setups, before
more complicated pulses can be generated. For a static field of intensity 1: E6 we have

Ett I - Eo b(t) = Ent .(! J 
EoP

for 0 < , ! r. Inserting these functions into (9.16) we may emily compute the upper and lower
bound. Here the one dimensional integrals over tirne, appeming in (9.17) and (9.16) were carried
out numerically. The result is presented in Fig. 9.2, which shows that a bound for higher inte-nsi-

ties always corresponds to a higher ionization probabilitv. The overall qualitative behavior clearly
indicates that for increasing field strength the ionization probability also increases and tends to one.

In particular lines for different intensities never cross each other. Surely the shown pulse lengths
are too short to be realistic and we will indicate below how to obtain situations in which conclu-
sirre statements may be drawn concerning longer pulse duations. In the following we will always
encounter the same qualitative behavior.

9.2.2 Linearly pol;-rized monochromatic light (LPML)
Norv we haw

E(r) : E6sin(or) bO :+.r' (?) c\r : 4 @t sin(oi)) (e.23)

for 0 ( t ( r. The result of the computation which employs these functions in order to compute
(9.16) and (9.17) is illusirated in Fig. 9.3. Once again our bounds indicate that for increasing

(s.22)

(+ for
E(t.1 : 60.;r1ri1 I 1 for

t (+0 rt'

0<t<T
T <t<(rs T)
(rs-T)<t<ro

(s.24)

(s.25)b(r6) : *& {.t(rt) sin(urg) + sin(u(ro - 
"))}
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Figue 9.4: Lower bound (Pl.) for the ionization probability of the ry'r6 oostate through a linearly

polarizedlaserfieldE(t)-9..it1,,),with'Es:2a'u'mafunctionofthepulselengthr'The
dotted md solid cuwes correspond, respectively, to o - 0.4 a.u. and u:4 a'u.

Figure 9.5: Lower boud (Pt.) ror the ionization probability of the ry'26 s6state through,a_linearly

polarized laser field E(t) : Eo sin(o,), with Es : 20 a'u' and o : 1'5 a'u' as a finction of the pulse

length r.

9.2. UPPER AND LOWER BOIINDS FOR THE IIYDROGEN ATOM

Figure 9.6: Lower bound for the ionization probability of the ry'.n o6-state through a linearly polarized
monochromatic Imr field with a trapezoidal (upper cuves of different line types) md a sinesqumed
(lorer curves) turn-on md ofi enveloping function, with frequency o : 1.5 a.u. Solid lines:f - 12 - !
pulse; dashed line:! - 10 - | pube; dotted line:f; - 6 - f; nulse.

93

"O"l 
: !*( z 2cos(ur)*2cm(ors) -2cos(o(rs-?)),", \

-oT sin(o?) f ors sin(o?) + of sin(o(ro - Z))) (e.26)

The expressions for b(t) and c(t) ae rather messy and will noi be reported here since we only
malyze the weaker bounds. Notice that now, itr contrast to the previous cases, both b(r6) md c(rs)
may become zero for certain pulse durations and ramps. We choose the ramps to be of the form
7 : (m + i) T @ being an integer) for the lower and 7 : (^ + il T for the upper boud2. Our
lower bound does not permit the malysis of half cycles since then b(r6) : 0. The results are shown
in Figs. 9.6 and 9.7, which both do not show any evidence for stabilization. They further indicate
that a decreme in the slopes of the rmps with fixed pulse duration, leads to a smaller ionization
probability. Once more (we do not present a figure for this, since one may also see this from the
analytica"l expressions), an increme in the frequency leads to a decreme in the lower boud of the
ionization probability for fixed field strength.

9,2.4 LPML with a sine-squared enveloping function
Here we comider a sinus squmed enveloping fmction for the lmer field, of frequency f,) << o.

E(t) : Es sin2 (oi) sin(ot) (e.27)

? Colcerning the 6gures of this and the next subaectioD. we sometirnes adopt a specific terrninology to this field of
research, referring to d cr -m- c2 pulse, where q are rational irutrbcrs and m alr integer. This should be understood
as a pulse whictr is switched on and off smoothly withirl rcspectively c1 and c2 field cycles, its amplitude beitrg kept
constant over m cycles.
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for 0 ( t ( r. At first sight it appeas that both b(i) and c(i) me singular at o - i2f,), which of
course is not the ctre since both functions are bounded as one may easily derive. With the help
of the Schwarz inequality applied on (9.28) and (9.29), it follows that always lb(t)l < ti 11f"ll and

l44l < ir1 llEoll. We first invctigate the situation in which this pulse is switched on smoothl.y,&ut
turned off abruptly. Figure 9.8 shovrs that the bouds become nontrivial for times larger than one
atomic unit in the sarne fashion m in the previous cases by considering Pt(/.00) for higher values
of n. Figure 9.9 shows that also in this cme the ionization probability tends to one and no sign for
stabilization is fomd. Figure 9.10 shws the lower bound in which the pulse length is taken to be a

,/ -'--a-..----''-'t'.-.--------"'

- -- --. -a' :'-:.'---'-'---l'-"---"
.ii*..? " ni 

= " 

z 
= 

: z 
= " "' -

Eo

Figure 9.7: Upper bomd P". for the ionization probability of the ry'3a 66-state through a linearly
polmized monochromatic lmer field with a trapezoidal (upper cwes of the mme line type) md a
sine-squtred (lower cwes) tun-on and off enveloping fuction, with frequency o : 1.5 a.u. Solid
lines: j - 6 - ] lulse; dashed line: j - 4 - $ pulse; dotted line:f; - 2 - ! pulse.

b(t) : ---A- (zn, +2,, cos(oi) - 8r,2 cos(at)

-u2 cos((o -2q t) 2uQ cos((u -29) t)

u2 cos((o + 2 A) tl I 2r f2 cos((d , n) ,))

c(t\ Eo= /
4a2(u -ZQ'z@+Z-nf (-s'3 lz',i l32aQ4t- 2aa sin(ot)

+16a2 92 sin(ut) - 32 Qa sin(at) - ua sin((2 J? - o) r)

-4a3 !) sin((2I - a) t) - 4u2 a2 sin((2 o - o) r)
-tua sn((u 12 Q) t) - 4a3 I sin((o + 2 O) r)

+4 a2 Q2 sin((o + 2 J7) i;)

9.2. WPER AND LOWERBOUNDS FORTIIE ITYDROGEN ,NTOM

Figue 9.8: Lower bound for the ionization probability of ihe ry'36 66-state through a linearly polarized

monochromatic laser field with a trapezoidal (upper cwes of different line types) md a sin+squared
(lmrcurues)turn-onmdoffenvelopirgfunction,withfrequencyu-1.5a'u' Solidlines:f -12-!
pulse; dashed line: t * t0 - t pulse; dotted line:f; - 6 - T prl.".

half cycle of the enveloping function. Once more it ildicates increasing ionization probability with
increasing field strength md also for increasing values for n. Following now.Geltman [105] and Su

et al. [109] we employ the sinesquare onJy for the turn-on and ofi and include a plateau region into

the pulse shape. Then

(e,28)

(e.2e)

E(t) :

b(r6) :

c(r6) :

( sin2(^-4) for 0<i<T
eo sin(rit I I for 12 t2 fto - r\

I sin2 (C+r; t". (ro - r) < t < ro
(e.30)

(e.31)Esr2 (l+cos(aT) -cos(o (f -to)) -cos(o16))

. lo 
r22:u::. 

6 @ T2 r o 13 7.2, 6 - u n2 T c6(o ?) + u3 C cc(d ?)
(r2-acTz)z' -

+ a12 ro cos(uT) - urT2 rs cos(uT) - a12T cos(r,r (? - rp))

+ usTs cos(o (?-16)) +12 sir(uT)-3u2T'2 sin(uT)

1 12 sin(o € - ro)) *3u2T2 sin(o (T - ,o)) - n'sin(orp)
+ 3a2T.2 sin(ora)) . (9.32)

(Atm in thce cres the appilent poic in b(rs) md c(r6) Ior u : !fi ae mcompanied by zeros.)

The results of this computatiom are shm in Figs. 9.6 and 9.7, once more with no evidence for

bou:rd-state stabilization. A comparison with the linea.r switch on and off shows that the ionization
probability for sin+squared turn-on and ofis is lower. The efiect is la.rger for longer rarnps.
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Figwe 9.9: Lower bomd (k-) fot the ionization probability of the ry'ro 66state through a
linearly polm^ized monochromatic laser field with a sinesquared enreloping function, .O(t) :
Eesin(ot)sin2(Ot), a :0.2 a.u.,O : 0.01 a.u. The dotted cwe correspond.s to.g6 : g a.a.,
the dashed curre to.Es : 10 a.u. and the solid curve to -Eo - 20 a.u.

!t
ll /

E6

Figue 9.10: Lower bomd (Pl-) for the ionization probability of the {-*state tbrough a
linemly polarized monochromatic laser field with a sine-squared enveloping function, O(t) :
E6sin(ot)sin2(f,lt),o:[.ga.u.,f,):o/13.5. Thedottedcurvecorrespondston:40,the,dmhed
curve to n:35 and the solid curue to n - 30.
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9.3 Discussion

We have investigated the ionization proi:rability for the Hydrogen atom when exposed to ultra-interse
shortlv pulsed lmer radiation of riom types of pulse shapes. In comparison with 1134], we exterded
ou analysis to the situation which is applicabie to my boud-state t!4* md il pmticular for the

ry'166-state we carried out the computation unti] the end for the stronger upper (9.17) md lwer
(g.16) bounds. We wercome the shortcoming of [134] which did not a.llorv definite statements for
pulses of duations longer thm one atomic unit by investigating the bounds for higher mlues of n-

As our computations show, there is of couse a qumtitative different behavior for difierent ra.lues of
n. However, qualitatively we obtain the same behavior (refer to Fig. 9-10).

For the situation when the tota.l classical momentum trmsfer b(r) and the total classical dis
placement c(r) are non-ranishing we confirm once more the results of 1134] and do not find my
evidence for bomd-state stabilization for ultrmhort pulses. This holds for mriom types of pulses,

whether they me switched on (and ofi), smoothly or not. Therefore, smooth pulses in general will
only prolong the onset of ionization but will not provide a mechanism for stabilization. Another

intermting feature is the increme of the lower bound for the ionization probability with principal

qumtm nmber. This is in apparent contradiction with the statement that stabilization should

occu more ea.sily for Rydberg states.
We would like now to coflrment on pulss with mishing momentum trmfer. Even though our

lower boud is not applicable mder this condition (in the sense that then the condition lb2(r) > le"l
is not fulfilled), we are stil able to draw some concluions.

For pulses switched on and ofi such that b(z) : 6, but c(r) I 0, om bounds do not allow any

definite statement, since the lower bound is not applicable and the upper boud gives for typica)

ralues of the frequency and fieid strength ionization probabilities lrger than one. These types of

pulses are extemireiy used in the literature ( for instmce in 1104, 109, 111]). Therefore, it would be

verv interesting to fird alternative expressions for the upper and lwer bound which ailow conchrsiom

on this cme.
For the cme b(r) : 61t; : 0 the upper boud P, remains m increasing function of the field

strength due to the properties of the Hilbert space norm of the difference of the potential in the

Kramlrs-Hemeberger frme and in the laboratory frame applied to the state ry'166. The weaker

upper bomd takes on the ra.lue p-*@t^d : $, which implies that the upper bomd decremes

-iih ir"."*iog n, i-e. for states close to the ionization tbreshold, md fixed rJ. Clmsically, this

appmently comterintuitire behavior car be intuitively understood. For closed Kepler orbits, i.e.

ellipses, with energies suficiently close to zero (depending on r), for my pulse with small b(z) md
c(r), these qumtities will be very close to the mtual changes, caused by the pulse, of the momentum

and the coordinate, respectively. So in this cme iouizatioh, i.e. the trarsition to a hyperbolic or

parabolic orbit will therefore be very ulikely. Thce results are in perfect acmrdmce with the

firdings that precisely the highly excited states should stabilize, and suggest that the momentm
transfer delimits regions of difierent physical behavior. In fact, mishing momentum trmsfer at the

end of the pulse was pointed out in [121] as a necessa.ry condition for the occurence of stabilization

uing classical axguments. Also in the inrestigations in [136] stabilization is fomd for this case,

horever with the additional condition c(r) : g. A detailed analysis allowing for all possible mlues

of b(r) and c(z) using entirely different methods will be presented in Chapter 10'

In.principle, it is pmsibie to carry out our malysis further md alm investigate the ilflrrence

of wying the qumtum numbers I and m on the ionization probability, in order to compare with

existing rcults ir the literatue [111, 139]. How*er, due to the sum in (E.6) the xplicii exprmsions

will be rather messy and we will therefore omit them here.

ffirtrberwmobservedill[111]inathIee-dinrensionalTDSEcomputation
for Hydrogel.
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Chapter 10

Momentum transfer, classical
displacement and stabilization

11 the previous chapter, we confirmed the results of [13a] that stabilization is always absent for non-

maishing momentu transfer at the end of the pulse. These features neither depend on the pulse

shape nor on its frequency. For the case b(r) - 0, the method used did not allow my decisive conclu-

sion concerning stabilization. However, the results in Chapter 9 already indicate that the momentum

trmsfer md the clmsical displacement delimit regions of different physical behavior concerning ion-

ization. In puticular, a suppression of ionization was observed when these two qumtities mnish at
the end of the pulse. In fact, investigations of the ionization probability in the ultra-extreme limit,
i.e., when the field strength is taken to infinity, found, under the condition b(r) : s1r\:0, what
v.e call "aslmptotically weak stabilization" [136]. Despite the fact that in this regime one should

commence with a relativistic treatment, our physical frmework, that is the Schr6dinger equation

(2.1) remains self-consistent, and should represent the overall behavior. Morover, it suggests that
for firite, but high enough intelsities for which (2.1) can still be applied, the ionization probability

may in practice saturate with the external field strength towards a finite value smaller than one.

This extremely counterintuitire behavior, which also qualitatively corrmponds to the experimental

findings of N.J. vm Druten et a.1., [21], motivated t]re investigation in this chapter.

We took a concrete example in order to investigate whether the same features might be recov-

ered. We consider onedimensional atomic models with attractive delta potentials in the presence

of intense very shortly pulsed laser radiation. Both independent general non-perturbative as well

as perturbative arguents and the analysis of the explicit analytic expressions demonstrate that
weak stabilization occurs when both the tota,l classical momentum trmsfer and the total clmsical

<lisplacernent vanish simultanmusly. The efrect is relatively stable towads small variatiom of the

displacement, but more semitive towards changes of the momentu trmsfer away from zero.

10.1 The Gordon-Volkov (GV) perturbation theory

In the high intensity regime for the radiation fields, the basic msumption for the ulidity of con-

ventional perturbation thmry brea,ks down, i.e. that the absolute ra.lue of the potential is lmge

in comparison with the absolute ralue of the field. However, there is a replacement for this, the
socalled G<irdon-Volkov (GV) perturbation theory [98]. Since the basic idea is simple, it makes

this approach very attractive. Instead of constructing the power series, either for the fields or for

the time evolution operator, out of the solution for the Schrodinger equation involving the field-free

oo
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atomic Hamiltonian r{,A and regarding xE(r) as the perturbation, one constructs the series out of
solutions involving the Hamiltonian Hfv ol an unbourrd particle irr the field and treats the pote.tial
V m the perturbatiorr.

The stating poirrt in this analvsis is the Du Halrel formula (9.4), whose formal iteration yields
the pcrturbative series

10. 1. THE GOHD ON-VOLKOV (GV ) PERTUHBATION THEORY

We have therefore weal< stabilization in this ultra-extreme high frequency limit for all systems for
which(10.1)makessenseandforwhichthelmerfieldisoftheform(10.4). Oneshouldkeepinmind
that the use of the Stark Hamiltonian in (2.1) assumes ihe validiiy of the dipole approximation, such
that the limit o + m only makes formally sense. In order to describe real physics in this frequency
regime one should actually also take multipole terms into account.

Concerning the ultra-e-xtreme intensity limit, we consider the transition amplitude between two
bound states ,lto@), tlti@) of the Hamiltodm If pertubatively

(,b n)u f (,, 0) ll, j) - (t ) A x n *t 0)u sK 

H ?, 0) 11/, j)
- \t ) A x a *, (,)u EY (r, 0) 14, j) + (',b ) A x u -, (,)u f;fiuo' 1tV, oS 1,1,,) +

Reca.ll that o(0) - 6(0) - "(0) - 0, such that AL*xa(l}) - 1. Using now (10.3) it is cletr that to
zeroth order we obtain

(,7,o {4 l"--o'| il,, {4 ) (10.e)

when b(r) - c(r) - 0. In all other cases we may bring this term into a form suitable for the
application of the fuemann-Lebesgue theorem, such that the zeroth order matrix element always
vanishes in the ultra-extreme intensity limit. For the higher order terms the mgument is analogous
with the difference that the condition b(r) - r(r) - Q does not have the consequence that these
e-xpressions become independent of ,86, since a.lso terms like b(t), c(t) for 0 < , < r appear. Hence by
the application of the Riemann-Lebesgue thmrem all higher order terms mnish in the limit .Eo - m.
If we low sum over a.ll bound states i in (10.8) we obtain the results of 1136].

We shall now use the Gordon-\'olkov approach in more specific problems. lVe take the Gordon
Volkov and Schrddinger Hmiltonims in the length gauge, and write the Du Hmel formula (9.4) ro

101

u:(t,t,) -iu::f,V,tt
n:o

we introduced the quantity ui;b(nlt,t') rerating to the time erolutio' operator order bv or<ler
in 

,pcrr 
urbarion rhr.ory. i.c. UiIOg.r,t - Ull.r'1. Lrirtt,t.r,1 -_ iJ,: .1, Ultt."l ui,.!t"tilt".t,).

Taking therefore i: j and inadditioua-S"ma b-dV *.obtain -"

ultt.t l Lt',,\ It.t t- Ltl.;c, lt,t.t,1 -

In this case *" r,.od Hiicv(/ ) H;,.t (t) - V rrt . U|frtn rf tt V (i c(t ]; r) and, tho C61flqn
Volkov tlmn evolution oporalor. uhich in rlre l(Ll-frame equ,rls rhc fren_puticLe,.volution opprator
in the length gauge

uEVH(t,t') - uPft,t') - e i(t t')P'

(10.8)

(10.10)

The expressions for the Gordon^Volkov time evolution operator in the length and velocity gauge
mav then simplv be obtained from (10.3) bv the application ofthe gauge transformations (2.7)-(2.g)
discussed in Chapter 2 according to the trmsformation (8.3) concerning the time-evolution operator.Thechoicei:jtogetherwitha-sandb:AintheDuHamelfornuta(9.4)yieldstheusual
perturbation series, which is well knowr from the low intensity regime. surely, care hm to be taken
colcerning the question of convergence the GordorVolkov series. In particular if one hm oscillating
laser fields, there will always be regions in which the potential in absolute value is still larger than
the fields. Also for instance the Coulomb potential may be larger in absolute value thm the e'iectrical
field near the origin. A systematic analysis of this probiem cloes not yet exist, but thcre arc some
partial results, see for instance 1100].

There are some results which may be derired from the perturbative expression, one concerling the
ultra-extreme intensity limit .Es + m used in [136] and ihe other the uira-extreme high frequency
limit u - m (a slightly milder msumption was used in the seminal paper 119] which foimuhLs the
high_frequency approach). Both results ae simple consequences ofthe Riemann-Lebesgue theoreml,
which is applicable if the lmer field is of frequency o nodulated with an arbitruy envelo'ping fuction
(we only demand that 9(t) is integrable)

(10.3)

(10.4)

,l
uf 1r .i 1 tLlt g.t ) ,; I as uf\ (/.s) yt f (s.r')

J

The operator equation (10.10) may of course be used in both configuration and momentum space,
as well as (10.1). It will turn out below that for our purposes the explicit computations are in general
easier to perform in momentrm space. Acting now with (10.10) upon a solution @rr(t)):rlt(F,t)
of the Schrddinger equation (2.1) in the momentum representation, we obtain the following irrtegral
equation for rl,(f,t)

Since the atomic potential is independent of -E0 we obtain with (10-6) that the entire Gordon-Volkov
series (10.1) is independent ofthe field amplitude m well, such that

fi (.'rLP(i)):o

,t, @,t) : tcr, (F,t) - r I a" I aO, I o*rf" @,t; Fz,s)v (fi. tu)t, @z,s) (10.11)

With the help of the transformation Ufv(t,t') : 1!1-6y(t)e tA t')*AtJxa(t'), the Gordon-
Volkov time evolution operator in the momentum representation acquires the well-known form

u5v (;r't;n' s) 
: \"i"1.!)!,Y;!:;]fj:'rJ:,:1 

,, u-d d (i; - F, - bua") (10 12)

For convenience we introduced the notation a* : a(t) a(s), which we employ throughout md
analogously for b and c. The Gordon-Volkov wave functiorr is chosen in such a way, that it takes on

the ra,lue of the bound state {r (1, t - 0) of the Hamiitonian Il,A m the initial ralue

Itbcv\F.tl 
J 

OfrU", 1p-, l;f1 .0) rr(lr)

- e-ia(t)ei.(t\(p. b(t))€ ;t(e--6(r)c.)' \b (i - b(t)C,)

E(t) - Eqsin(ot)e(t)

For infinite frequencies we obtair

such that with (10.3)

lim

.t\y"4* x a (t) - -lS "A"-r<r(i) : I

ufv (t,t') - :ylufv (t,t') : ul(t,t,) - e i(t-t')Ha

I1Us(o) e Ll(-6,@) (i.e. 9(o)l is integralte) thur 
, lim

g(r)e 11r dx : u (i0.13)
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The projector in (8.5) becomes P -- l,l,) lrl,l, and therefore the ionization probability reads
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Notice that sometimes the f1 md f2 integration in (10.11) may be carried out analytically, such
that, upon integrating the remaining equation once rlore with respect to p', the original equation is
reduced to a puely time dependent Volterra type integral equation. Depending on the explicit form
ofthe kernel ofthe remaining equation this problem is more easily solvable. This is the approach we
are going to follow in our explicit application. A similm method hm been pusued in configuration
space in [144, 145].

LO.2 The one-dimensional delta potential
We comrnence the discussion by considering a onedimensional set up, where we take the potential
to be the one-dimensional attractive 6 potential

7(x) - a6(x) (10.14)

o is positive and real. This is a very popular example [42, 101, 141, 742,743,744,746,747, I48,
149, 150], since it hm the virtue to possess only one bound state, with bound-state energy $. tt"
normalized wave function in both configuation and momentum space representation is well-known
to be

(10.15)

(10.16)

This equation also serves to define the survival probability lq(r)'?. fhe problem of convergence of
the GV series mentioned in Sec. 10.1 is expected not to occur in this case, since apart from z :0,
the potential is always srnaller than the Iield. However, despite the appilent simplicity ofthe model
it still seems a hopeless task to sum up the whole perturbative series even for potentials with only
one bourrd state and to determine the time evohrtion operator Uf (r, 0) exactly. For the cme of the
6-potential the problem may be reduced to a far easier equation in the following way:

Since the potential in the momentum representation becomes simply

V tp,p') (p'V p') ;,
equation (10.11) together with (10.12) becomes

t

,/, (p, t) - rlt cv (.p,t ) + i,! [ ase. i"t't 
"rc,'tp-'btt)) "- 

]2{r-ba)l (t-4 
4) r G)'t" 

Jo

- ilcv@,r) +v(p,r) ,

where we introduced the function

Ibr ft) : ei"(t) j oof ro,r,

Integrating now (10.18) with respect to p one may reduce it to a Volterra equation of the second
kind in /

f
tbr(t) - I dp{r;u(st,t) * a

(10.1 7)

(10.18)

(10.1e)

I,

*
il
I

*

-t 
.?"

I ; r "':Grttl * Jo",t,,(") v,r-,
0

(10.20)
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which serves to determine ry', (t)- Appendix F provides a detailed discussion of this equation. Leaving

now ry'r (i) m the only unl<nown quantity, we may compute the surviva"l probability of the bound
state lry') by mems of (10.18) in a closed analytic form

1q(')1" : l(l',,1'cvi)) + (1, v(r))1'z

We obtain upon using (10.13) and (10.15)

(a2+(e+b(r))2){",+n)

."v(-t$ d,)p)

and together with (10.18)

(d, v(')) : ie-ia(r) (10.23)

Before we turn to the emluation of these expressions it is instructive to cilry out a quick comistency
checi<. Naturallv we have to have

-lim- lq(r)12 - 1.

(10.21)

(10.22)

(10.24)

(10.25)

(10.26)

First of all we may carry out the limit E6 - 0 for (10.19)

T n ^:l ^2 a2

ulTn/,(1) I *tli;rte"xoi\t tEii'xot\t

Performing the sme ti-lt tor ttrelaterra equation (10.20) yields2

,l*i-H,
rvhich is indeed solved by (10.25) m one may easily verify. Using on the other hand expressron

(10.25) in equation (10.23) it is straightfommd to obtain together with (10.21), (10.22) md (10'23)

the limit (10.24), which supports the ulidity of the above expressions'

Taking the extreme limit .Es + m as a further check, one may emily se that the surviml
probability tends to zero, exept when b(r) : g1r1 - 0, in which cme it tends to the zeroth order of
the Gordon-Volkov perturbation theory

"E;rq(')r' 
- tl('''lcv('))l' 

t;illf.;i"t'' -o (10.27)

2Rclatlon (10.26) (also e-g. (10.28) and (F.1)) follows ulDn usiug the integral represcDtatio[ for the confln-

$rt hypcrgeometric function Lr",6(z) : fio1Tar.-*r".i(l +t)b-o-l, (not to be confused with the time evo-

Iutirn operator). Properties of this furrction rnay be found for instance in U40]. AltcrnatiYely one rnay also

cnploy error functions vhich:rre known to bc related to the particular confluett hypergeoltretric functior via

u(iz\: ! t *=ap:4=Ut t (22) .In wtrat follows, it will be irnportant to keep irr niDd that ilr the defiD-
t J z+tp - J, t,i

ing rlonaiu for the irtegral represeiltatiors ol Lt.,6Q), thc cornplex z-pLrDc, there are braDch ults aldrg the real 
^xis

For tlle valiriity of the prcsent irltegral represeDtation olr: tlcrnauds ttrercfore Re(z) > 0.
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This follows directly from an inspection of equations (10.22) and (10.23), iogether with the Riemann-
Lebesgue theorem, which is il agreement with the gcneral result in 11361. Hence once one is irr a
regime in which the higher order contributions are negligible one rnay thilk of this phenomenon m
asymptotically weal< stabilization for the case b(r) - c(r) :0, according to the discussion in Secs.
8.2 and 10.1.

10.2.1 Lowest Order GV perturbation Theory
We shall commence by discussing first the effects resulting from takirg solely (/,/,;y(r)) into
consideration, which corresponds to the lorrest orcler in the GVlerturbation theory. Sirnilarly as in
1101], one might expect that the key features r.ill already be prcsent at this order. However, we will
dernonstrate that care hm to be taken concerning thc convergence of the GV series which depends
sensitively on the choicc of the parameters, i.e. r, cr and 86. involved (see Appendix F). As we
already observed, a different physical behavior is obtained depending on the values of 6(r) md c(r)
arrd it is therefore instructive to treat several cmes separately:

b(r) :0 m6 c(r) :6

One readily observes from (10.22), that the case b(r) - c(r) :0 is very special, since then the
dependence on the field amplitude ,86 drops out entirely and one simply obtains

Pto)(l) : r - ( 10.28)

We will use ?(') for the ionization probability in the nth order of GV-perturbation theory throughout.
The fact that, up to a phase, At*xn(r) - 1 for the case b(r) - c(r) - 0 is responsible

for the disappearance of the explicit dependence on the field arnplitude. Hence, in this order of
GV-perturbation thmry the ionizatiorr probability simplv becomes proportional to the pulse length
r. As we already stated in (10.27), equatiorr (10.28) precisely coincides with the expression for
the ionization probability which one obtains in the extrerne lirnit Ee - m, that is example 2 in
[t36] (in [t36] only the cme of the three-dimensional d potentia] was presented) applied to the
one dimensional d-potential. Therefore, in ihis limit, the zeroth order GV-perturbation theory is
exact. However, since we have to have P (ry') - 0 for Eo - 0, we also observe that for small and
intermediate field strength this is in general in poor agreement with the conect answer.

We would also lil<e to comment on the deperrdence of P(0) ({) on tire coupling o, i.e. essentially

the energy, for this case. Since ill., 1 (z)l is a monotonically decreasing function of z we conclucle,

assuming that this order is dominant, that more deeply bound states are more likely to ionize.
Intuitively this is clear, states with larger a are more localized, such that the overlap between
two wave functions mnishes relatively quickly if one of the wave functions evolves with the free
time evolution operator. Hence tunneling effects play no role in this cme- This is in qualitative
agreement with previously obtained results for the Hydrogen atom colcerning these types of pulses
(see discussion in the previous chapter and [135]).

6(r) :6 64 c(r) l0
We will now consider the cme in which the pulse is switched on md off but subject to the condition
b(r) : 0. As we remarked abore, in this case the limit -Es + m, when co(r) is kept fixed, yields
P (t) - 1 for ali -86 > 0. For the generic case t'e consider the derivative

|l','-,(-9f

'/r{.1(u, - 1u.u,,y(rr) {-p.u61 rrt)' c..dEo '' "" 'dEo

10.2. THE O-NIE_DII,TENSION AL DELTA P O'TENTIAL

Since we kno- P(0)(dr) Eo:g and P(0)({,)lE,:- from the preceding discussion, the occurrence of
strong stabilization up to this order implies that P(0)(?y') hm at least one minimum and one muimum
as a function of.E6. Therefore, in order to show the absence of strong md weak stabilization, it is
now sufficient to prove that {}.11 ."t". mnishes. Since (ry',ry'6y(r)) is in general also non zero,

othemise we would hate P(o)(ry') - 1, it suflices to demonstrate that
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(10.30)

A quick investigation of the integral (10.30) shot's that neither the real nor the imaginary part may
vanish. There is of course still the possibility that (r/, /6y(r)) /fi, (rlt,rltcv?)l- is purely imaginary.

To *clude this possibility on general grounds is more complicated and we will consult the explicit
expressious for this purpose below. With this restriction still to be settled, our conclusion for thc
situation in which b(r) :3, is that weak stabilization to lowest order GV-perturbation thmry may

only occur under the additional coldition c(r) : g. Strorrg stabilization is always absent'

Concerning the question of the presence or absence of stabilization the above argument is ahnost

sufficient. Besides completing the proof, it is instructive to consider also the explicit analytic ex-

prcssion for ?(0)(l), .ir." it will reveal the sensitivity of this effect towards small deviations from
the weak stabilization condition b(r) - c (r) - 0. We preserrt here a solution in form of elementary

functions, which to our knowledge wm not known hitherto.
Taking now b(r) - 0 the integral (10.22) can be conveniently split into four integrals by rLsirrg

pmtial fractions. Then each of the integrals may be computed by means of the integral representation

of the error or contluent hvpergeometric functions. trVe note that tlte integral representations of these

function only hold for Re(z) > 0. This condition may be expressed with the help of Keldysh-like
parameters (see below), which usually separate regions of difierert physical behaviour. Surely one

rnay analytically continue these furrctions in the standard way by rotation of the path of integration

[140]. Introducing the quantities

d 2a i . r"*n ( ,rt;')sin (r(r)np)
,} (u.u"uqr1) r;,'(') Idp ' ' 

- 

/0dLo trho I l1 - p2)'
0

L

v+- ,ltrac(r)-iraz) and Q+:ro2 (+,r+i (t '1)
some algebra leads for the amplitude of the survival probability for the bomd state

q(.r)-p t/r,;(a+) +s+U+,+(o )+iro2u1,. (+)
For a given binding energy .E of the bound state we introduced here the pilameter

- c(r)
" '- ,J2l.,j

r.hich characterizes the validity of the preceding expressions. In our particular example the bind-

ing energy is es : -s:. Notice that, when ta-king a pulse of the type (10.4), ihis pmmreter is

closely related to the inverse of the Kelclysh pilameter 1 : , Jr]eal I Eo 165], which sepilates the

multiphoton ionization region flom the tunneling region
. ^t-\d: ::!r (10.34)

Eor 1

Note that many pulss have rhe property 11| ;3 : d-r (e.g. (10.42)), such that in these cases

(10.31)

(10"32)

(10.33)

( 10.29)
lim r9-1 - ry. The restriction
f-0

lrel < I (10.35)



1O6C}IAPTER IO. MOL,IENTUM TRA,AISFER, CLASSTCAL DISPLACEMENT AND STABILIZATION

gutrantees convergence, uniqueness ard avoids trarrsversion through the branch cut concerning the
above integral representations for the corrfiuent hypergeornetric functions. So we have to keep in
nind that (10.32) is only applicable under the condition (10.35).

Once rnore wc may check for consisterrcy and verify whether anythilg went wrong tluring the
computation. Takirrg the limit c(r) - 0 we should recover the result (10.28) of the precedirrg
subsection. Indeecl
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lrr principle there is now only a time integration and the unknown 1at (t) left'

Tlie ieneral solution to (10.20) may be approximated by an iterative procedure in a similm

t,,rhi;; ; we generated (r0.i). Howmr, in this cme the problem of convergence is taken care of

lry a well-known theorm concerning integral equations (see for imtance l15i]). It states, that if
t lrr free term in a volterra equation is absolutely integrable, then successive appruimations for this

,lluationconvergeforaJlmluesoftheconstilltinfrontoftheirrtegral.Hence,choosingaremonable
1,ulse, the iteratlve solution to (F.1) always makes sense' In Appendix F this point is discussed in

rrrore detail.
In order to study the explicit dependence of the ionization probability m a functiou of the

irrtensity of the incoming light, we hm to select a conclete pulse. we c-hoose linearlv polmized light

*,itir u t.upuroiaul "tt"lopi.g 
ftt"tion. This type of pulse hm also been taken m m example in the

',*rior" ".lrupt", 
(see Subsec-. g.2.3, Equatim0.24) ancl is widely used in the literature [109, 150]'

w" 
"orrid". 

. prlse of duation r which hm linear turn-on md turn-ofI ramps of length ?1. choosing

ttr" ru*p. to have the length Z -nT,withn being an integer, we have the desired property that

1,(r) - 0 16t ubitrary t- Thn totul di"splmer'ent takes on a pmticularly simple form in this cme

- 2 ((!
ufi \\2
,

/n t'-t

Jim q(r)
.(r )-0

'' t u, ('::"\,i'!r1,.1i'"'1
,,,,1111, .oe(') = 6', \ 2 / 2r1r,';\ 2,J =

LO.2.2 All higher Order Contributions

where the latter equality follows upon a well knowr identity for confluent hypergeometric fuctiorrs
which may be found for instance in [1,10].

b(r)l0and c(r)10
Finally we treat the generic case, that is for arbitrmy 6(r) I 0 md c(r) 10. Once more we may use
a deconrposition into partial fractions and reduce the computation of (10.22) to integrals ofthe iype
which are directly related to the integral representation of the confluent hypergeometric functions.
Introducing the quantities

2

b(r)2 *2ib(r)a

witli i : *3 * I we obtain for the mplitude of the surviml probability

t, I

qftt - ft iu.' 1o*1 +ui,i@ t] + fr14,+(a-) + L/+,j(6+)]

Due to the same reasons m in the preceding rection, i.e. properties of the integral representation of
the confluent hypergeometric functions, we obtain now the condition

itl: +10*rt"tl. t (10.3e)I I lEol r "l

in addition to (10.35). Once again we may carry out the limit b(r),c(r) + 0 md try to recover
(10.28). Indeed we obtain

w'hich rmishes with the adilitiona.l constraint on the pulse^duratiot r : 2nX' Of couse in order to

,r.tro* ft1t) :0 one may also fix the pulse <luration r : nT,leaving ? m the only mriable for this

family of pulses. In this case we have

4n -- #(t-t' (f;) * r'"" 2o)sinoz)

10,2.3 First Order GV perturbation Theory

(10.36)

(10.38)

(10.40)

(10.41)

E6.
c(T) - -, srnuT (10.42)

(10.43)

We now come to the higher order contributions. For this purpose we have to evaluate (10.23), which,
after computations similar to the ones in the preceding section, equals

[or pulses of the type (9.24) ue will now analyze the ionization probability up to first.order-in the

GV expansion. Foi this purpose we want to approximate the function lr (t) in (10 40) by the free

r",''i'tt."Volterraequatim(F.1).Inordertoselectpalametersforwhichthisapproimationis
ralid, we consult the expression foi the rnuimal relatir.e error p computed in Appendix.F (F 18)'

FromFig.l0.lweobservethatrr:1/8andr-1s}rouldleadtoreasonablypreciseresultsforthe
cxe b(r) : c(r) : O

w" ,t 
^tt 

riow briefly comment on the convergence of the GV series for some results presented in

theliterature'Forinstance,inthelmtreferenceof[101]apulsewithinstmtaneousswitchonwm
trsed in this context, i'e' E(t) - Boto'1"), mti m anilysis up to the first order CV-perturbation

theory -s caried out. Typical pmmuters in [101] were o - 712,80'5'o : 15and the.pulse

length was 2 cycles, that i" t - & For these paiameters we obtain p=844 ' 
such that we do not

"rp'."t 
.orr"rg"rce of the GV-perturbation series up to this order. In frot, as 10.2 shows, relemnt

contributions are to be expect; up to the order 10- The convergence is even worse for_the.tlpical

furu_"t"r, used in [150], .io"" * Fig. 10.2 indicates in this case (diamonds) one should go bevond

the 4G.th order to achieve u."u.oru-bl" apploximation. These arguments also raise doubt on the

,"liut ility of statements based on this order of the volkov series in the context of the Hvdrogen

"i.- 
-ftriiri 

t"r"rence in [101]). Of course in order to be qumtitatively prmise one requires a similar

,"Jr"j" u, carried out ir'Appen4ix F for the coulomb potential. since this is a long range potential

or" 
"*p""t" 

intuitively thal the GV-series converges even more slowly than in the presented cme.

ll]h" *g.-".t presented in there, i.e- that the addition of the next order onlv chmges slightlv the

*rrr, i, not rigorous since this efiect is additive and in the worst case one might be in a sitrration

for which the contributions from erh higher order re still increming (m in Fig. 10.2 the curve with

diarnonds indicates).

and 61 -,o' (+it +; (r - 4)

(r-s)a(t))+ if,-"l (", (,_ -rfrl;')

ff)

with

o! - +o (c1"
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Figure 10.1: Upper bound for the relative error obtained by solving the Volterra equation iteratively,
as a function of t, for several values of the coupling constant a.
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Figue 10.2: Upper bound for lr/(t)l obtained by iteration of the Volterra equation, as a fimction
of the order n of iteration.The upper boud to n-th order is multiplied by a normalizing constant
N , md denoted by WB(!")- The crosss and diamonds refer, respectively, to parameters used by
Geltman [101] and by Su et al. [150].
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10.3 Discussion

FYom the results of this chapter, it is clear that the important pilmeters determining the absence

or the presence of stabilization are the momentum trmsfer and the classical displacement at the

end of the pulse. This condition is independent of the frequency md the pulse shape, such that the

turn-on md of play only a secondary role.
In the literature, some authors take only the momentum transfer 6(T) at the end of the turn-on

m m inportant condition for the existence of stabilization 1L12,122]. Some computations do not
cven fulfill or refer to this condition 1125, 117). In our analysis, this is not a crucial ptrm€ter'
Howerer, for some pulse shapes, such m a trapezoidal pulse switched on md ofi in an integer

number of cycles, it so happens thai b(") and. b(r) vmish. since nmerical computations ile
sometimes of difrcult interpretation,they would possibly suggest that the former, md not the latter
parameter, is of importance. In some computations, the conditjon b(r) : g is actually fulfilled, in

the sense that the vector potentiai, and not the field, is switched on md off smoothly [114]. For

A(0) - 0 and -4(i) continuous, A(l) and b(t) ditrer up to a minus sign (see chapter 2). These

authors me in fact aware of the condition upon the momentum trmsfer, which is discussed in

detail in 1121]. However, since their studies were mainly bmed on clmsical arguments, we present m
alternative and more rigorous interpretation of this condition. The condition concerning the classical

displacement is usually not mentioned in the literature, md, in mme casm, b(r) :0 still yields a

considerably lmge clmsical displacement at the end of the pulse [104, 109, 111]. Recently, however,

.umerical computations fulfilling also this condition 1131] reproduced the experimental results of [21]

quantitatively. Qualitatively, ou results for vmishing momentum transfer and classical displrcement

a1 the end of the pulse also agree with these experiments, in the sense that the ionization probability

as a function of the field strength tends asymptotically to a finite ta)te smalLer than one.

AIso the high frequency approach is a way to gudmtee ihat b(t) md c(t) approximately mnish

for all times. As a consequence, the trmformation from the Kramers Henneberger frame to the

velocity or length gauge becomes the identity operator, such that the ionization probability does not

depend on the xternal field.
Our malysis hm a.lso shom the inadequacy of the zeroth order Gordon-Volkov solution for

clescribing atomic stabilization. Within this approximation, one can at most identify this phenom-

enon in its weak symptotic form, for mnishing 6(r) and c(r). For describing stabilization in its
strong form, it is definitely not sufficient. F\rthermore, for typical parameters, the Volterra eqrration

(10.20) prerents a very slow convergence, such that rnore ordem ofthe Volkov serim me necessary for

an appropriate computation of ionization probabilities. Therefore, existing results in the literattrre

conrerning this pheromenor bmed on the Gordon-Volkov solution, as for hstance [99. 101' 104, 105]

nnrst be seen with extreme cile.



IIOCHAPTER 10. MOMENTUM TRANSFER, CLASSICAL DISPLACEMENT AND STABILIZATION

Part III

Low-intensity harmonic generation
with short pulses
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Chapter 11

Amplitude-modulated second
harmonic generation as an initial
value problem

In the previous pats, re were concetned with high-intensity optica.l phenomena' in pmticular ion-

ization and harmonic generation. In this part, we consider the nacrcscopic resporce of a medium to
short-pulsed incident radiation, within lhe ueak-f'eld framercrk. More spcifically, we present m m-
alytical solution to second harmonic generation (SHG), taking into mcomt an amplitude-modulated
irrcident pulse of arbitrary shape. one should keep in mind that the single-atom respome is not the
gnly source of humonic radiation, but nonlinear optical processes may also occu due to wavemixing
in a medium [6]. In most computations in the high-intensity regime where propagation is included,

l,hese effects are neglected 158]. Hmmonic generation at low intensities involvilg single atoms is

briefly recalled in Appendix B.
Until the eighties, experiments on nonlinea optics been performed either using cw lmer radia-

tion, or relatively long laser pulses. Within this frmework, the propagation equations are reducible

t.o coupled first-order ordinary differential equations, which cm be solved malytically. As the laser

pulses became shorter md shorter, the walk-ofi of the pulses at fundamental md harmonic fre-

rluencies gahed considerable importmce in the physics of nonlinem optical processes, such that
ron-stationmy efiects like group velocity mismatch have become a problem of interest 1153, 1541.

For such fields, even in a onedimensiona"l theory, which we have here in mind exclusively, nonlinem

partial differential equations must be solved.

In the cme of a puely amplitud*modulated fundamental wave, the problem is governed by a

sccond-order equation nmed after Liouville [155] (which should not be confused with the Liouville
cquation in Statistical Mechmics). Even though this connection hm ben knwn since a quarter of a

<:cntury 1156], to the best of our knowledge no attention has been paid to it in curent text books on

nonlinear optics, or in mticles on SHG. This is rather surprising since the Liouville equation is one

of th€ few exmples of nonlinear equations for which the general solution can be derired explicitly.

Such a solvable theory is very use{ul, and even under conditions where the inherent idealiations are

only approrimately fultrlled could be ued as a zeroth-order appruimation. Despite of the general

solwbility it is not quite obvious how to select, mong the solutions of the Liouville equation, the

physically relemnt SHG solutiors. Therefore, it is a matter of interest to consider the following two

<luestions, whose mswers characterize the purpose of the present chapter.

1. How to solve the initial value problem for an incident pulse of mbitruy shape at the funda-

113
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mental frequency, udcr the condition that there is no incident harrnonic wavc?

2. Are there exmples for which this problern has a fully arralytical solution?

Both probleurs are of physical releunce and experimental iDtercst [154, 157, 158, 159, 160, 161],
and to our knowledge the prescribed initial value problem has ncvcr bcen systematically studied. A
particular tvpe of analytical solutions with the initial pulse being of squared Lorentzian shape wm
found by Akhmanov et al. flti2l, c.f., Subsec. 11.3.3.
Throughout this work, we will discuss a rnore general approach and study this problem systenati-
cally. We will give several new analytical solutiorrs for experimentally relevant initial pulses.

Thischapterisorganizedasfollows: InSec. ll.l.lwcbrieflyreriewthebmicequationsdescribing
onerdimensional SHG in the siowly varying amplitude approximation md in Sec. 11.1.2 we establish
the connection to the Liouville equation. Siurilaity trarsformations of evolution equations, which
are useful in the subsequent malysis, are discussed in Subsec. 11.1.3. In Subsec. 11.1.4 we define
Goursat and Cauchv problems. Subsection 11.2.1 is the main part of the chapter. In there, we
show how the physically relevmt initial value problerr is reduced to a Schrrldinger-type equation,
where the initial pulse shape plays the role of a repulsive potential. In Section 11.3 several exmrples
are malyzed in detail. Analytical solutions are given for mmy realistic cases and a broad class of
exponentially decaying initial pulses is found with the help of a single numerical integration. In
$nrl ion I I.4 wp stalc our conclusions.

11.1 Second harmonic generation in one space dimension

11,1,1 General propagation equations for short pulses

The propagatiorr of an electromagnetic wave in a rredium of dielectric constmt € is given by the
wave equat ion

Here, E(r-,t) denotes the electric field md the vectors on the right-hand-side the macroscopic pe
larization inclucecl in the meclium by the field, -i11 p(l)(r',t) and,Fry;(r-,t) corresporrding to, re-
spectively, its lirrear and nonlinear response- As a Iirst simplification, we take the clectric field as a
qumi-nolochromatic wave propagatin€i along an uis x, such that this problem can be reduced to
a one-dimensional onel ,

lr-1r,t;l 
: 

l;l',,11 
:86(z,r)expli(kz,r)l (11.2)

We consider now that the enveloping function -80(r, t) vuies much more slowly thm the oscillating
part of (11.2), such that the second temporal and spatial derivatives in (11.1) me negligible. This is
called the slowly-urying amplitude (SVA) approximation. With this further restriction, we exclude
for instance half-cycle puises [163] from our ftamework. After a few other manipulations, which
include the neglect of the dispersion of the noilinear polarization and of the dielectric constant

16l(i.e., e(o) r 1), onc has

'1pr"1r,t1e ,tt " ,tt
KC'

( *.J#) EFt)- jfi1aoo-,t)+FN,(i,,)) (111)

(-*u * i*) u^"'" - (11.3)

r Oxc shotrld trote that, in (iase one is iDterost(xl in, for ir$tancc, dcscribing thc propagation of the high harm.lics
rlistrsscd irr thc prcvious chapters, orc rnust tlkc a lield of the fonn ! E6.(o) exp[in(kx - at)], which correspurds

to the outpuir oI iihc sirgle-atom (:onrputatirr)s perforne<-l irr P:rrt I.

11.1. SECOND HARMONIC GEI{ERATIOAT IAI Ol{E SPACE DIMENSION

where un : dk/du is the group velocity of the pulse, msumed constmt. For strictly monochromatic
fields, the second term on the left-hand side is zero. Not'we make the assumption that PN, can be

expuded in pcwers of the field. The most general form for this expmsion is the tensorial product

FNr.@,t): x@ . E@,ilE(r,r) + x(3) , E@,ilEG,qd(r,t) *... (11.4)

The tensors X(')me ca.lled "nonlinear susceptibiliti€s", ard depend very much on the material in
question. For instance, for isotropic materials, such as gases, due to symetry considerations,
the even susceptibilities vanish (see e.g. [164] for a detailed discussion of this issue). Clearly, the
e-xpmsion above orrly converges for ueob fields. In the high-intensity regime, the induced poluization
is a complicated function of the intemity of the driving field, suc.h that in this case a numerical
treatment is required [22]. Moreover, there is an extra phme involved in t]re problem, since the
harmonics generated in the single-atom response have an intensity-dependent phme. Concerning
second harmonic generation, we consider this expansion up to 1(2).

In a second<rder nonlinem medium, the interaction between two qumi- monochromatic plane

electromagnetic waves, with slowly wying complex electric field mplitudes Eu(r,t), Es2(u,t) and
respective frequencies u1 atd. a2 : 2ut, is described by the two dilTerential equations [29]

115

@, + :a)Eol 
: -lzEozE1t, @,+ iuUu.- -t=E1t ( l 1.5)

(11.7)

(11.8)

(11.e)

(11.10)

(11.11)

(11.12)

Here we msumed that the wav*numbers of both carrier waves fulfi-l the phmematching condition
kz - 2h. The stm denotes complex conjugation. r,l are laboratory space and time coordinates.
The coupling constatrt E is expressed m

,- 12) ,2

= '\ Y!
ktc2

Ll.L.2 SHG and the Liouville equation

(11.6)

ln order to write the equations ofmotion in a convenient form we introduce characteristic coordinates

x:u( t+ xlu2) : -ur2 t r -u(t- rlut) :vrt,

where the parmeter z describing the group velocity mismatch is given by

y : (71u2 - Tlrr)-t ,

and introduce new amplitudes q1, q2 by taking

Es1 : tAE 1 q1 , Eoz -- 21E-1qz .

The inverse transformation of (1i.7) is

/ l+r , ! 1fu]+rfu2,
and the derimtives ae trmsforrned according to

o,-o"rlar,a,=a,rLo,.'utu2
In this way we arrive at the differential equations

P, + 
|aSq, - oxqt: -2q,zqi @' + !a)q": fl,q2: ql :

The scaling of the mplitudes is such that, up to a common scaling factor, lqrl2,lqzl2 may be

interpreted m photon current densities. The physical conditions included in the present model can

be srrmmarized m follows :
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1. Applicability ofthe slowly varying amplitude approximation (SVA), i.e. the pulses should still
be long compared to the wavelengths.

2. One-dimensionality in space, i.e. the transverse structure can be neglected.

3. The phase matching condition 2fu - 1x, for the wave numbers k1,2 are fulfilled exactly for the
two carrier waves.

4. The group velocities u1 md u2 do not coincide, but

5. the dispersion within either of the two pulses at frequencies us and2ws cm be neglected.

According to thmretical estimations 129] and experiments [154] these presumptions are quite
realistic. For instmce, for 100 fs pulses with intensities above 100 GW/cm2 and long focus con-
ditions in KDP or LiIO3 crystals, high conversiotr efficiencies cm be achieved over crystal lengths
of several mm. Both pump depletion and group velocity dispersion then become importmt and a
non-stationay approach to the problem is required. One may a.lso think of a realization in a planu
optical waveguide.

The bmis for applying the inverse scattering transforn method to equations (11.12) with complex
amplitudes was established bv Kaup 1165]. Its full development, however, met some puticular
difficulties which have not yet been solved. Recently, Hamiltonian structures and pmticulm solutiorrs,
not reducible to real ones, of (11.12) were established 1166]. Here we focus our attention on purely
amplitude*modulated signals. Thus the amplitudes q1 atd, q2 are real, and the stms in Eqs. (11. t2)
cm be omitted. Clemlv, this further approximation excludes important physical effects due to phme
mismatch and related applications [167].

Let us now consider causalitl'. In the 1*1 dimensional world of the present SHG model, propa-
gation occurs only with velocities or ild o2. For definiteness we will msme ut ) uz t normal group
dispersion, such that z defuied by (11.8) is positive. One should notice, however, that our results are
ea^sily trmsferred lo uy 1u2, i.e., anomalous group dispersion. The cone o.f t'uture from r : t:0 is
given by the region

u2t<r<uJ,, i.e.,1>0,2>0. (11.13)

The signs of the chmacteristic coordinates 1, r are such that causal action always occurs in the
direction of increming coordinates.

It wm found by Bms and Sinitsyn 1156] that in the case of real amplitudes, the SHG problem
of Eqs. (11.12) is solmble. Actually, it is "C-integrable" [168], which means integrable by churge
of variables. Inded, one can se that from Eqs. (11.12) with real waves q1,q2 we may eliminate q2

arriving at the Liouville equation

axa"h(4sl) - 4s?

The general solution is well known 1155] md it is given by

hr Eq. (11.15) -F(X) and G(r) me arbitrary functions, which depend only on 1 and r respectively.
The prirnes denote differentiations. The solution is completed by substitution of Eq. (11.i5) in Eqs.
(11.12), leading to

2 1 F'(y)G'(r)
" 2 (F(r)+ G(r))?

1F"(r) , 7 F'(X)sr--4rrr+aF0)+G(r)

(11.14)

(11.15)

(11.16)

I 1.1. SEAOND HARMONIA GEAIERAT]ON IN ONE SPACE DIMENSION

11.1.3 Similarity transformations

Given my solution Sr (X, r), q2(1, r) of the equations of motion, a twGparameter mmifold of sohrtions
cm be found by use of similarity (scale) trmsformations. Equations (11.12), in fact, me invariant
under the two following scale transformations:

i) The conformal transformation

tr -oi. r- oi. qr(i.iy: lq,1oi.oi1.,?z(i.t) = ln foi.orl

ii) The r-dilaiion
7 ,^r b2i 4r(i.i) - ic,fi.a'i).

(11.17)

(11.18)

(i1.1e)

(11.20)

md the general similarity trmsformation is obtained m a combination of both there types. Here
o md b are real numbers. Under conformal transformations all the four quantities

tl
/ dr qo(1..) 

/ 
dr qp(1. r) k . 1.2 .

are inmriant while, on the other hand, the r-dilation does not change the integral

I a' q!1a''1

In the context of the Cauchy problem discussed below, it will be of interest to use only invmiance
trmsformations that map the set of straight lines r = X+ r : cmst. to themselves. This restriction
is fulfilled by the confomal transformation, but not by the r-dilatiol- Thus my particular solution
of Eqs. (11.12) represents a ontsparameter family of solutions.

11.1.4 Goursat and Cauchy problems

One may relate two typical initial value problems to the coupled differential equations (11'12):

i) The Goursat problen it which initia.l values are given at characteristic curves

sr(0,r):oro(r), r>0 ; s2(x,0): qzo(x),x>0. (11.21)

After substitution of the general solution (11.15-11.16) in Eqs'(11.21) the functions F(1) and

G(r) can be determined by quadratures.

i) The Cauchy prcblem in which the initial values are given on some line that is nof a characteristic

curve. This is usually the cme, as from the physical point of view, it is natura.l to give both
fieldsglandqzforr:0,i.e.,accordingtoEqs. (11.7) and(11.10),forr:-Xand't:X/v,

qtGr,r): qlo(r) , q2(-r,r) - q2s(r) (77.22)

In a comon situation encountered in *periments [169] there is m incident gromd rvave, q1,

with no incident harmonic wave) 92. This is the Cauchy problem specified by qzo :0. In the

following we will be concerned with this problem, and we will refer to it x the restricted Cauchy
problem.
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1L.2 The restricted Cauchy problem
-LL.2.'L Solution
Let us wite the restricted Cauchy problem in the form

s?er,r) - 1r(r) , az(-r,r) -s (11.23)

Thus, starting from the general solution of Eqs. (11.15-11.16), we have to determine the fmctions
F(1) and G(r). Upon defining

we get

(77.24,)

(11.25)

(11.26)

where the curly bracket denotes the Schwmzim derivative [170]. The function p(r), defined in the
second of Eqs. (11.25), fuffils the Rjccati equation

nt_ 92 _211 
,

which by raking 
a: _a,/a .

is connected to the Schr&linger-type equation

6" -21ft
By comparison of Eqs. (11.28) md (11.25) we find

,h' 7 l{tl
,b- tw'

1

.tR

Summarizing we may formulate the following "recipe" for solving the restricted Cauchy problem :

1. Given an initial pulse shape I1(r) one fust hm to solve the second order differential equa-

tion (11.29), which cal be viewed m a Schrcidinger equation with repulsive potential 2l(r)
md eigenalue 0. This is also known as Hill's equation [171]. We require @ to be a real function.

11911.2. THE RESTHICTED CAUCHY PROBLEM

4. Eventually, the solution s(x,t), qz(x,r) is found by substituting .F(1) md G(r) in Eqs.

(11.15) md (11.16).

Klr): F(-r)

K'(r\G'(r\ I K'l2l1i):::ji , ao)lKtG)' 2Kl K+G

1 I ,, QUIQ,U) I Iqz(x.i - z,pulo't- r) ;frirra,rot,ltrt.l ,c*ril (II.3b)

We a.lso notice that the choice of a symmetrical initial pulse 11(r) results in m even funciion qi(r)-
In this cme F(1) is an odd function, and the general solution in Eqs. (11'3411'35) cm be witten
in the form

^2r. -t - 6"(r)60) / t \'1t\^'rt - 2d2(l ll+o(r)d'(r)[F(r)rF(r)lJ
I i.,. . o\r)o'(r) Iqz(x.r): ffi[a'trt+ ,(\) 1-dGpTiltF(

,. \ e"(r)e7)( 1 l'Qttx.rl : tri(, f li;a';ZGtiF ) r(_\) /

d(\) : dr{\) (. - *,/' ,#)
c1 ard c2 being real numbers. By taking the integral in Eq. (11.32), we obtain

* 1 aF1+b
ct + c2F1 cFr + d'

(11.34)

(i1.36)

(11.37)

(11.3e)

(11.40)

By elimination of G in (11.25), we find

and, by integration,

{K,.t:#-i(#)":u,,

(11.27)

(11.28)

(11.2e)

(11.30)

(11.31)

(11.32)

(11.33)

It may be worth noticing that qi (1, r) and q2(a, r) can also be expressed in terms of p(r) and thus

avoiding the wave function /. Flom (i1.25) and (11.33), in fact, we get

al / r'

K(r) Il-W *",*")] ,h' G(r\: -Ktr) -t *,(, i ^rrr) 
(r13s)

The wave amplitudes q1 and q2 can be obtained by substitution of .F(1) : K(-1) md G(r) into
Eqs. (11.15) md (11.16).

'1.,'1,.2.2 About uniqueness

In our procedure the solution of the restricted Cauchy problem is reduced to the solution of a

Schrddinger (Hill) equation. The latter is by no mems unique, because we did not impose my
boundary or mymptotic condition. On the other hmd, fiom physical intuition, we expect that there

is a mique solution of the Cauchy problem in ou cffi. How can this appment discrepmcy be

resolved ?

Given my particular (real) solution f(x) to Eq. (11.29) the general solution is foud m

By mems of Eq. (11.31), the function F can be emluated m

xOt: [' ,!i',. , F(r):r((-x) .

Jo Q \r')

Upon substitution in Eqs.(11.25) md (11.28) we mrive at the fuction G ,

In Eq. (11.40) ca is m inte€iration constant, nd a,b,c,d' ae real numbers determined, up to an

arbitrmy comon factor, by ct\cztca. Eq. (11.40) tells us that F is determined by @ up to m
arbitrmy liner rational mapping. Indeed, ii is known [170] - and could be checked directly that
the Schwarzim derivative is imariant under such a trmsibrmation, md thus the potential 11(1) in
(11.26) is inwiant. Nloreover, stetin8 from Eqs. (11.32) and (11.24), it cm emily be derived that

Clr) xlrl*2!r' : F( rJ 
e ,
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-G and -G1 are connected by the same linear rational trmsformation connecting fl and F1. The
proof of uiqueness is completed by noting that the right-hand side of (11.15) is invariant under an
arbitruy lineu rational trmsformatiol simultaneously applied to both F' and G. Therefore, any
solution of a given Hill equation leads to the same physical solution for the pulse amplitudes q1,92.
(Note that q2 is determined bv g1.)

l-1.3 Examples

The formalism discussed in the previous sections can be applied to several pulse shapes, leading to
fully analytical solutions for the Cauchy problern. Sorne of these pulses are presented and malyzed
in this section. In subsection 11.3.4 we a"lso consider a broad class of solutions, having exponential
decay as a distinctive feature, which cm be generated by a single nmerical integration. In a.ll the
following exmples we impose the condition that the second harmonic wave is zero at the boundary
r : 0, corresponding to the natural experimental conditions. In the transformed frame this reads
qz(x- -r,r) -0.

11.3.1 Square Pulse

We first consider ar initial square pulse, of intensity 16, switched on and off at respectively t - 0
and t - tp. For this pulse, the boundmy condition to the Hill equation is given by

I1(r) - lofor 0 < r < ut, mcl : 0 elsewhere. (11.41 )

The solution of this problem requires the definition of severa,l spatiGtempora.l regions, which are

shown in Fig. 11.1, both in the lab frame (r,t) md in the characteristic frme (1,2). The "pieces"
of the solution in the respective regions are connected by the conditions that 91 is continuous and
difierentiable in 1, whereas 92 is corltinuous urd differeltiable in r. From Eqs. (11.12) we get

11.3. EXAMPLES

(b)

Figure 11.1: Spac*time regions I to VI of the solution for an initial square pulse at the fundmeutal
frequency. In part (a) the lab coordhates (x,t) are taken m Cartesim one while in pmt (b) the

sme holds for the characteristic coordinates (1, r). The intermtion occus in the regions I md II.
There is no field in II and VI while in IV md V there is free propagation of the hmonic wave.

t21

(a)

q1=0, q2=0
q1 =0, 0,q2=0

in regions iI and VI
in regions IV and V

( 11.42)

ThedynmicsoccursexclusivelyinregionslandlllandtheCauchyproblemofEq. (11.41)reduces
to the following problems

i) the Cauchy problem for the triangle I

q1( r,r)-Io , az(-r,r):g'

ii) and the Gousat problem for the strip III

qt(x-0,t)-qro(r) ,0<r<ut, i qz(x,r-0) -0,0<x
where q16 is knom upon i) has been solved.

The Hill equation for triangle I is emily solved by

a(r) cosh(Br). B J%

Thus, in region I the solution is given by

q?Q,i : 16 sech2[B(1 + r)] - 10 sech2(Bz)

s2(x,r) : f tanhlB(1+r)):f;t^n1a,)

(11.43)

(11.44)

(11.45)

(11 46)
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Figure 11.2: Solution for m incident fundamental wave being a square pulse. Pat (a) shows the
fundmental mplitude q1 , pmt (b) shows the harmonic aurplitude q2. Note that, for r : 0, it holds

r - utwith z being the group velocity mismatch defined by Eq. (11.8).

The Goursat problem in the strip III hm to be solved with the initial condition

thus leading to the solution

q?00) - lssech2(Br) ,

^2r. -, - 
Io

vr\t " - fcosh(Br) I ElsirrJr(Br)2
B

q:(\'r) ,1B\ *tL(Brl

(11.47)

(11.48)

The complete solution is depicted in Fi9.11.2

t1.3,2 LorentzianPulse
Let us now consider, es a fudamental wave at the boudary z - 0, a Lorentzim pulse, that is, a
pulse whose intensity is given by

(11.4e)

(11.50)

l1.(r):r+l
As one cm emily verify, such a pulse corresponds to the following "wavefunction"

4(r)- r+r2 .

from which we find
|. ] tm[amctm(1)]

r(,1) :{ - -uctm(1)
[ -ir*[6uetm(;)]

11,3. EXAMPLES

Figue 11.3: Amplitudes q1 aed q2 for a Lorentzian initial intemity lgtl2 ut th" fundarnental fre
quency.

Stating from Eq. (11.50) one cm derive the solutiom for both wares in an arbitrary crms rection
of the nonlinea medim, which are

t23

This mlution is depicted in Fig. 11.3

11,3.3 Squared Lorentzian

llere we consider a pulse for which the fmdamental warc amplitude, at the bomdary' hm itsel{ a
Lorentzim shape- The intensity is thus a squared Lorentzian given by

^2r. -t - 
1 I 

-Y1\^" / - (1 + x2)2 (arctmx + mctan, + #, a ly r2(r + rz)

)r1 Iq2\x.r) : t+rt+(l FltF@

1"trlr): *;7g.
This pulse corresponds to the following wave fmction

f cm lc arctmlr)] , 1 - Io : a2 > o
4(i--G*r21trz1 I , ro:1

I cmh[6arctan(r)] 1o 1- 02 >0

(11.51)

(11.52)

(u.53)

(11.54)
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Figue 11.4: Solutions for a squmed Lorentzian initial pulse intensity (dashed lines) are compared

with solutions where the initial intemity is approximately a sech2 shape (solid lhes). Here, only
the initia.l mplitudes q1 (pmt a) and the asymptotic hmmonic amplitudes ez (part b) are depicted.

For the three examples, the initial fundamental pulse shapes differ in their amplitudm, while the
half width is the sme for all these pulses.

The outgoing second harmonic wave is strongly dependent on the peak field intensity 10. Thre
regions can be distinguished: very low (10 < 1), intermediate (10 : 1) ma higher (but still pertu-
bative) (/s > 1) intensities. For the intermediate case the propagated solutions for the two waves in

the medium have the pmticulmly simple form

q\&,r) :

qz(x,r) --

111
tI--T("*G;(\)-"*i."(') , +F 4:A

\ i_ 1

211 r 
^z' 

2\7 + x2) (ilcran(\J . actan(r) + ])
(1 1.55)

The solutions for 16 > 1 md for 1s < 1 can be given as rel1 by substitution of (11.53) md (1i.54)
in (11.36) and (11.37) . The explicit formulas are rather messy, however, md therefore will not be

presentedhere. Theproblemforlo > lwmalreadysolvedbyAkhmanovetal. [162]. InFig. 11.4we

show three examples of initial q1 - pulses (upper pmt), together with the corresponding asymptotic
q2- pulses (lower part), for Is: ) (upper curve), 1o = 1 (intermediate cuwe) md 10 : 0.5 (iower

cuve) .

11.3.4 Exponentially decaying pulses

In examples treated il previous subsections (as well in the next one) the solutions cm be explicitly
obtained in analytic form. It seems, however, impossibie to do the sme for m initial pulse with an

11.3. EXAMPLES

exponentially decaying shape. Here we start from a puticular choice of '\rave fmctiom"

Q(r) : a + loe[a + cosn'1r;],

which corresponds to an initial pulse shape given by

I1(r) : 4 [1 + (1 + 2b) cosh(2r)]

11 + 2 + cosh(2r)J2 [a+ log (a+ cmtt'(t)))]'

the latter exhibiting the exponentid decay

125

(11.56)

(11.57)

(11.58)

(11.60)

(1i.61)

(11.62)

(11.63)

(11.64)

For this kind of pulse, we have no closed malytical solutions- However, the numerical solution is
obtained by mm of the quadrature of Eq. (11.32). An interesting application makes use of the
fact that the free parameters o and b may be adjusted to approximate sedr2-shaped pulses of the
form

fr(") : io"..l'?(t) . (11"5e)

This puise shape is obviously of experimental interest, since it represents the output o{ mmy lmer
systems. As m *ample, by choosing (4, b) : (3.45,0.12?), O.q,0.257) and (0.176,0.579) both
muimamdhalf-widthsof [(r) coincidewiththoseof{with1o:0.25,0.5, Irepctirely. In
Fig.11.4, the initial pulsm and the asymptotic harmonic pulses me depicted, in comparison with
the corresponding cuves of the squaed Lorentzim pulse. It can be seen that the trailing edge of
the q2- pulse is steeper for the sech2-pulse thm for the squared Lorentzian. Apart from that, no
striking difierence cal be seen between these shapes.

11.3.5 An asyrnmetrical pulse

Here we will give the complete analytical solution for a puticulu asymmetrical initial pulse

lrt-.d 4(1 + 2b)Itftl "= rffiexn(-2ltl) :

I,@:+ip(,-#.), e =tr
For e : *1 the mymptotic behavior is given by

O0) : ,/T+,' +,' ,

md the fuction .F by

r,(x) : x(1 +f,x\ +25lO+x"l"r" -tlf

tt- (1,l4ra), r++m ; \- (tlr2), r+ -6

and vice versa for e : -1. In other words., the two pulses cm be obtained one from the other by
the transformation r + -T. The corresponding "wave function" is given by

Through Eqs. (11.15,11.16) we eventually mive at the complete solution. The asymptotic shape of
the ha.rmonic wave is given by the rather simple forrnulae

ez(x,r-d: # ,e-fr
qz(x,r--,- ;#;-#,,:-t
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Figue11.5: FortwomlmetricinitiaJpulses(dashedlines),onebeingthemirrorimageoftheother,
the asymptotic hrmonic waves (mlid lines) are given- Pmts (a) and (b) conespond respectively to
e :-11 mde :-1. Thefactorrtwasintroducedfornormalizationpurposeswithrespecttothe
energy (c.f. the t*t).

It is worth noticing that here two initial pulses, one being the timereversed image of the other, yield
quite different results. In pmticular the mymptotic pulse is symetric for e : 1 1, but mymmetric
for e - I , se Fig. 11.5. For a quantitative compaison of the incident fundamental wave with
the aslmptotic harmonic wave in one and the same diagram, the respective electric field envelopes

E1,82 me more appropriate thm om amplitudes at,U- (We rmall that lq6l2 x photon current
densities). Due to the fact that hf E2: qrf tDqz we hare introduced the multiplicative factor t/2
in the figure.

LL.4 Conclusion

We have treated second harmonic generation in one dimension with mplitud*modulated pulses

where the fundmental wave was the only incident pulse. We have shown how to reduce this problem

to that of solving a zeroeigenmlue Schrddinger equation, the initial pulse shape being formally a

repulsive potential.
Instead of starthg from a specified pulse shape, we took a properly chosen multi-parametric set of

"wave functions" @(r) and easily computed the corresponding set of potentials. The free parmeters
of these solutiom cm be used to appruimate pulse shapes of interest. To give a complete SHG
solution, this method requires at most the single numerical integration of Eq. (11.32).

Using this approach we were able to obtain solutions for initial pulses approximately of a sech2-

shape with very little nmerical efiort. We also prwide fully maly'tical solutions for reveral cases

of interest, among these the well known solutions foud by Akhmmov et a.1. 1162], initial square

pulses, and asymmetrical initial pulses. Using a paticular example, we have demoretrated that two

11.4. CONCLUSION

asymetric initial pulses, differing only in the time orientation, give rise to quite different solutions.
We believe that the method introduced here should be useful for optimizing SHG and achieving

suitable pulse-shaping in a broad rmge of working conditions.
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Chapter L2

Summary

This thesis addresses the following optical phenomena: High-harmonic generation (Part I), atomic

stabilization (part II) md second harmonic generation with short pulses (Part III). The phenomena

discmsed in parts I and II occur for rery interse laser fields" Concerning high-harmonic generation,

we compared sereral existing models, namely the fully nmerical solution of the time-dependent

Schrodinger equation (TDSE), ihe three.step model and the twelevel atom (aJI ofwhich are discused

in Chapter 4), using mainly nmerical methods, with the following results:

In Chapter 5 we invetigate the time profrle of high-harmonic generation wilh monochromatic

driving fieids for an atom with a single bomd state, uing the threstep model and the TDSE-

we shiw that the main contributions to harmonic generation within a field cycle correspond to the

semiclmsical returning times of an electron to its parent ion'

Chapter 6 is m extension of this work to model potentia.Is with more than one bomd state.

Using a timedependent projection method, we observe that high-harmonic generation is a result of

bomlflee transitions, where the transitions involving the gromd state play the most importart role-

The generation of low harmonics, however, is strongly dependert of the atomic internal stlucture-

Pmti-culaly concerning m atom with two stlongly-coupied bound states' we have shom that thse

hmmonicsle a resdf of transitions involving only bound states. We also fild that, even for this

case, a twolevel atom yields a very poor description of the low harmonics'

In Chapter ? we a.ddress HHG with bichromatic driving fields, investigating the validity of the

thre+step model and the existence of a simple cutofi Law of the form lesl + aur- sec. 7-1 is m
extension of Chapter 5, uing time frequency analysis' Therein, we show that the mairi contributions

to HHG within a field cycle corresponds to the predictions of the threestep mode) also il this cme.

F\rthermore, the harmonic intensities strongly depend on the field at the time the elmtron le-ft the

atom, acrcrding to the qumi-static tunneling formuia discussed in Appendix c. In sec. 7.2, we show

the absence of a simple cutoff law in the bichromatic case'

In Pmt II we perform a mathematical analysis of atomic stabilization, providing rigorous criteria

for its presence or absence. According to the results of Chapter 9, stabilization is oluoys absent if the

momentum transfer is non-mnishing at the end o{ the pulse. These results ue totally ildependert

of the pulse shape, of the pulse frequency, or of how smoothly the pulse is switctred on or off-

chapter 10 stends this analysis, showing that stabilization is in fact present when

1. The classical displrcement and the momentum transfer are both vanishing at the end of the

pulse

2. The frequency of the driving fie1d tends to hfinity, recovering the results of [19].

129



130 CHAPTERI2. SUMMARY

These conclusions follow from simple mathematica"l trguments, based on the Riemann Lebesgue

thmrem and the mymptotic behavior of the time evolution operator when o + rc or -86 * m.
F\rrthermore, we show the inadequacy of the Gordon Volkov solution for calculating ionization
probabilities at intensities and frequencies usually considered in the literature, such that statements

concerning this phenomenon within the Gordon Volkov frmework are questionable.

In Part III, we provide a general analytical solution for swond hmmonic generation with mplitud+
modulated pulses, within the weak-field regime. In pmticulm, we show how propagation affects the

pulse shape of the fundamental md harmonic waves, such that m aslmmetrical pulse cm lead to a
symmetdcal second hmmonic and viceversa.

Appendix A

Atomic units

In this appendix, we giw the atomic uits, widely ued in this thesis md in high-intensity laser-atom
physic.

1. Icngth: r0 : 1 a.u. : h2 lme2 : 0.53. 10-t0m (Bohr radius)

2^ Charge: e : 1 a.u : 1.602 .10-1eC (electron charge)

3. Energy:1 a.u.- u2 lro : 27.2eV

4. Intensity: 1o - 1 a.u. - eoce2 l2r\ = 3.57 . 7016Wlcm2

5. Mms(m): 1 a.u : 9.1 .10-31kg (electron mms)

6. Flequency: o0 - 1 a.u.- 4.13.1016s-1

7. Plmck's aretmtf2n :6.5.lO-22 MeV . s.In atomic units this constant is equal to ore
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Appendix B

Single-atom response in the
weak-field regime

In this appendix, important mpects of ionization md harmonic generation for weak fields me briefly
recalled. These conventional approrches are bmed on the perturbative series (10.1) resulting from
the interaction of the Du Hmel formula (9.4). We take the *ternal laser field m the perturbation,

in opposition to the procedure used in the derilation o{ the Volkov series, such that the perturbative

series is

uf(t,t') : (B.1)

Here, uf denotes the propagator conceming the field-free atomic Hamiltmian fll md I{ the
pertubation introduced by ihe field, which is given, in the length md velocity gauge, respectively

ly Af . ,'. E(t)-,a Af : d.Attf , A2(t). In borh cases the n-th order term of the xpansion
(B.1) is proportional to the n-th power of the fieid mplitude, (E6)'. For weak fields, the series

car be trucated and yields reliable results. For strong fields, however, it clearly diverges. The

perturbatia€ seties above is the key point of the discussion that follows.

we consider now an atom initially in the state l/(t:0)) : li) subject to the pertubation I{,F.

The timedependent atomic wave function is given by

t{,(r)) - uf (r,0)lt) : i l,at"")trt), (B.2)

nP=O'

*n"r" l,r("o)(t)\ denotes the wave fiuction to npth order perturbation theory, obtained by tru-
l' '/

cating lhe tim+evolution operator util the n-th order of (8.1). In the computations that follow,

we take the Hamiltonian in the length gauge, the field to be of the form .E(f) : 'Eslsin(o"t)a"'

md a.n atom with m boud states, such that

uiA,i 1 - r I a" ul (t, 
") 

Hf (s)ul(",t' )

t- t^

- J 
o" J as' ul v,s'\ H!1"';u/1s',s)r1,r1s)u!(s.t') r ..

-;e,r lr) F il n6 [ a""-'H,'{r-')xsin(d,s)e-t'"'ri)-; r"
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i6/.(s -s)xe i€,s i) +

B.1 flarmonic generation

In order to calculate the harmolic response, one needs the time-dependent dipole moment (l(t) x ll(t))
To first order perturbation theory, this quantity is given by

d,r,:2Re{;*t",u.',,u,,F\t.o,_, .,,} (B 4)

with

. ci,2t,p, --,'sin[(u,_u - o.lt /21 ei'2tn,,+d\t sin-tairt talt ltA ,D <\E\L'@i-p cun) - @i_p_a^)tl2 (.at_p_tu")tl2

Here we irrtroduce<l the notation (, *lj) - rij ard aj+.i - €i e;. A quick inspection of (B'5)

slrows that the terms in brackets are sharply pea.ked around a. : ).(cp - e;). such that only the

terms satisfying this condition survives in the sum above. Physically, this means that a onephoton

transition can couple a final state g) to the initial state li) if they are resonant or nearly resonant

with the driving field. In other words, to fust order p6rturbation theory, the atom responds lhearly

to the field. The positive and negative signs correspond to, respectively, onephoton absorption and

stimulated ernission processes. The higher-order pertubative terms yield the nonlinear response of

the atom. The dipole moment to npth orrier perturbation theory, d('r), is given by

( "' '\

d\npt *"{tq t stq'(a1....an)e'u'' "''"'. }
l.- arr"'mL,xarr"r'|sut'q )

with the nonlinear susceptibility

x@(rt,..,uq) - t )] (w1-tuz*...*oo)
all i'rt{)nqli*e di Pvuxleilds

(ilxlp,) {p, x'42).. (rolx'i)
" 

(B'7)

The deriwtion of these formulae cm be sen in detail in, for instance, [164]. In equations (8.6) and

(8.7), both positive and negative frequencies are taken into account' There are (q |1)! permltations

ittoititg the frequencies ao...aqr " The terms Ti(rt..r) correspond to the sm ! o' until the j-th

term of the chosen permutation2. Specifically concerning the generation of the qth harmonic of a

monochromatic driving field, ore nrust take (8.6) at lemt until q-th order, with the absorption of q

photons of frequency o md the emission of a single photon of frequency qo. The absorption of ereh

1o*-fr"q.uo"y photon req.ires intermediate atomic states, which are connected by matrix elements

of theform (iS*1r5. Theernissionof theharmonicphotonisgivenbv(l"lxlr;) Theoperatorx

8,2. FERMI'S GOLDEN RULE

has odd parity. For the hmmonic emission to ta.k€ place, it is necessary that all matrix elements are

non-vmishing. For isotropic systems, like a single atom, the Hamiltonim commutes with the parity
operator, such that eigenstates have a defirite parity. This implies that the matrix elements above

are only nonvmishing if the states ]pn) and lp;) me of opposite parities. In this case, harmonic
emission is just possible if g is odd. Therefore, even harmonics are absent. For other systems, like
for instance some crystals, due to the lack of inversion symetry, the eigenstates do not have a

definite parity, and the emission of even harmonics is possible.

This argument a.lso serues to justify the absence of even hmmonics for strong laser fields. The
harmonic intensities are of course not given correctly, since the perturbative series in the field
diverges.

8.2 Fermi's golden rule
In this case, we are interested in the transition probability from the bound state ii) to a continuum
of states with energy €p such that € p = €i to first order in stmdard perturbation th€ory. For a set

of discrete states, this probability is defined m t ltpl ,1,(t)ttl)l ,*itn lr7,(1)1t;) being given by' p,_7.,r' lt t / --
the first-order term of the expansion (8.2). For continuum states, one hm

(8.8)

where p(er) is the density of fina.l states with energy between e and e *d.t. For the sake of simplicity,
we corxider here a monochromatic field of frequency o. The first-order transition mplitude is given
bv

It
'nrf.

-8", t t I a" I at' u 's,ort-i) xsin(o.s) sin(o.,s')lp) (pl e

-.-^.t Jn.n g:u 0

f lrr ,{"rrt)l' - [d",ot,,,tltut,l""ttt)l'
P,e!=€i

(B 6)
(B.e)

Since physicallv it only makes sense that the atom absorbs a photon md goes to the continuum, we

do not take the term corresponding to the ernission of a photon into account. For very large times,

0rl U(t) (t) ) - i Eoe- i ",t r ntei 
(' 

" -,'Y /'s_!V::+W

sinzllui-, - u.)t12) 
- !trr._,, u),

(rr-u a)2 - 2w\*t+l

such that the ionization probability is time-proportional and the ionization rate is given by

dP -Pt!: - P^t- -. ,,
dl 4 

rptt v\'p --' 'J)

(B.10)

(B.11)

Equation (B.11) is knom m "Fermi's golden ruie", md it clearly shows the ionization rate as

proportional to the squile of the field strength. As already discussed in Pmt II, this is not true
anvmore in the strong-field regime.

rR)r iustailcc. (nrccrriug third hartr(ntic gurcrati()n, to third ordel pelturbatiotr theorv there are four possiblc

prorcsscs, which must be taken into nccount ilr (I3.7).' 2rbr irrstau,'e, for a permutation S(ul,o3),$t(o1,os): or and Fz('t,'s) = 01 +u3 More dctails on ibesc

pernutatiorrs can be found, for iNtarce, ilt [173].
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Appendix C

The quasi-static tunneling formula

In this appendix, we shall briefly recall an important formula, initially derired fol the Hydrogen

atom in a static field [66]. This formula hm also proven to yield a remonable apprximation for

fields with very low frequencies [65], and has ben widely used for describing tmneling processes in

the quasi-static field regime. For the discussions in Part I, it will suffice to present a onedimensional

derilation of this formula. As a starting point, we take the stationary Schrddinger equation,

l-i#.v@) - E,"ftt'@) : et!@), (c.1)

where -86, e, md V(u ) denote, respectively the static field, the energy of the electron and the binding
potential. One can regmd (C.1) as describing an elwtron in the effective potential barrier V.11@):
V(") Esr.Let us take c : t1 as a turning point md comider that, inside the bmier, for o ) 16,

such that ry'(r6) is given, the WKB approximation is ralid (this approximation is also discussed in

166l). Within this formalism, the wave function for the electron inside and outside the bmrier is

given appruimately by

IO<r<11
(c.2)

(c.3)

where the momentum p(z) : \ETZEor for r > re(one should note that, inside the bmrier, p is
imaginmy). One can ca,lculate the constant C using the boundary condition at zs, buch that-

I l'r ,l)c = r/lpol,pl,o)u*, 
[_ [ 

,, 
l/

Here we denoted p(ro) : w.This way, the probability curent for r > zlis given by

t : plt!@),2,,1' : 1po1 1,2120;l'? up (- tj*l)
(c.4)

Now a further msmption is made on the ware function inside the bmier, namely that it decays

exponentially with x, i.e., ry'(r6) : D1 exp(-kr6) Normally, ry'(r6) is determined by fitting a tail

r37
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of the wave flnction we are taking into account ( for instmce, for the bourrd state of the gaussran

potential ofchapter rl we performed a fit for a nunerically calculated wave function tp. -< r]0 >).
If we consider a short-range potential, such that even for strong fields lE6z6l << el, then

f : kD? exp I z1z1'11't'lsaol (c.5)

This probability curent cm a.lso be viered m the ionization rate, since .f ldt - Ilt@)')dr.To
first approximation, for quasi-static (low frequency) fields, one takes 'E'0 + iE(f)]. Clemlv, as the

frequency incremes, this approximation gets inapplicable.

Appendix D

Numerical Methods

In this appendix, the nmerica.l methods used in this thesis me briefly discussed.The inverse iteration
and the Crank Niolson methods ue the main structure of the TDSE solution used in Chapters b,
6 and 7. The Runge Kutta method is used in the investigation of the semiclmsical return times
(Chapters 5 md 7), md in the numerical integration of the Bloch equatioro for the twolevel atom
(Chapter 6). The six point integration method is ured for calculating quadratues throughout Pmt
I, which ue necessary, for imtance, in the simulations involving the threstep model (chapter b),
or in the timedependent projections (Chapter 6).

D.l Inverse Iteration Method
The initial wave functionlry'(t :0)) - l0) corresponds to the groud state, md will be propagated
in time within the TDSE frmework is calculated solving the stationay schrddinger equation

H" lpo) : to lo) , (D.1)

with rrA being the atomic Hmiltonim of chapter 2 for a on+dimensional "atom" confiaed in
a box of lei'eth r (the distinction betwen this Hmiltonim in the length and velocity gauges,
Hf ancl Hf , is only necessary when the external field is present). we me mainly interestld in a
fuily numerical solution for the eigenvalue equation above, since (D.1) is analytically solwble only for
very few potentials. Equation (D.1) is solved il the configuration space through the inverse iteration
method' This nmerical method requires an approximate eigemalue el and m initial guess finction
rp6(r), which will be taken as a first step for approximating the eigenfmction po(z) : (r l0). The
approximated eigenuJue is foud by diagonalizing the matrix r1A e ,. These parameters are
inserted in the equation

(no - ,') po@) : peb), (D.2)

which is soived iteratively: the function gf,) 1r1 "t 
the n-th iterative step will now be used m

the gums fmction 9S+1)(r) in ihe next step. We take the guess function for the first step m
pc@) : cos(rlL), or 96@) - sit(r/L), depending on the pmity of the boud state in question.
For instance, for the groud state, which is even, we take the fust choice of g"(c). At erch iteration
step, the eigenfmction go(r) is normalized to one.Within this iterative scheme, the eigenalue of
the successive steps are related by

^('+r) ^(n) 1ro 'o - (e81o*)
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whereAtisthegridspacingand rj+t-rjtAr' Irrserting(D'5) ia(D'2),oneobtainsasystemol

linear equations -iti totr"io elemlnts oniy in the main diagonal plus or minus orre colmn' Such

systemsf known as "tridiagonal systerns", are given in general by

Particularly for the atomic Hamiltonim

, 7d2H',--rdrl+vlx).

considering a discrete grid in the vmiable z' onc can write, at r: rj,

HAp6lrr\ -Vlr)Pg(t;)'

Using (D.9), one can write the scheme used in the time propagation'

(t+iW)1b@,t +af ) - (1 iHL!)tb@,t)'

#j.nl!letIn!]s(oil('oilr"tt,l}dis"."tiz^tiun
for iustaxce, iil [172].

D.3. RUNGE-KUTTA METHOD

The discretized Hamiltonian is written, for fixed r -- rj j I

H(t)|,(r,t)

r.i all 1 | 
0(' i. t' L)- - v'k i t' t)l - v p i1,t,1*,, t1.''L 2Lr I "

Substituting this expression in (D.10), one obtains the tridiagonal system with

. ar A(t)Lt
" 4 (A't)" 4Lr

ar Lt __.A, _ i-:::-.t+iTV(r;)z(L'x)" 2 '

. Lt A(t\At
I

'' "4(ar)2 ' 4L'r

|- 
^1 ,4i4llr; : t!(x;a1,t) li-. r , ,*r*,.., 

L, 
41Ar)2 

, +Ar 
]

tQ(xr.t)| ,.,?',u + r-i{v1"r1l+,a{r', ,.t) l,,,? " - 
all^)^rI 

1o.rol" L 2(Lr\' 2'"') 'lttn,)' aArl
which is, * in the previous section, solved rccording to [172].

D.3 Runge-Kutta Method
This is a typical method used for solving a set of n coupled first-order oldinmy difrerential equatiom
of the generic form

ff: t,t,,u,,...,u-),
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(D.6)

equation

,u-tf: I ;#, - iA\r: - v(rr] urr rr (D.7)

The formal time-propagated solution of this equation is

(D.8)a(t.l) { -'Hiu(r.0).

The time evolution operator, for a time increment Al, is discretized using cayley's forml. This

approximation is second-order accurate in Al'

e-iH\t -

[;' ' :;?'n,'] t; ) (: )

(D.4)

(D.5)

(D.e)

(D.10)

A few examples can be seeu,

(D.11)

(D.12)

(D.13)

(D.14)

Concerning ou specific problem, u1 - 9o@), r1 : 96@), oi .- 'ti ' -Ilz(L'r)2.and !3, =.

1111,,1" iV1r11 1.6. T5"* sy"te# "ar 
lin emily solved rrumericallv uiing stmdard subroutines (

see e.g. subroutine "tridag" in 1172]).

D.2 Crank Nicolson Method

The initial wave function 96(r) found using the inverse itelation method must now be propagated

in tirte. For that, the timedependent Schr6dinger equation (2'1) musi be solved numoically' The

mst popula, way of doing this is the crank Nicolson metirod. Its main advantage lies on its stabilitv

for all values of the time increment used.

Ta"king the Hamiltonian (11.31) in the configuration spacel (2.1) is written as the partial differential

(D.16)

to which my problem involving ordinmy differential equations can be reduced. In this thesis, such
problems occu twice:

r In the computation of the boud-state mplitudes of a twelevel atom as functions of time,
rclving the Bloch equations (4.27) given in Sec.4.2. These equatiom me givc-n in the form
D.16, with the initial condition that the atom is in the ground state, i.e.,

G(0) - 0; Co(O) - 1 (D.r7)

ln the integration of the equation of motion of a clmsical elmtron in m external fieid, where
the second+rder equation (4-3) can be rewritten m

d,x

- - u
dt
du dV(r\
dt 

: - d;+Litt)

t iHLt/L
| + iHLt /2

(D.18)
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This initial time is vmied then over a field period, and, within the time propagation, when

the condition r(i) :0 is satisfie<J, the returnlime tl and the corresponding kinetic energy are

stored.

Ingeneral,inRungeKuttamethods,thederivativeofaflrnctionisem]uatedatSeveral..tria]
points", taken betwen two ".;;;;;;s 

of the grid' such that these are used to compute the

function at the next point .f d;-;;;' 
-i;terning 

thJ fouth-order RmgeKutta method' which is

usedinthiswork,thederimtiveis-evaluatedfoutimes:onceatan-thandatthenFl-thpointsof
ifr" gtta, md twice at trial midpoints' More precisely' we take

APPENDIX D. NUMEHICAL METHODS

To first approximation, the influence of the binding potential is neglected The initial condi-

i;"". "."*i*" 
U, the msumption that the electron Laves the atom at t : to with zero velocity'

In case the potential i. tutn, itio *"ount, the initial velocity is given bv /ffi' In ordet

words,

r(t6) : 0

f 0. Y(r)-0
0(io) : t€;;l,vr"l +o

Appendix E

Hydrogen matrix elements

In this appendix we will provide the explicit ca,lculation of the term

N' ((,,1') : \,1', v (a',h + (l), v (i - (12,1'1 - 21,1,,v 1r - 4v O,t l (E.1)

For tlt : 4t .,^ the first term is well known to equal ;7f75 [138] . we did not find a computation
for the matrix element involving the coulomb potentiil in ihe Kramers-Hemeberger frame in the
literature md will therefore present it here. Sttrting with the familim expansion of the shifted
Coulomb poteltial in terms of spherical hmmonics

TL

tliin"tr,ot
where r. : ttt"(14,1(i) ana r, : Ma4ld,14), we obtain

(v,r-l lr'- (r ' 1,1 
-,1v,,-1 : i I onn'-n,or,-

(D.1e)

(D.20)

that the function at the next

(D.21)

(D.22)

h : Lrf (r",u^)
kz - Lrf(r-+ Lrl2'Y^+1rql2)

ks : LrJ@'+ Lrl2'a-+ kzl2)

k+ - Lrf (r- a L'r,Y^ t kz)'

with the clerimtives denoted by kt and the increment by Ar' srrc-h

point of the grid is given bY

k1 k2 k3 o1 , ,(orr).gntr= ln F 6 ' Tt 5 t 
r,

r sr''.\tf al A\,':') (E.2)

D.4 Six-Point integration method

This method was used in the computation of several integrals in this thesis' for instance:

o The average dipole acceleration i(i) - (tr(')l ti lr/;!tl) in the TDSE computation (ree also Eq'

ia-lfj), .t *"f* its time-dependent projections (Chapter 6)

o The Fouier md Gabor trmsfoms in Chapters 5' 6 and 7'

o The time inteeral (4.18) in ordel to compute the three-step model dipole moment (Chapter

5).

The idea behind the six-point integration method is very simpie: Let us consider a function /(r)'

which must be integrated i" trr" i"t"i^r [a,b]. The increment in x is given by Ar. we divide [a,b]

in several subintervals, such that the widih of each hterval is A{ :5Ar. The integral I'o "f(')a" t

the sm of the integrals cal"r*ed in each subinterml, which ue approximated by

€+A€

Iftr\at:Cr tlgl/o r L] r 75[/r +/41 F50l/3] /21 l'
.t
t

where we used the notation J^ - f (r + nLt) Here' we introduced the normalizing constant Cr =

5Ar/288.

which by the well known formula from angulm momentum thmrv

(v"r-l ii- (l-'I'Y",^,

7,13

I aav,"^u, ^,Y,,,, - rpffiQt2;001t0)\t112;m1m2llm) 
(E.3)

it,,',*r,o){,,', ^,v-t (it e(r)''.'*,-i- (9)' e,)

(l'(ff)''.' *'-,* 
,i 

o.(9)' 
"*)

(E.4)

Here \Il2;m1m2llm) denote the Wigner or Clebsch-Gordan coefficients iu the usua.l conventiom (se
e.g. [17a]).

lVe shall now comider the term

4r
2t,+1

(E.5)
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Employing (E.2) and the formula

yields
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(E.6)

(E.10)

I a,nO *r-r1r.-2., - za ftt 
n 2c)e'2"Ei(2c(+7 - r))

-Ei (-2u) - (1 + 2u)e-2q tn(7 +
n % - 1 \ 2l " 

t 1) t =i,, 
yy 

^, 
(l 1 t2: m 1 m 2lt' m' | \11 t2: 0oll' 0ly,^,Y1,-, Uff fr,vt,_t)

r -. P' k-1' I -
;+ : 

H,-f,, e- | "*t' 
(/c/'r oolio)2 Yto

Once again applying (E.3) shows that (8.5) equals

t(,,,; 00ri0),(ni,rnrrm)(r;00rr0) (f - (fr) 
' 
.t.' 

^2., 
* 

,!uo,(f ) 

".'"r) . (E.?)

For s-states, i.e. (1. : 0), we may cary out the sums over the clebsch-Gordan coefficients emily. In
(E.a) the only contribution comes from l' : 0 md we triviallv obtain

dr _
(v.ool 1"-- 4l ' l'-l-'lv"oo) : .f 

o,to:,r+ ! a,n\o. (E.8)

o",il

In (E.7) the sum wer lcontributes oniy for l:0 and together wiih (tll;00100)2 : j$ it teads to

/la ,21+2 @ /-,21 \

(v"oo|'--it-'tv.oo) ithI i-(;) n7,+ [a,(9)':,1 (E.e)

\o ,{, \'/ )

We turn to the cse n : 1 (with V;y;s: fre-') for which (E.4) becomes

(irrool lr- (l-' lll-'lvroo) : t-+2
l(

we obtain

(v'ool lr'- e /4-, l\F,oo) : 1r - 1(1-r;"-rdrrr.;6dl) + (r - lfl-1)etat)E,(_lfl) (E.14)

As a consistency check we may again consider the asymptotic behavior, that is l(l _ 0 and lfl - @,
which gires co'ectlv 2 and 0, respectivelv. Asembling now 1o.r;, 1e.ro1 r"a 1n.ia) si;-;-;r"i-"a
(9.14). In the same fashion one may also compute U((,rb_n) for arbitrary n,l attd,-m.

"-')) (E.la)

As comistency check one may consider the symptotic behaviors 1(1 - m md l(l - 0, *hi"h gi"",

as expected, 0 and 2 respectively. using the series expalsion for the logarithm, (E.9) for n : 1

becomes

(i!,oor rr-c-r-, rv,oo) : fi (j,"' (fi-) u-. *,i o,^(-fl),.*) r"1,)

Using then the integrals

f
/ a"u(t r ryre 2" :

.t
!( tt + z,l""" Ei (12r(1 r r))

-"-z* (.+ tr + z"r1 r.1r * r1;)



146 APPENDIX E. T{YDROGEN MATRIX ELEMENTS

Appendix F

Convergence of the Volterra
equation

In this appendix we discms the mnvergence of the itsative solution of the Volterra eqution (10.20),
whLich after integrating the free term acquires the form

. la.^,,, r \ /i i ^,#"^
,t',(t\ : \,f;"'4# (u*,; ro-t+u;,;(o+)) r "l+ I o"r,AtH. (F.r)

0

It is crucia.l to note that mlike the Gordon-Volkov iterative series, this procedure always convergm
with some natural assmption on the functions involved. With m obvious identification we may
write (F.1) in the genual form

t
t

d (t) : s(t) + a I K(t,s)p (s) ds
J
0

We will now closely follw the line of ilgumentation in 1151] md show that once the fre term in
(F.2) is abmlutely integrable, i.e.lJ g(t)atl ! J lg!)lat, the iterative procedue converge for all
va.lues of c. The proof sewes to provide the necessaJy estimations of the higher term, which we
employ to jmti{y the temination of the iteration.

Iterating (F.2) Ieads to

(F.3)

..a

4:Q): g(t) + f o" I x-Q,s1tpft)as - s1t1 +l,,^u).
n=r 6 ":1

(F.2)

ftt
K"(t,s) : I d"t... I dt"-1K(t,11)...ff(r,-1,s) : I drK(t,x)K"-r(r,s). (F.4)

JJJo0
Ilere we assumed w.l.g. for the kernel K(t,s) = 0 for s > t and fi:rthermore that the kernel is
bounded by some value of the form

lr(t,s)l! -+ ,
vt - s

t47

(F.5)
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that is we allow a weak singulmity of the type which occurs in (F.1), we will now show by compl.ete
induction that for all n the borrnd

ln particular we have

l,h G)l < 2ti oi l,br(t)l <
,, -

Irfu(t)l< ltiai

lW"W: rt* (2."p1"2t/2) - t u+,, (a2tl2) l,/G\
n:1

Hence the maxima.l relative error after the zeroth order reads

ln"(r,")l s ^t^1t,;i)t '
r (t/

holds. Considering now (F.4) for n + n + 1 we obtain upon the use of (F.5) and (F.6)

t

,K,11(/.r)l : I arxg.11x,1r.11

. rir"+t j , 1r s)z-r rt+iKn+l(t s)+-+
| 6 J 

o' Tt- ---Tf {J

l'^l
l,e" (ttl : o" l / n,1t. ';,1,; a"l

Lt Ilo I

,,{rix" f " 2l\ / -\nt r1lrt1a"tr s)'' *\o"\/ot)
o

where A denotes an upper bound for the absolute value of the free term

It is important to note that it is essentiaily the occurrence of the gama function r (f ), whichin 
_(_F.13) 

ensued the convergence and that this property is indeperident .r tir" p*.-Jiii. 
" 

*at. However, in (F.16) we observe that for some choices of a md i this 
"orr".g"r'"" mighi le quite

slow md we are therefore restricted to paticular values of these parameters if we want to have a
reasonable approfmation after only a few number of iterative steps. In order to obtain a general
criterion bv which one mav decide at which order it will be safe to terminate the iteration, we'shouldsm up all the remaining terms

(F.6)

(F.7)

(F.8)

(F.e)

(F.10)

(F.11)

(F.12)

(F.13)

(F.16)

which concludes the induction. Using the bound (F.6) we may estimate the terms in the expmsion
(F.3)

. " _l (ze*pto2t1z1 t - u, , (art/2\ l\/i)
I Qt t(o )r u,., (o*))

l/(41 < 
^

We will now show that the infinite sum in (F.3) is indeed convergent and satisfies the Cauchy
criterim. For this purpose we cilry out the Cauchy root test, i.e. we use the fact that if
lim.-- ( ,/,-l)tl^ < I the series i ,1," * absolutely conv€rgent. Approximating in (F.10) the

gamma function by Stirling's formula m n - m

we obtain
'(;)- {c" , (;)''-'

"rr1g 
(lu" )'/" : ,u,L 

" 
'1,9I;?,r ,' * - o

Hence the iterative procedue converges for q!] values of a.
For the pmticular Volterra equation which concerns us, namely (F.1), we have

t-K: 
- 

and A- t/2ro,
t/2r

(F.14)

wherc wp used the lact that the confluent hypergeomclric is houded Uv lUr L t.tl ! fi. Hence in'1.'r 'l-"
our cme the upper boud in (F.10) acquires the form

t,
u, (r)l r r/8nr;h $t/t1z)ur [t) '

(F.15)
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