
An Empirical Performance Study

on PSIM

Jinchun Xia
�
, Carl K. Chang, Jeff Wise and Yujia Ge

†

Department of Computer Science, Iowa State University, USA
�Corresponding author: jxia@iastate.edu

It is well known that errors caught in the early stages of system development life cycle greatly helped

reduce the expense for later error fixing andmitigate risks and complications. Performance analysis

is one of the methods to ensure satisfactory system performance that can avoid redesign and patch

in the later stage of system development when performance problems emerge. Much work has

been done to address such concerns collectively known as the ‘performance engineering’ problem.

However, a comprehensive method is still needed to provide an end-to-end support for performance

evaluation on software architecture design. Automated tools to support the method must be

developed, and its validation must be carefully planned and conducted. In response to this need,

we propose our approach, PSIM (performance simulation and modeling). PSIM is a performance

simulation and modeling tool that integrated performance properties into software architecture

specifications expressed in several major UML diagrams. PSIM models can be transformed into

Colored GSPN (colored generalized stochastic Petri nets) via an automated tool. As a result, the

Colored GSPN models can be simulated to perform model-based performance evaluation. In this

paper PSIM is first briefly reviewed and illustrated through modeling a web-based electronic

conferencing system, called M-Net, to derive performance metrics. We then conduct runtime per-

formance testing to the implementation of M-Net and compare the simulation results against

the runtime testing data. PSIM is shown to be effective in predicting system performance and

in identifying system performance bottlenecks through this experimentation.

Keywords: empirical study, performance metrics, performance analysis, performance testing, software

architecture

Received 19 September 2005; revised 30 April 2006

Handling editor: I.-R. Chen

1. INTRODUCTION

In modern days, software systems pervade almost every

facet of our society. We depend upon them to support public

services, assist living and drive mission critical applications

for space exploration, national defense, among others. As

our dependency on software increases, so are the size and

complexity of software systems. It becomes more and more

difficult to develop, to test, and to maintain these software

systems. Furthermore, the cost of software failure tends to be

unacceptable and unpredictable.

Traditionally, the major method to evaluate system

performance is performance testing, which can be only carried

out after the software system is implemented. Performance

requirements, as part of the core system requirements, tend to

be overlooked during the design stage. When performance

problems are disclosed during testing, software engineers have

to face the high cost of redesign. To address this problem,

many software researchers were motivated by the immaturity

of research in software performance testing [1] and devoted

much effort to study software system performance analysis in

the last decade. Unlike run-time performance testing,

performance analysis can be performed at early stages of

software development to help developers evaluate software

designs and avoid the high cost of redesign.

As a major mechanism to predict system performance,

performance analysis provides important support for impact

analysis. As reported by the Standish Group, 11.8% of the

failure causes of failed projects can be attributed to changing

requirements [2]. Changing requirements cause the soft-

ware system either fail to deliver some functionalities or

fail to meet quality criteria. Impact analysis techniques

enable software engineers to evaluate the functional and
†Present address: Zhejiang Gongshang University, China

The Computer Journal Vol. 49 No. 5, 2006

� The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access published on July 19, 2006 doi:10.1093/comjnl/bxl037

non-functional impact of speculative changes on software

system. While functional impact is given primary attention,

impact on system performance is often neglected. Introducing

changes to the system without non-functional impact analysis

is extremely harmful because the changes may degrade the

QoS level of the system or even cause system failure.

Fortunately, with performance analysis, software engineers

can predict performance of the system with speculative

changes instead of real ones, evaluate system designs and

make decisions on alternative architectures; hence the risk of

project failure can be reduced [3].

Much work has been done to address these concerns

collectively known as the performance engineering problem.

We will summarize some of the major trends in Section 2.

In addition, considering the wide acceptance of UML, the

software architecture as our primary concern in this paper is

UML-based. Interested readers can refer to the recently

published survey paper [4] for other architecture description

languages (ADL) and performance models.

By summarizing the merits of existing approaches, we

concluded that a good solution should include the following

necessary components.

(i) A good model to represent performance requirements,

resources, workload, scheduling and other performance

related information in the software system architecture;

(ii) A good method to transform this architecture model

into performance specific analytical or simulation

models, and more importantly, a tool to automate this

procedure;

(iii) An integrated environment to analyze, simulate and

measure performance metrics, and a feedback mech-

anism to fit these performance metrics into the

software architecture model;

(iv) A validation process of the approach on middle-to-

large-scale software systems.

Unfortunately, no existing approach offers a comprehens-

ive method which contains all these necessary components

[4]. Our ambitious research goal is meant to venture into the

steep challenge to develop such a comprehensive solution.

In this paper, we report the study of a new approach—

PSIM (performance simulation and modeling) [5, 6]. PSIM

integrates resources and performance properties into the

architectural models of a software system. Such architectural

models can be transformed into a uniform simulation model

where simulations are executed and the results are used for

system performance analysis, performance requirements

validation and system design evaluation. In short, software

architecture is first described using UML, and the trans-

formation from architecture to performance simulation

model is based on CSCD (case, sequence, collaboration and

deployment) diagrams, UML stereotypes and tagged values.

Several projects that employed PSIM as the performance

model were conducted. It was found that system performance

can be predicted to a certain level of accuracy, while

performance bottlenecks were identified [5, 6]. In this paper,

we further validate our approach by comparing the results from

PSIM simulation against runtime testing. Specifically, we used

PSIM to model a non-trivial web-based electronic conferenc-

ing system, M-Net [7], whereas certain critical scenarios are

identified and simulated to collect performance metrics via

simulation. SinceM-Net has been fully built, we also conducted

performance testing and collected some performance data. As

such, the results from PSIM simulation and runtime perfor-

mance testing can be compared to evaluate the PSIM approach.

The rest of this paper is organized as follows. Section 2 of

this paper reviews major related work and compares them to

our approach. Section 3 briefly introduces the PSIM approach

based on UML extension mechanism. Properties and

performance issues of typical web-based distributed systems,

exemplified via the application M-Net, are described in

Section 4. Section 5 elaborated the PSIM study. Section 6

provides a comparison of the PSIM simulation results and

validation tests on M-Net through contrasting the data. A

summary and evaluation of the PSIM approach, as well as

future work, are given in Section 7.

2. RELATED WORK

Five major trends in this research area are studied in this

section: software performance engineering (SPE)-based,

simulation model-based, process algebra-based, queueing

network-based, and Petri net-based. We reviewed their

strengths and weaknesses to see whether they provide the

four necessary components listed in previous section to be

qualified as comprehensive solutions.

We noticed that it is difficult to identify from our survey a

work that was validated on middle-to-large-scale systems.

Validation plays an important role in software engineering. It

is one of the major concerns we tend to address in this paper

and it differentiates our methodology from other existing

approaches. Marzolla argued that test cases cannot guarantee

the correctness of the transformation from UML models to

performance models [8]. This argument may be valid from

the viewpoint of science, but unrealistic from the viewpoint

of engineering. We could not guarantee the correctness of

the transformation unless we can prove it mathematically,

which is impractical in most cases. Engineers often accept

approximate solutions when facing such a situation. Validating

the simulation model against the real system through running

test cases is still the most effective and realistic approach. Due

to the difficulty of evaluating software performance, numerical

results of simulation at the same level of precision with real

measurement may be considered acceptable.

2.1. SPE-based approaches

As one of the earliest works in the software performance

engineering, SPE [9] is often quoted for its capability of

510 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

modeling and analyzing system performance. Two major

models, System Execution Model and Execution Graph are

provided in SPE for system deployment and system behavior

analysis. An execution graph follows the critical path of

execution and offers a best-case response time for a particular

sequence. The system execution model considers queuing

delay caused by resource contention and yields not only

response time but also such metrics as utilization, throughput

and residence time. Both the models offer fast analysis

because of their computational simplicity. They also are

organized around resource requirements; so the effects of

different hardware configurations can be studied easily. The

drawback for SPE is that there is very limited support from

both System Execution Model and Execution Graph for

scheduling algorithms, synchronous communication, random

arrival and processing delay distributions. It is noted that

neither of the two SPE models is able to predict system

behavior under the overload condition. Moreover, neither of

the two models provides means to collecting performance

metrics that are essential to later performance evaluation.

Therefore, in its original form, SPE does not provide adequate

models to represent both performance properties and system

architecture nor supplies the feedback mechanism. Further

validation through extension work of SPE was deemed

necessary and embarked later.

For example, inspired by SPE, Vittorio Cortellessa et al.

[10, 11] introduced an incremental method, PRIMA-UML,

to transform UML-represented architecture into SPE models.

Their approach contains two parts: UML2EG and UML2QN.

UML2EG generates Execution Graph, which carries software

architecture and behavior information, from use case and

sequence diagrams. UML2QN generates queue networks,

which contains hosts information, from deployment dia-

grams. The two results are then integrated into the SPE

process for evaluating system performance. Their approach

bridges UML-based software architecture and existing

performance models; hence enables performance evaluation

of software architecture at design stage. However, the value

of their approach is limited by the problems with SPE

discussed above.

Besides SPE-based performance modeling, Vittorio

Cortellessa et al. [12] also created a framework which is

intended to encompass more ADLs and analytic models.

Effort in this framework includes generating the SPIN [13]

models from state machines and scenarios, and transforming

Amilia textual description to Markov Chain models. Aiming

at non-functional analysis, this framework propagates

analysis feedback through different models to help soft-

ware architecture evaluation. Central to this framework is

the XML-based integration core, which takes the XML

representation of the architecture model and generates ana-

lytic models such as SPIN and queueing network models.

SPIN model checker helps software engineers identify

deadlocks and race conditions. They plan to integrate their

PRIMA-UML, the SPE-based performance analysis

approach, into this framework.

2.2. Simulation model-based approaches

Some researchers devoted to generating simulation models

directly from software architectural design. Among them,

a formal simulation language called SimML (Simulation

Modeling Language) was combined with UML by Arief and

Speirs [14] to study the performance of a particular event

sequence. In SimML, a sequence is built in a sequence

diagram using SimML classifiers and operations. Each

sequence simulation is capable of producing the average

time for it to process a job for a given arrival interval. SimML

has certain advantages over SPE. It can evaluate different

arrival distributions and processing profiles by employing

random arrival time and process delay distribution through

random variables. SimML does not assume balanced work-

load and is therefore able to calculate the average processing

time even if conditions become overloaded. An integrated

environment was created to support SimML design and

simulation. However, there is no embedded metrics designed

in the UML extensions of SimML, or a mechanism to feed the

simulation results back to the software architecture design.

Unlike SPE, SimML does not consider resource require-

ments; instead it groups all delay into one variable, the

processing delay. Therefore, in order to study the effects of

alternative hardware, the analyst must do a guess work at how

the processing delay distribution will change instead of just

considering new resource characteristics. The lack of

resource profiling also means that memory and disk usage

requirements cannot be verified. SimML does not take into

account of various scheduling algorithms. It is not possible to

investigate the behavior of synchronous communication

because SimML is event based. Besides these disadvantages,

SimML has its own design environment. A SimML model

has to be manually created using its notations in order to run

simulation.

Marzolla and Balsamo [8, 15] proposed a new process-

oriented simulation model called UML-Y. They developed a

UML notation by modifying UML SPT (UML profile for

schedulability, performance and time specification) [16].

The simulation model is generated from annotated use

case, deployment, activity, and collaboration diagrams. The

transformation from the UML diagrams to the simulation

model is automated by a tool. Simulation results are reported

back and associated with UML diagrams. The authors

proposed a new idea to validate the simulation models

using the equivalence relations �M and �U. The �M

relation judges whether two simulation models are equivalent

and �U evaluates whether two UML diagrams are equal.

They argued that the simulation models can be validated if

two simulation models have same structure and demonstrate

equivalent performance, and their corresponding software

Empirical Performance Study on PSIM 511

The Computer Journal Vol. 49 No. 5, 2006

architectures are equivalent as evaluated by �U. Unfort-

unately, the definitions of the equivalence relations were not

shown or put into practice in their reported approach.

Another interesting study on extending UML to generate

simulation models was reported in [17]. The authors targeted

real-time systems and defined stereotypes related to real-

time domain constrains, such as period, deadline, jitter etc.

Static diagrams, collaboration diagrams, classes, nodes,

and associations are used to generate the simulation model.

Scheduling policies are well presented in their work.

However, the transformation from the extended UML

model to the simulation model or analytic model was not

specified in this paper. Since this approach was specifically

designed for real-time system, it is not suitable for studying

general software systems.

2.3. Process Algebra-based approaches

Transforming software architecture into process algebra is

another direction [18, 19, 20]. Bennett and Field [18]

proposed an approach to transform UML sequence diagram

into state machine based on which an FSP model is generated.

The transformation, however, must be done manually.

Pooley [19] combined state diagrams with collaboration

diagrams to generate a process algebra model for each

combined diagram. The generated process algebra models are

then integrated together to create a single PEPA (performance

evaluation process algebra) model. The difficulty of combin-

ing individual PEPA models was discussed in the approach.

He also suggested a way to directly derive continuous

Markov Chain model from the combined state and colla-

boration diagrams.

The combination of UML 2.0 activity diagram and PEPA

was studied in [20]. Activity diagram underwent significant

changes in UML 2.0 compared with its earlier representa-

tion in UML 1.x, thus presented a much higher level of

complexity because it includes some high-level modeling

techniques such as control flows and object flows. The

authors specifically investigated the transformation from

the UML 2.0 activity diagram to PEPA.

In Process Algebra-based approaches, usually stochastic

behavior and resources are integrated into system architecture

and the performance evaluation is based on the numerical

calculation of the underlying Markov Chain. One major

concern for this kind of approach is state explosion problem

well-known in the model checking area. In addition, the

major drawbacks of Process Algebra-based approaches

include low degree of automation, lack of feedback mech-

anism, and requirements of expert-level knowledge.

2.4. Queueing network-based approaches

In order to harness the power and effectiveness of graph-

analytic models such as queueing network [21] and Petri

net [22], many researchers tried to transform software archi-

tecture to these models and their variations. Among all these

models, extended queueing network is gaining popularity [23,

24, 25, 26, 27, 28]. By extending UML to represent perform-

ance properties, analytic models can be derived from UML

diagrams and studied during the requirements, analysis, and

design phases of the software lifecycle.

Pooley and King [26] suggested extending UML use cases

to depict workload, using sequence diagrams to trace

simulation, and mapping state diagrams to Markov Chain

models, etc. As an example, they derived a queueing network

for the ATM machine example to illustrate their ideas.

Though preliminary, these attempts sketched the possible

transformation from UML to performance models.

Kahkipuro [28, 29] proposed a work to translate extended

UML diagrams into AQN (augmented queueing networks),

which represent simultaneous resource possessions. The

augmented queueing networks are accepted by a decom-

position algorithm in textual format to generate and solve

queueing networks. Finally, the results are reported back in

the sequence or collaboration diagrams. The transforma-

tion and the decomposition algorithm are supported by

an automatic tool. However, this approach only supports

textual representation, which degrades the quality of user

interfaces. Furthermore, a set of systematic metrics and

scheduling policies are needed for this approach to support

comprehensive performance evaluation.

Some researchers considered software architecture patterns

when evaluating their performance [23, 25]. Dorina Petriu

and Shen [24] intended to generate Layered Queueing

Network (LQN) from the annotated UML by using an

intermediate format, Extensible Stylesheet Language

Transformation (XSLT). The analysis based on the LQN

models can help evaluate performance of different soft-

ware architecture patterns. This approach annotates UML

collaboration, deployment and activity diagrams to present

performance properties, while other diagrams such as use

case and sequence diagrams, which illustrate important

timing and behavior information, are not used. Moreover,

this approach lacks the mechanisms to collect performance

metrics or report performance results back to the architecture.

The generated LQN has to be analyzed by an external tool.

Another study on evaluating software architecture patterns

was reported in [30]. Focusing on the component inter-

connection patterns, the authors annotate UML diagrams

and map the annotated diagrams into extended Queue

networks. Nevertheless, this study did not provide a

systematic transformation from the annotated software

architecture to performance models.

2.5. Petri net-based approaches

Unlike the conceptual graphical presentation of Queueing

Network, Petri net maintains better software architecture

512 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

view. Interestingly, compared with the great amount of

effort devoted to Queueing Network, less work has been done

to transform software architecture into Petri net models.

Besides, one common problem for existing work in this area

is that most transformations are based on UML statecharts;

hence the transformation process would be difficult because

of the added complexity of statechart generation.

King and Pooley [31, 32] presented a work to derive Petri

nets and continuous Markov Chain using UML collaboration

and statechart diagrams as the major source. The idea is to

first embed the statecharts into collaboration diagrams to

express the global state of a system. It then transforms the

combined diagrams into GSPN models, which are finally

united as a single GSPN model. The problem of this approach

stems from when identifying shared transitions to combine

individual Petri nets together. Additionally, they did not

provide a tool to automate the transformation from UML

diagrams to Petri nets, nor an integrated environment to

evaluate the generated Petri nets for performance predictions.

Lopez-Grao and his colleagues [33] explored the possibil-

ity to formally transform different diagrams into LGSPN

(Labeled GSPN). The concept of this approach is to combine

activity diagrams with statecharts to model possible execution

paths. Statecharts are used as the high level model and

activity diagrams are used for modeling internal flow process

at lower level. In other words, an activity diagram describes a

doActivity in the statechart. The activity diagrams may have

hierarchy. After annotating performance requirements to the

UML diagrams, each activity diagram is translated into a

LGSPN. All the individual LGSPNs are finally combined,

guided by the statecharts, into a single performance model for

the whole system or for a specific scenario. In this methodo-

logy, the transformation is automated by a CASE tool,

ArgoUML. There is no support in this methodology to report

performance results back into the software architecture. As

pointed out by the authors, the LGSPN model has to be

replicated for different doActivity/subactivity invocations.

The inadequate expressing capability of LGSPN restricts

the pattern of activities invocation (i.e. the invocation paths

must be acyclic.) However, this problem can be easily

addressed by Colored Petri net, which is used in our

approach, PSIM.

Different from other approaches which focus on trans-

formation from UML models, the approach created by

Fukuzawa and Saeki [34] directly models the software

architecture as Colored Petri net (CPN). The final model

allows not only evaluation of software performance, but also

other properties such as security and reliability. Nevertheless,

their work seems preliminary and not practical yet.

There is one special technique which can not be

categorized into any of the five trends—the UML profile

for schedulability, performance and time specification (UML

SPT) [16] published by Object Management Group in 2002.

UML SPT was published in response to the great demand and

the fruitful research outcome of UML performance profile.

It provides a way to annotate UML diagrams with perform-

ance requirements, system resources, and performance related

behavior information. However, this profile only formalizes

the way to extend UML diagrams, where no specific

performance model can be created. Therefore it lacks the

capability to evaluate system performance. UML SPT was

later integrated with some existing performance analysis

techniques [8, 15, 23, 24, 35, 18], as having been reviewed

above.

In our previous work [36], a technique was described for

predicting the performance of a system through the analysis

of its performance requirements and early architectural

design. In retrospect, this approach appears to be more

suited to the analysis of very early requirements and design.

However, it lacks the ability to depict complex system

functionality and subsequent system behavior described in

a more complete requirements specification emerged later.

3. PERFORMANCE SIMULATION AND

MODELING

3.1. UML Extension to Specify Performance

Properties

Because UML is widely accepted by the industry as the

standard language for requirements and functionality spe-

cification of a software system, we decided to use UML as

our architectural model in this research. It is noted that

UML provides the extension mechanisms to facilitate the

specification of system properties other than functional

requirements. In our work, system performance is modeled

by extending the UML CSCD (Case, Sequence, Collaboration

and Deployment) diagrams through using stereotypes and

tagged values. Thus, a new approach, called PSIM, to profil-

ing system performance with UML is presented in this paper

based on such an extension mechanism.

In the following subsections we will show how resources

and workload can be integrated into the architectural models

for the purpose of simulation. As the readers may notice soon,

performance metrics are essential for such a simulation-

centric modeling method. Detailed design of PSIM can be

found in [5, 6].

3.1.1. Integrating resources into software architecture

Practice shows that studying resources is one of the six

important steps in the ‘Best Practice’ and it should be a part

of the architecture design [37]. One way to transform a

functional specification into a performance model is to apply

resource-constrained extensions to UML in order to capture

resource semantics. The extensions are also used to create

deployments of hosts and connections. These deployments

are reusable across a variety of simulations and offer a

convenient way to allocate tasks during specifying workload.

Empirical Performance Study on PSIM 513

The Computer Journal Vol. 49 No. 5, 2006

The ‘performance constraints’ considered here are hardware

resources (cpu, disk, interface etc.) and software constraints

(connection, interaction, process etc.). Each constraint is

stereotyped as either mandatory (M) or optional (O), as

shown in Figure 1. The constraint-stereotypes are listed in

Table 1 and are partially described in Figure 2.

The UML sequence diagram specification with resource-

constrained extensions is shown in Figure 3. A careful

examination of Figure 3 indicates that processing delay is

restricted to basic objects such as the client, while lines of

code, memory usage, and disk I/O constraints pertain only to

processes or threads. All of the basic objects, processes and

threads can have the hold time values. The server is classified

and stereotyped as a Process although not shown in the

sequence diagram. Figure 4 illustrates how the resource-

constrained extensions are also made to the collaboration

diagram specification to depict distances between objects

which are not shown in the sequence diagram. The distances,

together with network resource data, will be used for

calculating network transmission delay in simulation. All the

parameter values in these diagrams come from prototyping,

manufactory specifications, measurements or requirements.

•
•
•
•
•
•

o
o
o

•

•
•

•
•
•
•

FIGURE 2. Constraints stereotypes and related tagged values.

TABLE 1. Constraints stereotypes.

Stereotype Model element

Host Node

Connection Association

Network Interface Association End

Allocation Domain Component

CPU Object

Memory Object

Disk Object

Process Component

Thread Component

Disk
<<M>> - capacity
<<M>> - seek time
<<M>> - data rate
<<O>> - max usage

CPU
<<M>> - speed
<<M>> - instructions per cycle
<<M>> - context switch time

Allocation Domain

1..n1..n

Thread Process1..n1..n

Resource
<<O>> - max utilization

Memory
<<M>> - size
<<O>> - max usage

Network Interface
<<M>> - wait time
<<M>> - data rate
<<O>> - link rate

Host
<<M>> - quantum

1..n1..n

11

Physical Connection

22

Deployment
0..n0..n

0..n0..n

Performance
Constraints

0..n0..n

Disk I/O
<<M>> - action
<<M>> - file name
<<M>> - size

Interaction

Message
<<M>> - size
<<O>> - hold time
<<O>> - processing delay
<<O>> - lines of code
<<O>> - memory usage

0..n0..n
<<ordered>>

0..n0..n <<ordered>>

Connection
<<M>> - distance
<<O>> - max utilization

Use Case

0..n0..n

0..n0..n

Logical Connection

Object
0..n0..n

22

22

FIGURE 1. Constraints domain model.

514 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

3.1.2. Integrating workload into software architecture

Workload extensions supply the tools needed to build a

simulation. These extensions have two important roles.

The first is to identify interactions, which will drive the

simulation, and their arrival information. The second is to

allocate any processes or threads within these simulations

to specific hardware. The workload stereotypes and related

tagged values are shown in Table 2 and Figure 5.

The use case diagram specification with workload exten-

sions is illustrated in Figure 6. Use case is used to identify a

group of interactions that will define the simulation. Such

a collection is called a workload. A duration value may be

:CentralServer
Osaka

:AppServer
Kyoto

:DBServer
Cancun :AppClient

1: request

2: query

3: query DB 4: notify floorholder

5: grant

6: report

7: update

8: get floor

9: talk

10: broadcast

distance=100m

distance=100m

distance=8000m

FIGURE 4. ‘Meeting Procedure’ scenario: collaboration diagram with resource-constrained extensions.

Meeting members:
AppClient

Central Server:
CentralServer

Application Server:
AppServer

DATAbase:
DBServer

1: request to talk

2: query where is the floor

3: query Database

4: notify current floor holder

5: current floor holder grant the floor

6: report to central server

7: update database

8: get floor

9: do his talk

10: AppServer broadcast his talk

size = 500 bytes
lines of code = 2000
memory usage = 1000 bytes

size = 400 bytes
lines of code = 1500
memory usage = 600 bytes size = 500 bytes

lines of code = 8000
sequence of
{ disk I/O = 1{
 action = write
 file name = mnet
 size = 10k bytes}

}
size = 500 bytes
processing delay =
50msec size = 1000 bytes

lines of code = 10000

memory usage = 1000 bytes

size = 500 bytes
lines of code = 1000
memory usage = 500 bytes

size = 500 bytes
lines of code = 10000
sequence of
{ disk I/O = 1{
 action = write
 file name = mnet
 size = 10k bytes}

}

size = 500 bytes
lines of code = 2000
memory usage = 1000 bytes

hold time = 1min
size = 500 bytes
lines of code = 5000

size = 500 bytes
processing delay = 800msec

FIGURE 3. ‘Meeting Procedure’ scenario: sequence diagram with resource-constrained extensions.

Empirical Performance Study on PSIM 515

The Computer Journal Vol. 49 No. 5, 2006

attached to a workload. This duration value indicates how

much time will be given to run the simulation, not how long

each scenario will execute. If the workload includes other use

cases, the root workload’s duration will supersede any other

use case durations. Arrival information must be attached to

the interaction when it is added to a workload. The arrival

information helps inject the interaction into the simulation

and includes the inter-arrival time, the number of repetitions,

and the initial delay. The information can be annotated on

either the sequence or the collaboration diagram. A designer

often resort to the historical system operational profiles of

similar systems to speculate the workloads to obtain the

arrival information that can only be actually validated during

testing when the system is built.

3.1.3. Embedding performance metrics into architecture

With the performance metric extensions in PSIM, a per-

formance analyst can be supported to view performance

simulation results. We decided to associate certain metrics

with each interaction in the simulation and every hardware

component that gets invoked. Typical metrics applied to

each individual interaction within a workload include total

completed, average response time and total execution time.

Table 3 depicts the stereotypes defined for metrics.

Metrics can appear on a sequence diagram, although a

collaboration diagram could have been used instead. Since

the deployment diagram already includes the hardware

layout and the task allocation, it is also ideal for displaying

the corresponding performance metrics. Tagged values can

be placed directly on the relevant software or hardware

components, making it easy to find specific results, as shown

in the host machine Oscar in Figure 7.

3.2. Generating GSPN Model from

Software Architecture

In the research world Petri net tools are abundant. Among

them GSPN [22] was chosen as the simulation model for

PSIM because of their ability to randomize arrival and

processing delays and their capacity to model complex

interactions. Research exists elsewhere that defined the

TABLE 3. Workload stereotypes.

Stereotype Model element

Workload Use Case

Host Node

Connection Association

Network Interface Association End

Allocation Domain Component

CPU Object

Memory Object

Disk Object

Process Component

Thread Component

duration = 30 min

M-NET - MP Simulation

FIGURE 6. ‘Meeting Procedure’ scenario: use case diagram with

workload extensions.

•
•
•

•

•
•

•
•
•

•

FIGURE 5. Workload stereotypes and related tagged values.

TABLE 2. Workload stereotypes.

Stereotype Model element

Workload Use Case

Host Node

Allocation Domain Component

Disk Object

Process Component

Thread Component

516 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

transformation from UML statecharts to GSPN, such as

[29, 31]. Since PSIM provides extended UML diagrams in a

unique way, we need to define our own transformation

accordingly. Our transformation scheme is to combine

interaction and deployment diagrams to produce a Colored

GSPN [38]. Key to the integrity of such a transformation is

the consistency of all the diagrams that must be validated.

Once validated, performance metrics will be automatically

collected through a simulation based tool named the PSIM-

suite. PSIM-suite automates the simulation procedure by

reading in a workload and the corresponding constraints,

generating a Colored GSPN, and collecting necessary metrics

via simulating the net.

3.2.1. Tokens and Colors

Generally in Petri net tokens serve as control mechanism to

introduce queuing and synchronization. For the purpose of

our transformation, tokens are primarily used to represent

messages traveling through a distributed system. Color plays

an integral part in the development of the new UML

transformations. It is either absent or in the form of ho, m i
or hp, t, m, ii where variables o, m, p, t, and i refer to any

object, message, process, thread, and iterator. The ‘iterator’ is

useful for modeling the round-robin scheme of the scheduling

policy and for referencing disk operations. A higher degree

of modeling ability can be achieved by using color because

variables can be replaced with constants or expressions. Con-

straints help identify messages and their intended receivers,

or put upper bound on the iterator. To model scheduling

algorithms, context switching and disk operations, we can use

‘expressions’, which add restrictions on input arcs or modify

variables in output arcs. Shown below is a list of supported

expressions.

!P ¼ An input arc restriction that prevents a transition from

firing unless the input place contains a token belonging to

another process.

!T ¼ An input arc restriction that prevents a transition

from firing unless the input place contains a token belonging

to another thread.

!I ¼ An input arc restriction that prevents a transition

from firing unless the input place contains a token with a

different constant value compared to the value of I.

i++ ¼ An output arc modification that increments the

iterator by one.

3.2.2. Places

In our transformation we use place to depict a message

queue, message completions, resource visits, memory usage,

disk usage, or a semaphore lock. We define three types of

places in our transformation: workload based places, inter-

action based places, and deployment based places. Workload

based places pertain to the workload itself. Their purpose is

to stop the simulation after the given duration. There are

two places under this category, Simulation::Started and

Simulation::Ended. Simulation::Started enables Simulation::

Stop transition and Simulation::Ended inhibits every

oscar : Host

sd7 : Disk

utilization = 12%
throughput = 126 msg /sec
residence time = 983 usec
queue length = .12 msg
usage = 4 KB

: Memory

usage = 2 MB

default : Allocation Domain

cpu0 : CPU
utilization = 3%
throughput = 126

residence time = 211
queue length = .03

: Location Servicemain : Thread

utilization = 15%
throughput = 126
residence time = 1.2
queue length = .15

utilization = 15%
throughput = 126
residence time = 1.2
queue length = .15
memory usage = 2 MB

utilization = 3%
throughput = 126

residence time = 211
queue length = .03

oscar : Host

sd7 : Disk

utilization =
throughput =
residence time =
queue length = .
usage =

: Memory

usage = 2 MB

: Memory

usage =

default : Allocation Domain

cpu0 : CPU
utilization =
throughput =
residence time =
queue length =

: Location Servicemain : Thread

utilization =
throughput =
residence time =
queue length =

utilization =
throughput =
residence time =
queue length = .
memory usage =

utilization =
throughput =
residence time =
queue length =

FIGURE 7. Standard ::Oscar metrics.

Empirical Performance Study on PSIM 517

The Computer Journal Vol. 49 No. 5, 2006

Interaction::Inter-arrival Time transition. The token given

to the Simulation::Ended place at the end of the workload

duration disables the transitions responsible for bringing new

arrivals into the system.

Interaction based places are derived from the workload’s

sequence or collaboration diagrams. They reflect abstract

objects and connections, arrival information, and message

actions. For each object or connection appearing in the

sequence/collaboration diagrams, we define places ::Queue,

::busy, and ::Completions. Moreover, we define some

interaction specific places such as ::Idle, ::Injector, and

::Message:Destructor etc.

Deployment based places model the necessary hardware

and software queues, resource contention, process memory,

and scheduling algorithms. This kind of places is derived

from deployment diagrams. For resource objects such as

disk, CPUs, and network interfaces, we generate places

::Object, ::Object::Lock, ::Object:Completions, and ::Object:

Queue. Besides, CPU object has a ::CPU::Context place.

Process and thread objects have places ::Memory, ::Queue,

::Scheduler, etc. Partial results are shown in Figure 8.

3.2.3. Transitions

Similar to places, transitions are generated according

to three categories: workload, interaction, and deployment.

The only workload based transition, Simulation::Stop, allows

the simulation run for a certain amount of time. Interaction-

based transitions are derived from the workload’s interaction

diagrams. They include all the important delays associated

with each message. For instance, the initial delays, inter-

arrival times, hold times and service times are all modeled

through interaction based transitions. Interaction::Message::

Object::Return transition is shown as an example in Figure 9.

This Interaction::Message::Object::Return serves as a syn-

chronization point for remote procedure calls. Since the

Object::Run transition gets blocked whenever synchronous

communication is performed, another transition is needed

to collect the response. The Return transition passes such

a response to the Object::Processor to proceed with the

synchronous communication.

To simulate round-robin scheduling policy, Interaction::

Message::Host::AllocationDomain::CPU::Quantum transition

is used in conjunction with Service Time transitions

(including CPU Service Time, Process Switch Service Time

and Thread Switch Service Time, etc.). Messages iterate over

Quantum until they are almost complete. The Service Time

transition picks up the remaining time which is less than or

equal to Quantum. There is no conflict between the Quantum

and Service Time transitions because color of the token

prevents them from being enabled at the same time.

Deployment based transitions, generated from the work-

load’s deployment diagrams, exist regardless of the interac-

tions that run through them. There are only four deployment

based transitions: ::Process::Priority::Run, ::Allocation-

Domain::CPU::Process::Thread::Run, ::Allocation

Domain::CPU::Process::Thread::Resume and ::Allocation

Domain::CPU::Initialize. The first three are responsible

for controlling the flow of messages through process and

thread queues. The last transition is used to initialize a CPU’s

context.

3.2.4. Metrics

It is intuitive to define metrics as functions of token numbers

and time. For each interaction, host, network interface,

connection etc., we collect a bunch of metrics. Below is an

example of the definition of the metrics for a process.

Let

td ¼ the time when all transitions are dead

Md(Place) ¼ the number of tokens in Place at time td

qkðtÞ ¼ MtðHost::Process::Thread½k�::QueueÞ
þMtðHost::Process:Thread½k�::BusyÞ

(For each thread k, its queue length is the number of

processing tasks plus the number of waiting tasks)

N ¼ the number of threads allocated to a particular process

gðtÞ ¼ 0‚
PN

k¼1 qkðtÞ ¼ 0

1‚
PN

k¼1 qkðtÞ > 0

�

FIGURE 9. Interaction::Message::Object::Return.

FIGURE 8. Deployment-based places.

518 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

Then

Host::Process::utilization ¼
Ptd

t¼0
gðtÞ

td
Host::Process::throughput ¼PN

k¼1 MdðHost::Process:Thread½k�::CompletionsÞ
td

Host::Process::queuelength ¼
Ptd

t¼0

PN

k¼1
qkðtÞ

td

Host::Process::residencetime ¼ Host::Process::Queuelength

Host::Process::throughput
Host::Process::memoryusage ¼

MaxfM0ðHost::Process::MemoryÞ‚
::‚ MdðHost::Process::MemoryÞg

4. WEB-BASED DISTRIBUTED SYSTEMS

AND PERFORMANCE STUDY

4.1. N-tier architecture and performance study

N-tier architecture is the most popular style for web-based

distributed system. The N-tier architecture, usually including

client, web tier, middle tier and database, offers to create

a scalable and cost-effective infrastructure in web-based

systems as shown in Figure 10. Because of the multiple

client/server relationships and potential bottlenecks, perform-

ance testing is important for those systems. The M-Net

system tested in this paper is based on J2EE architecture

which facilitates N-tier application development.

4.2. The web-based electronic conferencing

system M-Net

M-Net (shown in Figure 11) [7] is a web-based electronic

conferencing system, which enables people in geographically

dispersed locations to hold virtual meetings through

the internet. It also includes various applications, such as

chat, slideshow, ftp, and layered whiteboard, to support

collaborative meetings. Although it is web-based, we have

implemented different versions of M-Net to experiment with

both VoIP and PBX-enabled audio paths.

M-Net can be considered as a three-tier client/server

system. The three tiers are client, server, and database. There

may be multiple Application Servers. M-Net client is actually

a Java applet that is downloaded from a server, and run in

any browser. Figure 12 shows the communication patterns

of M-Net. Many functions of M-Net require interactions

among clients, servers and database, though client-to-client

interactions are still handled through client-to-server message

passing. Details are described in Section 5.

The well-known 80/20 rule suggests that 20% of scenarios

may account for 80% of the work. Hence the PSIM model

requires that the critical 20% of scenarios be identified and

simulated. These critical scenarios either have high execution

frequencies, or carry heavy workloads. For the purpose of

running experiments, we identified five critical scenarios

for M-Net. Description of these critical scenarios and how

we identified them are reported in our previous work [36].

The five critical scenarios are cited as below:

(i) Log on and log off.

(ii) Meeting procedure.

(iii) Open slide show.

(iv) Display a slide and use the pointing device.

(v) Close slide show. Among all the five critical scenarios,

‘Meeting Procedure (MP)’ scenario will be studied

as an example in the following subsections. A tool

SABRE-TM [36] was used to create the graphic

scenarios and explore the relationships among them.

‘Meeting Procedure (MP)’ is the most complex and

frequently used scenario in M-Net. It illustrates the complete

procedure of a talk during a meeting. The MP scenario was

usually triggered by a request for floor. Floor is a token which

is necessary for a member to secure in order to talk in the

meeting. Originally the floor is held by the Chairman. When

a meeting member requests the floor, the request is sent to

one of the Application servers. The Application server then

contacts the Central server to find out the current floorholder.

A message is then sent to the floorholder to notify him/her

the floor request. If the floorholder agrees to release the floor,

the floor will be issued to the requester. The DBServer

updates the database accordingly.

4.3. Definitions and Assumptions

As pointed out by Robert G. Sargent in [39], formal

models for validating simulation models are too expensive,

Browser Internet DBMSWeb
Server

App
Server

Response Time Response Time

Total Response Time

Response Time

FIGURE 10. Performance of web-based distributed system.

FIGURE 11. The electronic conferencing system, M-Net.

Empirical Performance Study on PSIM 519

The Computer Journal Vol. 49 No. 5, 2006

sometimes impractical. Among all the validation techniques,

what suit our purpose the best include degenerate tests, opera-

tional graphics, parameter variability-sensitivity analysis, and

predictive validation. These validation techniques, especi-

ally predictive validation technique, require us to run the

simulation model to observe system behavior and to compare

the numerical results from the simulation models to real

system behaviors. In this paper, we use the same performance

parameter setting to run PSIM simulation and to test the

M-Net system, and compare the testing results to the metrics

collected in PSIM simulation.

When designing this study, we intended to compare

PSIM to real measurement in terms of two major system

characteristics: Performance and Scalability. The first one is

mostly indicated by the metric Response time. We briefly

explain Response time and Scalability as follows.

Response time is defined as the length of time that a user

must wait from the instant that they submit a request to the

instant that they view the response to that request.

Scalability is determined by how consistent the response

time is when additional concurrent users are added. As the

number of concurrent users is increased, if response time

sharply increases, then poor scalability is indicated.

PSIM generates a rich set of metrics such as utilization,

response time, residence time, queue length, and throughput

for both interaction and hardware (CPU, memory, hard disk,

etc.), while only CPU utilization, memory usage, transaction

response time and throughput are collected during per-

formance testing. To compare the two approaches and to

validate PSIM, we focus our study on Response time and

CPU Utilization as we believe they are essential to studying

system performance and system scalability. Most other

metrics such as queue length, throughput, network utilization,

disk utilization, and memory usage are all eventually reflected

on this leading metric ‘response time’.

We also carefully designed the workload for both

simulation and real measurement. Arlitt and Wfizpnson [40]

proved that the requests for individual documents in web-

based application appears to follow the Poisson distribution.

Based on the usage data reported in various studies, and

what we collected over the past few years, the following

assumption is thus made.

Assumption 1: Without loss of generality, we assume that

arrival rate follows the Poisson distribution.

With this assumption, we examined the complex usage-

patterns on similar systems. Finally we decided the following

five Poisson inter-arrival rates: 1, 0.3, 0.1, 0.05, and 0.008.

The relationships among Poisson arrival rates, numbers of

meeting members, and numbers of requests per second are

shown in Table 4.

FIGURE 12. Top level system architecture of M-Net.

520 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

5. PSIM SIMULATION ON ‘MEETING
PROCEDURE (MP)’ SCENARIO

Before building the PSIM model for the MP scenario, we

need to generate operational profiles from similar systems and

collect other necessary data such as hardware specifications

and performance-related requirements. Critical activities

involved in this scenario need to be identified too. We

created the sequence diagram for the MP scenario with the

resource-constrained extension shown in Figure 3 of section

3.1.1. As mentioned in 3.1.1, the ‘lines of code’ values were

gained from prototyping, while the ‘processing delay’ values

usually come from software requirements. We used hardware

specifications or real measurements for specific hardware

values such as instructions per cycle. Figure 4 in section 3.1.1

shows the extended collaboration diagram for the same

scenario. As shown in Figure 4 the distance between

Database Server and Central server and the distance between

Central server and Application server were set to 100m, while

the distances between client and all the servers were set to

8 km1. Figure 6 in section 3.1.2 illustrates the extended use

case diagram for the MP scenario. The duration of this

simulation was set to be 30 minutes.

In this study, we only used one Application server. So

we deployed the Application server, Central server, and

DBServer on machines Kyoto, Osaka, and Cancun respect-

ively (as shown in Figure 4). For each process and host, we

carefully denoted its initial memory and disk usage. Also,

since the processes had not been decomposed into threads,

they were assumed to be single threaded. As a result, each

process was supplied with a default main thread. Each thread

then was allocated to a particular allocation domain and given

scheduling attributes. The attributes indicate that all the

threads run at a high priority in the system scope, and with a

FIFO order. Osaka allocation domain is depicted in Figure 13.

Figure 14 illustrates the network interface between the

DBServer Cancun and the Central server Osaka.

PSIM-suite then took all the specifications, generated and

executed the simulation model. During the simulation, PSIM-

suite collected metrics on servers, clients, CPUs, network

interfaces, connections, and different queues, etc. Analysis on

these metrics sheds light on system performance and revealed

potential bottlenecks. Model validation can be done through

comparing all the numerical results. For example, we noticed

that the throughput of the DBServer is twice the inverse of the

inter-arrival time because it receives only two messages

during the scenario execution. Since both of the messages

visit CPU and disk, the DBServer’s utilization is the sum of

the CPU utilization and the disk utilization.

Figure 15 illustrates the response time from the simulation

of ‘Meeting Procedure’ scenario when arrival rate is equal

to 1. From Figure 15 we can see that the response time is kept

in a reasonable range.

The CPU utilization of the machine Cancun during this

simulation is shown in Figure 16. The results show that

Cancun’s CPU utilization never exceeds 43%. Analysis on all

the other metrics does not indicate any performance problem

either. At this stage, software engineers may evaluate their

software design by validating the PSIM results against

software performance requirements. The comparison among

simulation results at different arrival rates is especially

valuable for performance analysis. This type of study is

similar to stress testing in performance testing. Figure 17

depicts the comparison of response time at rates 1, 0.3, 0.1,

0.05 and 0.008. There is no completion in the first 60 s

because of the 1 min hold time attached to message 9 ‘do his

talk’ in Figure 3. From Figure 17, we can see that the

response time remains steady when the inter-arrival rate is

no less than 0.1 but keeps climbing when the inter-arrival

rate is 0.05. This means the software design and system

deployment could not handle the requests when arrival rate

reaches 0.05. Moreover, the heavier the workload, the higher

the slope. By examining all the performance metrics collected

by PSIM, we finally identified the Cancun CPU as the

performance bottleneck when arrival rate exceeded 0.05.

More specifically, arrival rate 0.05 is the threshold workload.

This implies a possible performance risk if arrival rate 0.05 is

within the designed workload range. To solve this problem,

software engineers should change their software system

design or resource deployment. Assisted by the PSIM-suite,

designers can quickly reevaluate the redesigned system.

If performance problems still exist, the software development

retracts back to requirements engineering stage. Require-

ments engineers get involved and the performance require-

ments are verified for correctness, feasibility, and accuracy.

6. PERFORMANCE TESTING AND RESULT
COMPARISON ON ‘MEETING PROCEDURE

(MP)’ SCENARIO

6.1. Performance Testing Tools

Load testing tools were chosen to facilitate a performance

testing in a J2EE environment for their ability to simulate

usage and to measure the performance. Among these load

testing tools, there are three most popular ones: LoadRunner,

E-Load and Grinder. LoadRunner can predict enterprise-level

TABLE 4. Relationships between requests and numbers of meeting

Members.

#(Meeting Members) 10 20 50 100 500

#(Requests to talk)/sec 1 3 10 20 120

Arrival rate (Poisson) 1 0.3 0.1 0.05 0.008

1For telephony applications, distance represents a legitimate concern of

system performance; M-Net happened to have employed a modern PBX

switch with T1-configurable ports to enable physical audio links between

clients.

Empirical Performance Study on PSIM 521

The Computer Journal Vol. 49 No. 5, 2006

system behavior and performance by emulating thousands of

users and employing performance monitors to identify and

isolate problems. E-Load is for scalability testing of enterprise

web applications in a fast and accurate way. Different from

the other two, the Grinder is a free open-source load-testing

framework. It has a graphical console application, coming

with a plug-in for testing HTTP services and a tool which

allows HTTP scripts to be automatically recorded. In our

experiments, LoadRunner was used to test the response time,

CPU utilization and memory utilization of the systems, while

Grinder was used to test response time only. We compared

Grinder’s result with LoadRunner’s result to see whether

they are consistent. Besides these tools, a small program was

created to verify the system CPU utilization. Since all of the

machines used in this paper have Microsoft Windows

operating system, this small program was created using

windows API. The program is small enough for us to neglect

its interference on the machine’s major CPU utilization and

memory usage. Actually its memory usage could be included

in the initial memory usage for each host so that its memory

interference can be completely neglected.

0.04688855
0 50 100 150 200 250 300 350

0.0468886

0.04688865

0.0468887

0.04688875

0.0468888

0.04688885

0.0468889

0.4688895

0.046889

Time in second

R
es

p
o

n
se

 t
im

e
in

 s
ec

rate=1

FIGURE 15. ‘Meeting Procedure’ scenario: response time (not

including the hold time) from PSIM when arrival rate ¼ 1 (in msec).

Central Server

FIGURE 13. ‘Meeting Procedure’ scenario (Central server allocation): deployment diagram with workload extensions.

Cancun: Host

distance = 100 m
max utilization = 50 %
wait time = 0.15 ms
data rate = 100 Mbps

max utilization = 50 %
wait time = 0.15 ms
data rate = 100 Mbps

Osaka : Host

FIGURE 14. ‘Meeting Procedure’ scenario: deployment diagram for network specification.

522 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

6.2. PSIM versus Performance Testing

In Section 4.3, the request for floor is assumed to follow the

Poisson distribution. Table 4 shows the relationships between

inter-arrival rates and numbers of requests per second.

LoadRunner was used to automatically generate client

requests and measure response time, CPU utilization and

memory utilization for the MP scenario in this section. MUSI

and MUMI modes were used. The Schedule Builder was

designed to simulate Poisson distributed requests. A counter

Virtual Bytes was inserted for each process to record how

much memory this process consumes. We also inserted

another counter Processor.%Processor Time for each CPU to

monitor its utilization. Our small Windows API program was

used to verify LoadRunner’s CPU utilization results.

Table 5 and Figure 18 present the performance comparison

results from runtime measurement and PSIM simulation in

terms of average response time by numbers and figures,

respectively. The response times when the number of requests

reaches 120 are removed from Figure 18 to give a better scale

of y-axis.

Similar data patterns are found in runtime measurements

and PSIM simulation. Both the real testing and PSIM

simulation indicate the heavy workload with 0.05 arrival

rate or lower. When the request arrival rate reaches 0.008,

PSIM gives response time 89.6 while in real testing this value

is infinite. This big difference occurs because the system was

actually down under the simulated stress workload and the

user could never gain response from the server. In reality,

after the workload reaches a threshold, the server should stop

producing useful results. This is called crash point in the

simulation. However, PSIM simulation tool does not take all

resource parameters into account so PSIM results are still

lack of accuracy. Though slowly, the server still generates

results and produces responses under PSIM. The increasing

difference between the results obtained from PSIM simula-

tion and the runtime measurements as the load increases is

also due to the fact that our PSIM model only takes the major

resources, such as disk, CPU, and scheduling, into account.

Some resources, for example disk caching and computer

bus speed, are not taken into account in our PSIM models,

although they are still important to system performance.

Moreover, PSIM does not consider the situation that its

hardware and software will have abnormal behaviors when

system encounters performance problem. Additionally, the

straight-forward ‘lines of code’ variable makes the accuracy

worse.

Another experiment was conducted to address some weak-

nesses of PSIM approach. Originally the Database server was

installed in the same machine with the Central server. Later

on we changed the system deployment by moving the Central

server to another machine. This deployment modification

may incur two contrary effects: (i) performance improvement

because of the increase of computing power; (ii) performance

degradation by introducing extra network connections. PSIM

0

10

20

30

40

50

60

70

80

90

1 3 10 20

Request Per Second

Real Testing
PSIM

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
se

c)

FIGURE 18. Comparison of real testing and PSIM simulation for

average response time in the MP scenario.

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0 100 200 300 400

Time in second

C
an

cu
n

 C
P

U
 U

ti
liz

at

FIGURE 16. CANCUN CPU Utilization in the MP scenario when

arrival rate ¼ 1.

FIGURE 17. Response time from PSIM.

TABLE 5. Average response time for the MP scenario in ms (not

including the holding time).

#Request/s 1 3 10 20 120

Arrival rate 1 0.3 0.1 0.05 0.008

Real testing 50.3421 46.3253 53.62 89.2 1
PSIM 46.88 46.88 46.93 67.233 90.9

Empirical Performance Study on PSIM 523

The Computer Journal Vol. 49 No. 5, 2006

simulation demonstrated that the deployment change reduced

response time by an average of 0.01 second while the

LoadRunner testing shows the decrease in response time is

only less than 0.0002 second. This fact reveals another

deficiency in PSIM tools: the methodology does not address

network collisions and hop delays. In addition, TCP esta-

blishment delay was not explicitly shown with messages in

any of the extended UML diagrams.

Other than response time, empirical study on CPU

utilization was also conducted. Figure 19 shows the results

from the server Cancun. Both PSIM simulation and real

testing illustrate the exhaustion of CPU resource at arrival

rate 0.008. This proves the finding in Section 5 that the

Cancun CPU is the performance bottleneck when arrival rate

exceeds 0.05. Empirical study on all the other four critical

M-Net scenarios obtained similar results and proved that

PSIM can be effective in predicting system performance

and identifying performance bottlenecks. We do feel that

currently PSIM still suffers inadequate accuracy as we

learned from the experiments.

Many UML-based performance analysis approaches use

statecharts and activity diagrams, which illustrate system

state transitions, instead of sequence diagrams, which depict

system temporal behavior. We demonstrated here that

sequence diagram can be used to integrate system behavior,

interaction, and time information together with workload,

resources and predefined performance metrics information,

hence it provides a comprehensive model for performance

transformation. We use the most commonly used case,

sequence, collaboration and deployment diagrams (CSCD).

These four diagrams are always associated with UML based

architecture design and they would suffice to meet our

research objectives. Our performance model, Colored GSPN,

provides another way for software designer to view their

system architecture. Petri net provides better pictorial view of

architecture than the peer analytic model, Queueing Network,

which only keeps the conceptual system architecture.

Although Petri net is exposed to state explosion problem,

simulation keeps us away from the problem.

7. CONCLUSIONS AND FUTURE WORK

An empirical study was conducted and reported in this paper

in order to validate our performance engineering approach

PSIM, a technique that was developed for making predictions

on system performance early in the software lifecycle. The

research objective is to provide a plausible way for software

designers to assess design alternatives and validate perform-

ance requirements during early stages in software develop-

ment. Essential to our approach is the identification of critical

scenarios and usage patterns based on past experience. PSIM

is employed to model and project system performance on top

of those critical scenarios. We then conducted real testing

through performance testing tools, and compared testing

results against simulation runs to evaluate the effectiveness of

PSIM. As reported in the paper, the results suggest that PSIM

is promising in predicting software system performance and

identifying performance bottlenecks.

The PSIM methodology is aimed to overcome many of the

limitations with previous UML based performance modeling

techniques. PSIM made it possible to directly simulate an

execution environment based on the system architecture and

software designs via building a linkage between performance

modeling and functional decomposition. It is imperative to

understand and evaluate system performance in the early

development stages when only system architecture and

software design are available. In addition, as reported

elsewhere, PSIM is capable of modeling complex feature

interactions, synchronous communication, and a suite of

different scheduling attributes including priority, scope and

policy. Furthermore, the methodology makes it possible to

build profiles of software and hardware resources in terms of

utilization, throughput, and residence time. Capacity planning

for memory and disk space is possible with PSIM. Upon

simulating PSIM models, different arrival and processing

delay distributions can be considered.

Currently PSIM still needs to overcome inadequate

accuracy as we learned from the experiments. PSIM can

not easily provide the indication or estimation of crash point

or deviation. To improve PSIM, the methodology needs

to address network collisions and hop delays. In addition,

TCP establishment delay must be explicitly shown with

messages in the interaction diagrams. It is also noted that

we have not examined disk and CPU caching, computer bus

speed, retransmissions and network element failures, and the

performance of other I/O resources such as video cards.

Finally, the ‘lines of code’ variable, although still widely used

today [41], is by no means an accurate tool for calculating

CPU service time. We may need to elaborate more in this

variable to make it a feasible factor for performance

evaluation. Another consideration might be to add probab-

ilities to messages to allow more than one sequence per

interaction. Moreover, more refined scheduling policies, such

as time slicing, are desirable.

FIGURE 19. Comparison of real testing and PSIM simulation for

average Cancun CPU utilization in the MP scenario.

524 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

ACKNOWLEDGEMENTS

This work was partially supported by NSF grant #CCR-

0098346. The reported work significantly benefited from Jeff

Wise’ original thesis work on PSIM at University of Illinois at

Chicago, USA. The authors are deeply indebted to the anony-

mous reviewers whose reviews made this paper much robust.

REFERENCES

[1] Weyuker, E. J. and Vokolos, F. I. (2000) Experience with

performance testing of software system: issues, an approach,

and case study. IEEE Trans. Softw. Eng., 26(12), 1147–1156.

[2] Standish group (1994) The Chaos Report. Survey Report.

[3] Cleland-Huang, J., Chang, C. K., Sethi, G., Javvaji, K., Hu, H.

and Xia, J. (2002) Automating speculative queries through

event-based requirements traceability. In Proc. IEEE Joint

Conf. Requirements Engineering, Essen, Germany, September

9–13, pp. 289–298. IEEE Computer Society, Washington,

DC, USA.

[4] Balsamo, S., Marco, A. D., Inverardi, P. and Simeoni, M.

(2004) Model-based performance prediction in software

development: a survey. IEEE Trans. Softw. Eng., 30(5),

295–310.

[5] Wise, J. (2002) Using UML for Performance Specification and

Analysis of Distributed Software Systems. Master’s Thesis,

University of Illinois at Chicago.

[6] Wise, J., Chang, C. K., Xia, J. and Cleland-Huang, J. (2005)

Performance Analysis Based on Requirements Traceability.
Technical Report 05-04, Department of Computer Science,

Iowa State University.

[7] Zhang, J. (2002) M-Net Server Enhancement and NT

Service. Master’s Project Report, University of Illinois at

Chicago.

[8] Marzolla, M. (2004) Simulation-Based Performance Modeling

of UML Software Architectures. Ph.D. Thesis, Università

Ca’ Foscari di Venezia.

[9] Smith, C. U. and Williams, L. G. (2002) Performance
Solutions: A Practical Guide to Creating Responsive, Scalable
Software, Addison Wesley, Boston, MA, USA.

[10] Cortellessa, V., Gentile, M. and Pizzuti, M. (2004) XPRIT:

an XML-based tool to translate UML diagrams into

execution graphs and queueing networks. In Proc. 1st Int.

Conf. Quantitative Evaluation of Systems, Enschede, The

Netherlands, September 27–30, pp. 342–343. IEEE Computer

Society, Washington, DC, USA.

[11] Cortellessa, V. and Mirandola, R. (2002) PRIMA-UML: a

performance validation incremental methodology on early

UML diagrams. In Proc. 3rd Int. Workshop on Software and

Performance, Rome, Italy, July 24–26, pp. 302–309. ACM

Press, New York, NY, USA.

[12] Cortellessa, V., Marco, A. D., Inverardi, P., Mancinelli, F. and

Pelliccione, P. (2005) A framework for the integration of

functional and non-functional analysis of software archi-

tectures. Electr. Notes Theor. Comput. Sci., 116, 31–44.

[13] Holzmann, G. J. (2003) The SPIN Model Checker: Primer
and Reference Manual. Addison Wesley, Boston, MA, USA.

[14] Arief, L. B. and Speirs, N. A. (2002) A UML tool for an

automatic generation of simulation programs. In Proc. ACM

2nd Int. Workshop on Software and Performance, September

18–20, pp. 71–76. ACM Press, New York, NY, USA.

[15] Marzolla, M. and Balsamo, S. (2004) UML-PSI: the UML

performance simulator. In Proc. 1st Int. Conf. Quantitive

Evaluation of Systems, Enschede, The Netherlands, September

27–30, pp. 340–341. IEEE Computer Society, Washington,

DC, USA.

[16] Object Management Group (OMG). (2002) UML Profile
for Schedulability, Performance and Time Specification. Final

Adopted Specification ptc/02-03-02, OMG.

[17] Miguel, M. D., Lambolais, T., Hannouz, M., Betge-Brezetz, S.

and Piekarec, S. (2000) UML extensions for the specifications

and evaluation of latency constraints in architectural models.

In Proc. 2nd Int. Workshop on Software and Performance,

Ottawa, Ontario, Canada, September 17–20, pp. 83–88. ACM

Press, New York, NY, USA.

[18] Bennett, A. and Field, A. (2004) Performance engineering with

the UML profile for schedulability, performance and time: a

case study. In Proc. 12th IEEE Int. Symp. Modeling, Analysis,

and Simulation of Computer and Telecommunications Systems,

Volendam, The Netherlands, October 5–7, pp. 67–75. IEEE

Computer Society, Washington, DC, USA.

[19] Pooley, R. (1999) Using UML to derive stochastic process

algebras models. In Proc. 15th UK Performance Engineering

Workshop, Department of Computer Science, The University

of Bristol, July 22–23, pp. 23–33. University of Bristol, Bristol.

[20] Canevet, C., Gilmore, S., Hillston, J., Kloul, L. and Stevens, P.

(2004) Analysing UML 2.0 activity diagrams in the software

performance engineering process. ACM SIGSOFT Softw. Eng.
Notes, 29(1), 74–78.

[21] Lazowska, E., Zahorjan, J., Graham, G. and Sevcik, K. (1984)

Quantitative System Performance Computer System Analysis
Using Queueing Network Models. Prentice-Hall, Upper Saddle

River, NJ, USA.

[22] Marsan, M. A., Balbo, G., Conte, G., Donatelli, S. and

Franceschinis, G. (1995)Modeling with Generalized Stochastic
Petri nets. John Wiley and Sons, West Sussex, England.

[23] Gu, G. and Petriu, D. C. (2002) XSLT transformation from

UML models to LQN performance models. In Proc. 3rd Int.

Workshop on Software and Performance, Rome, Italy, July 24–

26, pp. 227–234. ACM Press, New York, NY, USA.

[24] Petriu, D. C. and Shen, H. (2002) Applying the UML

performance profile: graph grammar-based derivation of LQN

models from UML specifications. In Proc. 12th Int. Conf.

Computer Performance Evaluation, Modelling Techniques

and Tools, London, UK, April 14–17, pp. 159–177. Springer-

Verlag, London, UK. LNCS 2324.

[25] Gu, G. and Petriu, D. C. (2003) Early evaluation of software

performance based on the UML performance profile. In Proc.

2003 Conf. Centre for Advanced Studies on Collaborative

Research, Toronto, Ontario, Canada, October 6–9, pp. 66–79.

IBM Press, USA.

[26] Pooley, R. J. and P. King, J. B. (1999) The unified modeling

language and performance engineering. IEE Proc. Soft.,
146, 2–10.

Empirical Performance Study on PSIM 525

The Computer Journal Vol. 49 No. 5, 2006

[27] Cortellessa, V. and Mirandola, R. (2000) Deriving a queueing

network based performance model from UML diagrams. In

Proc. 2nd Int. Workshop on Software and Performance,

Ottawa, Ontario, Canada, September 17–20, pp. 58–70. ACM

Press, New York, NY, USA.

[28] Kahkipuro, P. (1999) UML based performance modeling

framework for object-oriented distributed systems. In Proc.

2nd Int. Conf. Unified Modeling Language, Fort Collins, CO,

USA, October 28–30, pp. 356–371. Springer-Verlag, London,

UK. LNCS 1723.

[29] Kahkipuro, P. (2001) UML-based performance modeling

framework for component-based distributed systems. Perform-

ance engineering, state of the art and current trends. LNCS
2047, 167–184.

[30] Gomaa, H. and Menasce, D. A. (2000) Design and performance

modeling of component interconnection patterns for distributed

software architectures. In Proc. 2nd Int. Workshop on Software

and Performance, Ottawa, Ontario, Canada, September 17–20,

pp. 117–126. ACM Press, New York, NY, USA.

[31] King, P. and Pooley, R. (1999) Using UML to derive stochastic

Petri net models. In Proc. 15th UK Performance Engineering

Workshop, Department of Computer Science, The University

of Bristol, July 22–23, pp. 45–56. University of Bristol,

Bristol.

[32] King, P. and Pooley, R. (2000) Derivation of Petri net per-

formance models from UML specifications of communications

software. In Proc. 11th Int. Conf. Computer Performance

Evaluation: Modelling Techniques and Tools, Schaumburg, IL,

March 27–31, pp. 262–276. Springer-Verlag, London, UK.

[33] Lopez-Grao, J. P., Merseguer, J. and Campos, J. (2004) From

UML activity diagrams to Stochastic Petri nets: application to

software performance engineering. In Proc. 4th Int. workshop

on Software and performance, Redwood Shores, CA, USA,

January 14–16, pp. 25–36. ACM Press, New York, NY, USA.

[34] Fukuzawa, K. and Saeki, M. (2002) Evaluating software archi-

tectures by coloured Petri nets. In Proc. 14th Int. Conf. Soft-

ware Engineering and Knowledge Engineering, Ischia, Italy,

July 15–19, pp. 263–270. ACM Press, New York, NY, USA.

[35] Balsamo, S. and Marzolla, M. (2005) Performance evaluation

of UML software architecture with multiclass queuing network

models. In Proc. 5th Int. Workshop on Software and Per-

formance, Palma, Illes Balears, Spain, July 12–14, pp. 37–42.

ACM Press, New York, NY, USA.

[36] Cleland-Huang, J., Chang, C. K., Kim, H. and Balakrishnan, A.

(2001) Requirements-based dynamic metrics in object-oriented

systems. In Proc. 5th IEEE Int. Symp. Requirements Engin-

eering, Toronto, Canada, August 27–31, pp. 212–219. IEEE

Computer Society, Washington, DC, USA.

[37] Hanmer, R. S. and Letourneau, J. P. (2003) A best practice for

performance engineering. Bell Labs Tech. J., 8(3), 75–83.

[38] Chiola, G. and Franceschinis, G. (1989) Colored GSPN models

and automatic symmetry detection. In Proc. 3rd Int. Workshop

on Petri nets and Performance Models, Kyoto, Japan,

December 11–13, pp. 50–60. IEEE Computer Society,

Washington, DC, USA.

[39] Sargent, R. G. (1998) Verification and validation of simulation

models. In Proc. 30th Conf. Winter Simulation, Washington,

DC, USA, December 13–16, pp. 121–130. IEEE Computer

Society Press, Washington, DC, USA.

[40] Arlitt, M. F. and Wfizpnson, C. L. (1997) Internet web servers:

Workload characterization and performance implications.

IEEE/ACM Trans. Netw., 5(5), 631–645.

[41] Chick, T. A. (2006) Using TSP with a multi-disciplined project

management system. Crosstalk, 19(3), 4–8.

526 J. Xia et al.

The Computer Journal Vol. 49 No. 5, 2006

