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Abstract
This article presents a new methodology called
deep ToC that estimates the solutions of partial dif-
ferential equations (PDEs) by combining neural
networks with the Theory of Connections (ToC).
ToC is used to transform PDEs with boundary
conditions into unconstrained optimization prob-
lems by embedding the boundary conditions into
a “constrained expression” that contains a neu-
ral network. The loss function for the uncon-
strained optimization problem is taken to be the
square of the residual of the PDE. Then, the neu-
ral network is trained in an unsupervised manner
to solve the unconstrained optimization problem.
This methodology has two major advantages over
other popular methods used to estimate the solu-
tions of PDEs. First, this methodology does not
need to discretize the domain into a grid, which
becomes prohibitive as the dimensionality of the
PDE increases. Instead, this methodology ran-
domly samples points from the domain during
the training phase. Second, after training, this
methodology represents a closed form, analyti-
cal, differentiable approximation of the solution
throughout the entire training domain. In con-
trast, other popular methods require interpolation
if the estimated solution is desired at points that
do not lie on the discretized grid. The deep ToC
method for estimating the solution of PDEs is
demonstrated on four problems with a variety of
boundary conditions.

1. Introduction
Partial differential equations are a powerful mathematical
tool that is used to model physical phenomena, and their
solutions are used in the design and verification processes of
a variety of systems. For example, finite element analysis,
which is a popular method used to approximate the solution
of PDEs, may be used to verify that the loads experienced
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by a beam throughout its lifetime will not cause the beam
to fail. Many methods exist to approximate the solutions
of PDEs. Probably the most famous of these methods is
the finite element method (FEM) (Argyris & Kelsey, 1954;
Turner et al., 1956; Clough, 1960). FEM has been incredibly
successful in approximating the solution to PDEs in a variety
of fields including structures, fluids, and acoustics. However,
FEM does have some drawbacks.

FEM discretizes the domain into elements. This works
well for low-dimensional cases, but the number of elements
grows exponentially with the number of dimensions. There-
fore, the discretization becomes prohibitive as the number of
dimensions increases. Another issue is that FEM solves the
PDE at the elements, but if the solution is needed between
elements, an interpolation scheme must be used.

(Sirignano & Spiliopoulos, 2018) explored the use of neu-
ral networks to solve PDEs, and showed that the use of
neural networks avoids these problems. Rather than dis-
cretizing the entire domain into a number of elements that
grows exponentially with the dimension, neural networks
can sample points randomly from the domain. Moreover,
once the neural network is trained, it is a closed form, ana-
lytical, differentiable approximation of the PDE. Therefore,
no interpolation schemes are needed when estimating the
solution to points that did not appear during training. In
addition, (Sirignano & Spiliopoulos, 2018) compared the
neural network method with FEM on points that did not ap-
pear during training, and showed that the solution obtained
by the neural network generalized well to points outside of
the training data. In fact, the maximum error on the test
set of data was never more than the maximum error on the
training set of data. In contrast, the FEM had more error on
the test set than on the training set. In one case, the test set
had approximately 3 orders of magnitude more error than
the training set.

(Sirignano & Spiliopoulos, 2018) is not the first article to
explore the use of neural networks to solve PDEs. One
of the early papers on the topic was (Lagaris et al., 1998).
Although (Sirignano & Spiliopoulos, 2018) improved what
was presented in (Lagaris et al., 1998) in almost every way,
one item that was missing was exact satisfaction of the
boundary constraints. The solution for PDEs presented by
(Lagaris et al., 1998) used a method similar to Coon’s Patch
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(Coons, 1967) to satisfy the boundary constraints exactly.

Exact boundary constraint satisfaction is of interest for a
variety of problems, especially when the boundary value
information is known to a high degree of precision. Take for
example, using the heat equation to describe the temperature
within a rod. If the temperature on the edges of the rod is
know to a high degree of precision, and the heat equation
is being used to estimate the temperature inside the rod,
then the only information that is known for sure a priori
is the boundary conditions. Hence, it is desired to have
the boundary conditions of the rod met exactly. Moreover,
embedding the boundary conditions means that the neural
network only needs to sample points from the interior of the
domain, not the domain and the boundary. Thus, a method
for embedding boundary conditions for PDEs of arbitrary
dimension is desired.

The Theory of Connections (ToC) is a framework that is able
to meet many types of boundary conditions while maintain-
ing a function that can be freely chosen. This free function
can be chosen, for example, to satisfy a differential equation.
The theory of connections has already been able to solve dif-
ferential equations with initial value constraints, boundary
value constraints, relative constraints, integral constraints,
and infinite constraints (Mortari, 2017b;a; Mortari et al.,
2018; Johnston & Mortari, 2018). Recently, the framework
has been extended to n dimensions and for constraints on
the initial value, final value, derivatives of the initial and
final value, and all combinations thereof for all indepen-
dent variables. This means the framework can now create
constrained expressions to solve multidimensional PDEs.

2. Theory of Connections
The Theory of Connections (ToC) is a framework that takes
constrained problems and turns them into unconstrained
optimization problems. This technique is especially useful
when solving PDEs. ToC has two major steps: 1) embed
the boundary conditions of the problem into the constrained
expression 2) use the free function in the constrained expres-
sion to solve the new problem which is an unconstrained
optimization problem. The paragraphs that follow will ex-
plain these steps in more detail.

The ToC framework is easiest to understand when explained
via an example, like a simple harmonic oscillator. Equa-
tion (1) gives an example of a simple harmonic oscillator
problem.

mÿ + ky = 0 subject to:

{
y(0) = y0

ẏ(0) = ẏ0
(1)

Step one of the ToC framework is to build the constrained
expression. The constrained expression consists of two

parts; the first part is a function that satisfies the boundary
constraints, and the second part projects the free-function,
g(x), onto the hyper-surface of functions that are equal to
zero at the boundaries. For problems with boundary and
derivative constraints, the constraint function can be written
compactly using Eq. (2).

f(x) =Mi,j,...,n(b(x))vi(x1)vj(x2) . . . vn(xn)+
g(x)−Mi,j,...,n(g(x))vi(x1)vj(x2) . . . vn(xn)

(2)

where x is a vector of the independent variables,M is an
nth order tensor containing the boundary conditions b(x),
vi . . . vn are first order tensors whose elements are functions
of the independent variables x1 . . . xn, g is the free-function
that can be chosen to be anything (as long as it and its
derivatives exist or are tabulated at the coordinates being
solved for), and f(x) is the constrained expression. The first
term in f(x) satisfies the boundary conditions, and the final
two terms project the free-function, g(x), onto the hyper-
surface of functions that are equal to zero on the boundaries.

For 1-dimension with independent variable t on the domain
[0, 1] and for boundary and first-derivative constraints only,
M has the following form,

M(b(t)) =
[
b(0) bt(0) b(1) bt(1)

]
.

The values ofM that are unused are eliminated from the
matrix, and the vector, v, is created afterwards with the
appropriate size. For the 1-dimensional simple harmonic
oscillator,M and v are given by Eq. (3).

M(b(t)) =
[
b(0) bt(0)

]
v =

[
p1(t)
p2(t)

]
(3)

where p1(t) and p2(t) are the functions that need to be
solved for. Substituting everything into the constrained
expression, f(t), and simplifying yields Eq. (4).

f(t) = p1(t)
(
b(0)− g(0)

)
+ p2(t)

(
bt(0)− gt(0)

)
+ g(t)

(4)
.

The functions p1(t) and p2(t) are solved for by setting the
constrained function, f(t), equal to the boundary constraints
at the boundaries. For the simple harmonic oscillator this
yields the set of simultaneous equations given by Eqs. (5)
and (6).

b(0) = p1(0)
(
b(0)−g(0)

)
+p2(0)

(
bt(0)−gt(0)

)
+g(0)

(5)

bt(0) = p1t (0)
(
b(0)−g(0)

)
+p2t (0)

(
bt(0)−gt(0)

)
+gt(0)

(6)
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Equation (5) shows that p1(0) = 1 and p2(0) = 0, and
Eq. (6) shows that p1t (0) = 0 and p2t (0) = 1. One so-
lution to this set of simultaneous equations is p1(t) = 1
and p2(t) = t. Substituting these results back into the
constrained expression and substituting b(0) = y0 and
bt(0) = ẏ0 yields Eq. (7).

f(t) = g(t) + y0 − g(0) + t
(
ẏ0 − gt(0)

)
(7)

Notice that for any function g(t), the boundary conditions
will always be satisfied exactly. Therefore, solving the
differential equation has now become an unconstrained opti-
mization problem. This unconstrained optimization problem
could be cast in the following way. Let the function to be
minimized, L, be equal to the square of the residual of the
differential equation,

L(t) =
(
mf̈(t) + kf(t)

)2
.

This function is to be minimized by varying the function
g(t). One way to do this is to make g(t) the summation of
a series of basis functions, and minimize the coefficients
that multiply those basis functions via least-squares or some
other optimization technique. For an example of this im-
plementation via Chebyshev Orthogonal Polynomials see
(Mortari, 2017a). Also, (Mortari et al., 2018) shows how
this can be done using non-linear least squares for non-linear
ODEs.

2.1. Two-Dimensional Case

This subsection will give an in depth example for a two-
dimensional ToC case. The example is originally from
(Lagaris et al., 1998) problem 5, and is one of the PDE
problems analyzed in this article. The problem is shown in
Eq. (8).

∇2z(x, y) = e−x(x− 2 + y3 + 6y) subject to:
z(x, 0) = xe−x

z(0, y) = y3

z(x, 1) = e−x(x+ 1)

z(1, y) = (1 + y3)e−1

where (x, y) ∈ [0, 1]× [0, 1]

(8)

In two dimensions, theM tensor is a second order tensor,
and its elements for the case of boundary values and their
first derivatives are given in matrix form in Eq. (9) for
independent variables x and y. Similar to the one dimen-
sional case, only the rows and columns that correspond to
the boundary conditions of interest need to be kept. For the
example problem in Eq. (8),M becomes

M =

 0 b(x, 0) b(x, 1)
b(0, y) −b(0, 0) −b(0, 1)
b(1, y) −b(1, 0) −b(1, 1)

 .

For the two dimensional case, there are two, first order
tensors, vx and vy . Their elements are shown in vector form
in Eq. (10).

vx =
[
1 p1(x) p2(x)

]
, vy =

 1
q1(y)
q2(y)

 (10)

Now, the function f(x, y) can be constructed using Eq. (2);
the result is shown in Eq. (11). Four equations can be con-
structed using the boundary conditions given in Eq. (8).
These equations can be used to solve for the unknown func-
tions p1(x), p2(x), q1(y), and q2(y). One solution to these
equations is shown in Eq. (12).

vx =
[
1 1− x2 x2

]
, vy =

 1
1− y2
y2

 . (12)

Plugging in the result from Eq. (12) and the boundary con-
ditions from Eq. (8) into Eq. (11) yields the constrained ex-
pression for the two-dimensional example, which is shown
in Eq. (13).

Notice, that Eq. (13) will always satisfy the boundary condi-
tions of the problem regardless of the value of g(x, y). Thus,
the problem has been transformed into an unconstrained op-
timization problem where the cost function, L, is the square
of the residual of the PDE,

L(x, y) =
(
∇2f(x, y)− e−x(x− 2 + y3 + 6y)

)2
.

For the one-dimensional ODEs, the minimization of the cost
function was accomplished by making g the summation of
orthogonal polynomials, and performing least-squares or
some other optimization technique to find the coefficients
that multiply those orthogonal polynomials. For two di-
mensions, one could make g(x, y) the product of two sums
of these orthogonal polynomials, calculate all of the cross-
terms, and then solve for the coefficients that multiply all
terms and cross-terms using least-squares or non-linear least-
squares. However, this will become prohibitive as the di-
mension increases. An alternative solution, and the one
explored in this article, is to make the free function, g(x, y),
a neural network.

2.2. Remarks for n Dimensions

In n dimensions, there are two main challenges encountered
when constructing the constrained expression: 1) construct-
ing the n-th order tensorM 2) finding the functions that
make up the elements of the n first order tensors, v.

Although in the two-dimensional case it was convenient to
construct anM tensor that contained all of the boundary
conditions and then keep only the rows and columns that
pertained to the boundary conditions of a given problem,
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M =


0 b(x, 0) by(x, 0) b(x, 1) by(x, 1)

b(0, y) −b(0, 0) −by(0, 0) −b(0, 1) −by(0, 1)
bx(0, y) −bx(0, 0) −bxy(0, 0) −bx(0, 1) −bxy(0, 1)
b(1, y) −b(1, 0) −by(1, 0) −b(1, 1) −by(1, 1)
bx(1, y) −bx(1, 0) −bxy(1, 0) −bx(1, 1) −bxy(1, 1)

 (9)

f(x, y) = g(x, y) + q1(y)
(
b(x, 0)− g(x, 0)

)
+ q2(y)

(
b(x, 1)− g(x, 1)

)
+

p1(x)

(
b(0, y)− g(0, y) + q1(y)

(
g(0, 0)− b(0, 0)

)
+ q2(y)

(
g(0, 1)− b(0, 1)

))
+

p2(x)

(
b(1, y)− g(1, y) + q1(y)

(
g(1, 0)− b(1, 0)

)
+ q2(y)

(
g(1, 1)− b(1, 1)

)) (11)

in n dimensions the M tensor can become prohibitively
large. Therefore, it is recommended that in n dimensions
theM tensor be constructed for a given problem’s bound-
ary conditions. Luckily, there is a step-by-step method
for constructing theM tensor that will be illustrated via a
3-dimensional example that has Dirichlet boundary condi-
tions in x and initial conditions in y and z on the domain
x, y, z ∈ [0, 1]× [0, 1]× [0, 1]. TheM tensor is constructed
using the following three rules.

1. The element ofM for all indices equal to 1 is 0 (i.e.
M111 = 0).

2. The first order tensor obtained by keeping one dimen-
sion’s index and setting all other dimension’s indices
to 1, consists of the value 0 and the boundary condi-
tions for that dimension. Using the example boundary
conditions,

Mi11 =
[
0, b(0, y, z), b(1, y, z)

]T
M1j1 =

[
0, b(x, 0, z), bx(x, 0, z)

]T
(14)

M11k =
[
0, b(x, y, 0), by(x, y, 0)

]T
.

3. The remaining elements of theM tensor are the ge-
ometric intersection1 of the boundary condition ele-
ments of the first order tensors given in Eq. (14). For
example, the elementM223 would be the intersection

1Technically, it is the geometric intersection of the boundary
condition elements plus a sign (+ or −) that is determined by the
number of elements being intersected.

of the elementsM211,M121, andM113. The geomet-
ric intersection of the elements can be easily found by
using the list of four rules that follows:

(a) The intersection of the boundary conditions will
have derivatives on all of the variables that the
boundary conditions being intersected have.

(b) The intersection of the boundary conditions will
have a numeric value for a variable if any of the
boundary conditions being intersected has a nu-
meric value for that variable.

(c) Any remaining variables that do not have numeric
values will be left as variables.

(d) The sign in front of the element is equal to
(−1)n−1 where n is the number of boundary con-
ditions being intersected. For example, intersect-
ing the elements 0, bx(x, 0, z), and by(x, y, 0)
will be negative, whereas intersecting the ele-
ments b(1, y, z), bx(x, 0, z), and b(x, y, 0) will
be positive.

The following are some examples to help illustrate:

M133 = −bxy(x, 0, 0)
M221 = −b(0, 0, z)
M332 = bx(1, 0, 0)

Finding the elements that make up the first order tensors
v is done by constructing as many equations as there are
boundary conditions, and consequently, as many equations
as there are functions in the first order tensors v. Then,
constraints on the functions in the first order tensors v can

f(x, y) = g(x, y) +
x2y2(y − 1)

e
+ e−x(x+ y2) + (1− x2)

(
g(0, 0) + y2

(
g(0, 1) + y − g(0, 0)− 1

))
+

(x2 − 1)g(0, y) + x2
(
y2g(1, 1) + (1− y2)g(1, 0)

)
− x2g(1, y) + (y2 − 1)g(x, 0)− y2g(x, 1)

(13)
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f(x, y) = N (x, y; θ) +
x2y2(y − 1)

e
+ e−x(x+ y2)+

(1− x2)
(
N (0, 0; θ) + y2

(
N (0, 1; θ) + y −N (0, 0; θ)− 1

))
+ (x2 − 1)N (0, y; θ)+

x2
(
y2N (1, 1; θ) + (1− y2)N (1, 0; θ)

)
− x2N (1, y; θ) + (y2 − 1)N (x, 0; θ)− y2N (x, 1; θ)

(15)

be calculated and the functions can be solved for, as was
done in Eqs. (5) and (6). The only recommendation that
this author can give at this time, based on all of the prob-
lems solved using ToC to date, is the simplest solution is to
assume a polynomial form for the functions in v.

3. PDE Solution Methodology
As with the previous section, the easiest way to describe
the methodology is with an example. The example used
throughout this section will be the PDE given in Eq. (8).

As mentioned in the previous section, deep ToC approxi-
mates solutions to PDEs by finding the constrained expres-
sion for the PDE and choosing a neural network as the free
function. For all of the problems analyzed in this article, a
simple, fully connected neural network was used. These net-
works consist of non-linear activation functions composed
with affine transformations of the form A = W · x + b,
where W are neuron weights, b are neuron biases, and x is a
vector of inputs from the previous layer (or the inputs to the
neural network if it is the first layer). The weights and biases
of the entire neural network make up the tunable parameters,
θ. In this article, neural networks will be represented with
the symbolN . For example, a neural network with inputs x
and y would be given as N (x, y; θ). Thus, the constrained
expression, given originally in Eq. (13), now has the form
given in Eq. (15).

In order to estimate the solution to the PDE, the parameters
of the neural network have to be optimized to minimize the
loss function, which is taken to be the square of the residual
of the PDE. For this example,

Li(xi, yi) =
(
∇2f(xi, yi)− e−xi(xi − 2 + y3i + 6yi)

)2
,

L =

N∑
i

Li.

The attentive reader will notice that training the neural net-
work will require, for this example, taking two second order
partial derivatives of f(x, y) to calculate Li, and then taking
gradients ofLwith respect to the neural network parameters,
θ, in order to train the neural network.

To take these higher order derivatives, TensorFlow’sTM gra-
dients function was used (TensorFlowTM). This function
uses automatic differentiation (Baydin et al., 2015) to com-

pute these derivatives. However, one must be conscientious
when using the gradients function to ensure they get the
correct gradients.

When taking the gradient of a vector, yj , with respect to
another vector, xi, TensorFlowTM computes,

zi =
∂
(∑N

j=1 yj
)

∂xi
,

where zi is a vector of the same size as xi. The only place
where this may be an issue in the example used in this
section is when computing∇2fi. The desired output of this
calculation is the following vector,

zi =

{
∂2f1
∂x21

+
∂2f1
∂y21

, . . . ,
∂2fN
∂x2N

+
∂2fN
∂y2N

}
,

where zi has the same size as fi and (xi, yi) is the pair
used to generate fi. TensorFlow’sTM gradients function will
compute the following vector,

zi =

{
∂2
(∑N

j=1 fj
)

∂x21
+
∂2
(∑N

j=1 fj
)

∂y21
, . . . ,

∂2
(∑N

j=1 fj
)

∂x2N
+
∂2
(∑N

j=1 fj
)

∂y2N

}
.

However, because fi only depends on (xi, yi) and the
derivative operator commutes with the sum operator,
TensorFlow’sTM gradients function will compute the de-
sired vector. Moreover, the size of the output vector will be
correct because the input vectors, xi and yi, have the same
size as fi.

3.1. Training the Neural Network

Three methods were tried when optimizing the parameters
of the neural networks:

1. Adam optimizer (Kingma & Ba, 2014)

2. Broyden-Fletcher-Goldfarb-Shanno (BFGS) opti-
mizaion algorithm (Fletcher, 1987)

3. Hybrid method

The first method, Adam, is a variant of stochastic gradient
descent (SGD) that combines the advantages of two other
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popular SGD variants: AdaGrad (Duchi et al., 2011) and
RMSProp (Tieleman & Hinton).

The second method, BFGS, is a quasi-Newton method de-
signed for solving unconstrained, non-linear optimization
problems. This method was chosen based on its perfor-
mance when optimizing neural network parameters to es-
timate PDE solutions in (Lagaris et al., 1998). The hybrid
method uses both methods in series. For all four problems
shown in this article, the BFGS optimizer gave the best
results.

4. Results
This section compares the estimated solution found using
deep ToC with with the analytical solution. Four PDE prob-
lems are analyzed. The first is the example PDE given in
Eq. (8), and the second is the wave equation. The third
and fourth PDEs are simple solutions to the incompressible
Navier-Stokes equations.

4.1. Problem 1

The first problem analyzed was the PDE given by Eq. (8),
copied below for the readers’ convenience.

∇2z(x, y) = e−x(x− 2 + y3 + 6y) subject to:
z(x, 0) = xe−x

z(0, y) = y3

z(x, 1) = e−x(x+ 1)

z(1, y) = (1 + y3)e−1

where (x, y) ∈ [0, 1]× [0, 1]

The neural network used to estimate the solution to this
PDE was a fully connected neural network with five hidden
layers and 30 neurons per layer. The non-linear activation
function used was the hyperbolic tangent. Other neural net-
work sizes and non-linear activation functions were tried,
but this size and activation function combination did the best.
The biases of the neural network were all initialized as ze-
ros, and the weights were initialized using TensorFlow’sTM

implementation of the Xavier initialization with uniform
random initialization (Glorot & Bengio, 2010). Training
pairs, (x, y), were created for this problem by sampling x
and y as independent and identically distributed (IID) ran-
dom variables on the uniform distribution on [0, 1]. The
network was trained using the BFGS method on a batch size
of 10,000 training pairs.

Figure 1 shows the difference between the analytical solu-
tion and the estimated solution using deep ToC on a grid of
100 evenly distributed points (10 per independent variable).
This grid represents the test set.

The maximum error on the test set was 4.806×10−6 meters

Figure 1. Problem 1 Solution Error

and the average error was 8.872× 10−7 meters. The maxi-
mum error is relatively low, five orders of magnitude lower
than the solution values, which are on the order of 10−1

meters. However, the maximum solution error using deep
ToC is not as low as the maximum solution error obtained
in (Lagaris et al., 1998), which was on the order of 10−7

meters. Although there are many possible explanations for
this discrepancy, for example, different implementations of
the optimizer or different weight initialization functions, the
author was concerned that it may be the assumed solution
form, f(x, y), that was causing the increase in estimated
solution error. The solution form created using deep ToC is
more complex both in the number of terms and the number
of times the neural network appears within the assumed
solution form.

To investigate, a comparison was made between the solu-
tion form posed in (Lagaris et al., 1998) and the solution
form posed in this article, while keeping all other variables
constant. For this comparison, the neural network archi-
tecture consisted of one hidden layer with 10 neurons, and
the non-linear activation function used was the hyperbolic
tangent function2. The neural network was trained using
the BFGS optimizer. The training pairs were created by
randomly sampling 10,000 point pairs (x, y) where x and y
are IID random variables on the uniform distribution [0, 1].
The test set was a grid of 100 evenly distributed points (10
per independent variable).

Figure 2 was created using the solution form posed in (La-
garis et al., 1998). The maximum error on the test set was
5.481 × 10−6 meters and the average error on the test set
was 1.131× 10−6 meters.

2The sigmoid function was also tried, which is what is used in
(Lagaris et al., 1998); however, the average error and maximum
error for both solution forms, deep ToC and (Lagaris et al., 1998),
was almost doubled compared to using the hyperbolic tangent
function.
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Figure 2. Problem 1 Solution Error Using (Lagaris et al., 1998)
Solution Form

Figure 3 was created using the deep ToC solution form. The
maximum error on the test set was 8.124×10−6 meters and
the average error on the test set was 1.696× 10−6 meters.

Figure 3. Problem 1 Solution Error Using Deep ToC Solution Form

Comparing Figs. 2 and 3 shows that the solution form
from (Lagaris et al., 1998) does slightly better in terms
of average error and maximum error for this problem, but
the difference is not significant. However, neither of the
tests conducted here is able to reduce the error to the level
reported in (Lagaris et al., 1998). Thus, there must be some
other factor, initialization, optimizer method, etc., that is
causing this difference. One important take-away from
this comparison is that despite the more complex solution
form created using deep ToC, which can easily be applied
to higher dimensions, the final solution accuracy is very
similar to the simpler solution form that was designed for
lower-dimensional problems.

4.2. Problem 2

The second problem analyzed was the wave equation, shown
in Eq. (16).

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) subject to:

u(0, t) = 0

u(1, t) = 0

u(x, 0) = x(1− x)
ut(x, 0) = 0

where (x, t) ∈ [0, 1]× [0, 1]

(16)

where the constant, c, was chosen to be 1. The constrained
expression for this problem is shown in Eq. (17). The neural
network used to estimate the solution to this PDE was a fully
connected neural network with two hidden layers and 30
neurons per layer. The non-linear activation function used
was the hyperbolic tangent. The biases and weights were
initialized using the same method as problem 1. The training
points, (x, t), were created by sampling x and t IID from
the uniform distribution on [0, 1]. The network was trained
using the BFGS method on a batch size of 10,000 training
pairs.

Figure 4 shows the difference between the analytical solu-
tion and the estimated solution using deep ToC on a grid of
100 evenly distributed points (10 per independent variable).
This grid represents the test set.

Figure 4. Problem 2 Solution Error

The maximum error on the test set was 2.701×10−3 meters
and the average error on the test set was 6.978×10−4 meters.
The error of this solution is larger than in the problem one,
while the solution values are on the same order of magnitude,
10−1 meters, as in problem one. The larger relative error
in problem two is most likely due to the more oscillatory
nature of the solution.
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f(x, t) = (1− x)
[
N (0, 0)−N (0, t)

]
+ x
[
N (1, 0)−N (1, t)

]
−N (x, 0) + x(1− x) +N (x, t)+

t
[
(1− x)Nt(0, 0) + xNt(1, 0)−Nt(x, 0)

] (17)

fu(x, y, t) = N (x, y, t; θ)−N (x, y, 0; θ) +N (0, y, 0; θ)−N (0, y, t; θ) +
1

2H

(
HP

(
y2 − H2

4

)
µ
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(
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2
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2
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fv(x, y, t) = N (x, y, t; θ)−N (x, y, 0; θ) +N (0, y, 0; θ)−N (0, y, t; θ) +

1

2H

(

− (H − 2y)
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(19)

4.3. Problem 3

The third problem analyzed was a known solution to the
incompressible Navier-Stokes equations, called Poiseuille
flow. The problem solves the flow velocity in a two-
dimensional pipe in steady-state with a constant pressure
gradient applied in the longitudinal axis. Equation (18)
shows the associated equations and boundary conditions.

∂u

∂x
+
∂v

∂y
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= µ

(
∂2v

∂x2
+
∂2v

∂y2

)
subject to:

u(0, y, t) = u(x, y, 0) = 1
2µ

∂P
∂x

(
y2 −

(
H
2

)2)
u(x, H2 , t) = u(x,−H2 , t) = 0
∂u
∂t (0, y, t) = 0

v(0, y, t) = ∂v
∂t (0, y, t) = v(x, y, 0) = 0

v(0, H2 , t) = v(0,−H2 , t) = 0
(18)

where u and v are velocities in the x and y directions re-
spectively, H is the height of the channel, P is the pressure,
ρ is the density, and µ is the viscosity. For this problem,
the values H = 1 m, ρ = 1 kg/m3, µ = 1 Pa·s, and
∂P
∂x = −5 N/m3 were chosen. The constrained expressions
for the u-velocity, called fu(x, y, t), and v-velocity, called
fv(x, y, t), are shown in Eq. (19). The neural network used

to estimate the solution to this PDE was a fully connected
neural network with four hidden layers and 30 neurons per
layer. The non-linear activation function used was the sig-
moid. The biases and weights were initialized using the
same method as problem 1. The training points, (x, y, t),
were created by sampling x, y, and t IID from the a uni-
form distribution that spanned the range of the associated
independent variable. For x, the range was [0, 1]. For y,
the range was [−H2 ,

H
2 ], and for t, the range was [0, 1]. The

network was trained using the BFGS method on a batch size
of 1,000 training pairs. The loss function used was the sum
of the squares of the residuals of the three PDEs in Eq. (18).

For one particular run3, the maximum error in the u-velocity
was 3.308× 10−7, the average error in the u-velocity was
9.998 × 10−8, the maximum error in the v-velocity was
5.575× 10−7, and the average error in the v-velocity was
1.542 × 10−7. The maximum error and average error for
this problem are much lower than in problems 1 and 2. How-
ever, the constrained expression for this problem essentially
encodes the solution, because the initial flow condition at
time zero is the same as the flow condition throughout the
spatial domain at any time. Thus, if the neural network
outputs a value of zero for all inputs, the problem will be
solved exactly. Although the neural network does output a
very small value for all inputs, it is interesting to note that
none of the layers have weights or biases that are at or near
zero.

3All errors are given in meters per second.
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Figure 5. U-Velocity in Meters
Per Second at 0.01 Seconds

Figure 6. U-Velocity in Meters
Per Second at 0.1 Seconds

Figure 7. U-Velocity in Meters
Per Second at 3.0 Seconds

4.4. Problem 4

The fourth problem is another solution to the Navier-Stokes
equations, and is very similar to the third. The only dif-
ference is that in this case, the fluid is not in steady state,
it starts from rest. Mathematically, this problem looks the
same as the one given in Eq. (18), except that the boundary
condition at time zero is given by u(x, y, 0) = 0 and the
boundary condition at x = 0 is given by u(0, y, t) = 0.
This problem was created to avoid encoding the solution to
the problem into the constrained expression, as was the case
in the previous problem. The constrained expression for the
problem looks the same as the constrained expression given
in Eq. (19), except fu(x, y, t) does not contain the term
HP

(
y2−H2

4

)
µ .

The neural network used in this problem is exactly the same
as the neural network used in problem three. Problem 4 used
2,000 training points that were selected the same way as in
problem three, except the new ranges for the independent
variables were [0, 10] for x, [0, 3] for t, and [−H2 ,

H
2 ] for y.

Figures 5 through 7 show the u-velocity of the fluid through-
out the domain at three different times. Qualitatively, the
solution should look as follows. The solution should be sym-
metric about the line y = 0, and the solution should develop
spatially and temporally such that after a period of time and
sufficiently far from the inlet, x = 0, the u-velocity will be
equal or very close to the steady state u-velocity of problem
3. Qualitatively, the u-velocity field looks correct at all
points. Quantitatively, the u-velocity at x = 10 from Fig. 7
was compared with the known steady state u-velocity, and
had a maximum error of 5.530 × 10−4 meters per second
and an average error of 2.742× 10−4 meters per second.

5. Conclusions
This article demonstrated how to combine neural networks
with the theory of connections into a new methodology,
called deep ToC, that was used to estimate the solutions

of PDEs. Results on four problems were presented that
display how accurately relatively simple neural networks
can approximate the solutions to some well known PDEs.
The difficulty of the PDEs in these problems ranged from
linear, two-dimensional PDEs to coupled, non-linear, three-
dimensional PDEs.

Future work should investigate the performance of different
neural network architectures on the estimated solution error.
For example, (Sirignano & Spiliopoulos, 2018) suggests a
neural network architecture where the hidden layers contain
element-wise multiplications and sums of sub-layers. The
sub-layers are more standard neural network layers like the
fully connected layers used in the neural networks of this
article.

Another topic for investigation is reducing the estimated
solution error by sampling the training points based on the
loss function values for the training points of the previous
iteration. For example, one could create batches where half
of the new batch consists of half of the points in the previous
batch that had the largest loss function value and the other
half are randomly sampled from the domain. This should
consistently give training points that are in portions of the
domain where the estimated solution is farthest from the
real solution.
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