Cang HuiStellenbosch University | SUN · Department of Mathematical Sciences
Cang Hui
Ph.D.
Deciphering the patterns and rules of biodiversity complexity with math, stats, and computation
About
541
Publications
196,903
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,674
Citations
Introduction
My interests lie in proposing models and theories for explaining emerging patterns in ecology. Ecology studies biodiversity in its variety and complexity. As ecological processes are highly complex and adaptive, I rely on the simplicity of mathematical language to build models and theoretical frameworks. Find out more at https://math.sun.ac.za/hui/ and @CangHUI_Ecology
Additional affiliations
January 2008 - December 2013
Publications
Publications (541)
Invasion science is in a state of paradox, having low predictability despite strong, identifiable covariates of invasion performance. We propose shifting the foundation metaphor of biological invasions from a linear filtering scheme to one that invokes complex adaptive networks. We link invasion performance and invasibility directly to the loss of...
Population demography is central to fundamental ecology and for predicting range shifts, decline of threatened species, and spread of invasive organisms. There is a mismatch between most demographic work, carried out on few populations and at local scales, and the need to predict dynamics at landscape and regional scales. Inspired by concepts from...
Online enhancements: appendix, zip file. abstract: Patterns in species incidence and compositional turnover are central to understanding what drives biodiversity. Here we propose zeta (z) diversity, the number of species shared by multiple assemblages, as a concept and metric that unifies incidence-based diversity measures, patterns, and relationsh...
Our ability to predict the outcome of invasion declines rapidly as non-native species progress through intertwined ecological barriers to establish and spread in recipient ecosystems. This is largely due to the lack of systemic knowledge on key processes at play as species establish self-sustaining populations within the invaded range. To address t...
Invasion dynamics are context-dependent and non-equilibrial, with invasive spread and associated impacts continuously unfolding contingent on pathway, history, and chance, over features of recipient ecosystems. Identifying a tool that can predict the risk and extent of an invasion, and help stakeholders make informed decisions, is highly sought aft...
Skewness, a measure of the asymmetry of a distribution, is frequently employed to reflect a biologically important property. Another statistic, the Gini coefficient (GC), originally used to measure economic inequality, has been validated in measuring the inequality of biological size distributions. Given that the GC and skewness control overlapping...
The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 mil...
Thermal reaction norms depict how temperature influences biological performances, thus also known as thermal performance curves (TPCs). Arguably, the interplay of the thermal environmental conditions and the TPC can shape the strength of intraspecific competition. Such competition can then drive the long-term evolution of the TPC. We develop a Lotk...
Carnivores interact with herbivores to indirectly impact plant populations, creating trophic cascades within plant-herbivore-carnivore systems. We developed and analyzed a food chain model to gain a mechanistic understanding of the critical roles carnivores play in ecosystems where plants face intense herbivory. Our model incorporates key factors s...
Although invasive alien species have long been recognized as a major threat to nature and people, until now there has been no comprehensive global review of the status, trends, drivers, impacts, management and governance challenges of biological invasions. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)...
Foraging for resources is a fundamental animal activity. Successful and efficient foraging will ultimately lead to both indirect and direct selective advantages by providing animals with the time and resources needed to fulfil other life demands. The performance of a forager is ultimately determined by its behaviour and ability once placed within t...
Cassava (Manihot esculenta) is among the most important staple crops globally, with an imperative role in supporting the Sustainable Development Goal of 'Zero hunger'. In sub-Saharan Africa, it is cultivated mainly by millions of subsistence farmers who depend directly on it for their socioeconomic welfare. However, its yield in some regions has be...
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous for...
A microbiome’s composition, stability, and response to perturbations is dictated by the community interaction matrix ¹⁻¹⁰ that is commonly assayed by pair-wise species competition. In their natural environment however, microbes concurrently experience multiple species, face conditions that may be difficult to mimic in vitro, and have members that a...
Mixed infections of Cassava brown streak virus (CBSV) and its Ugandan variant (UCBSV) in cassava hosts are increasingly threatening food security in East and Central Africa. The possibility of these viruses spreading to cassava producing countries in West Africa is of great concern. Most epidemiological models developed to address this challenge do...
In nature, the two-dimensional (2D) profiles of fruits from many plants often resemble ellipses. However, it remains unclear whether these profiles strictly adhere to the ellipse equation, as many natural shapes resembling ellipses are actually better described as superellipses. The superellipse equation, which includes an additional parameter n co...
Specialisation enhances the efficiency of plant–pollinator networks through the exchange of conspecific pollen transfer for floral resources. Floral resources form the currency of plant–pollinator interactions, but the understanding of how floral resources affect the structure of plant–pollinator networks remains modest. Previous theory predicts th...
Introduction
Mounting evidence suggests that geographic ranges of tree species worldwide are shifting under global environmental changes. Little is known, however, about if and how these species’ range shifts may trigger the range shifts of various types of forests. Markowitz’s portfolio theory of investment and its broad application in ecology sug...
The inequality in leaf and fruit size distribution per plant can be quantified using the Gini index, which is linked to the Lorenz curve depicting the cumulative proportion of leaf (or fruit) size against the cumulative proportion of the number of leaves (or fruits). Prior researches have predominantly employed empirical models-specifically the ori...
The density of wood is a key indicator of trees’ carbon investment strategies, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here, we analyze information from 1.1 million...
Trait diversity, including trait turnover, that differentiates the roles of species and communities according to their functions, is a fundamental component of biodiversity. Accurately capturing trait diversity is crucial to better understand and predict community assembly, as well as the consequences of global change on community resilience. Exist...
We aim to explore what processes dominate community assembly of dragonflies (Odonata: Anisoptera) and damselflies (Odonata: Zygoptera) by differentiating the environmental and geographical drivers behind compositional turnover of narrow‐ranged versus widespread species. In this way, we further aim to describe patterns of species incidence and compo...
The paper explores how demographic randomness and different types of environmental noise impact population dynamics and extinction risks. By using a more realistic model that considers clustered vital events and colored environmental noise, it finds that certain types of noise can reduce extinction probabilities and lead to more stable population s...
Aim
A pervasive negative relationship between the species richness of an assemblage and the mean global range size of the species it contains has recently been identified. Here, we test for an effect of habitat patch size on the mean landscape‐scale incidence (estimating local range size) of constituent species independent of variation in richness....
Animal species, encompassing both pollinators and herbivores, exhibit a preference for plants based on optimal foraging theory. Understanding the intricacies of these adaptive plant-animal interactions in the context of community assembly poses a main challenge in ecology. This study delves into the impact of adaptive interaction rewiring between s...
The rock-paper-scissors (RPS) game is a classic model for exploring the performance of how multiple strategies interact and evolve over time. The classic RPS game assumes a fixed benefit and cost for each strategy against another one when two players meet, while its evolutionary game considers the frequency dynamics of the three strategies with eac...
The number and composition of species in a community can be quantified with α-diversity indices, including species richness ( R ), Simpson’s index ( D ), and the Shannon–Wiener index ( H΄ ). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological pro...
In nature, the fruit shapes of many plants resemble avian eggs, a form extensively studied as solids of revolution. Despite this, the hypothesis that egg-shaped fruits are themselves solids of revolution remains unvalidated. To address this, 751 Cucumis melo L. var. agrestis Naud. fruits were photographed, and the two-dimensional (2D) boundary coor...
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system¹. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these est...
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, ever...
Measuring the inequality of leaf area distribution per plant (ILAD) can provide a useful tool for quantifying the influences of intra- and interspecific competition, foraging behavior of herbivores, and environmental stress on plants’ above-ground architectural structures and survival strategies. Despite its importance, there has been limited resea...
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phy...
While there has been great interest in species characteristics that promote invasiveness, still little is known about the characteristics that distinguish invasive from non‐invasive insects. Using a database on the naturalised distributions of alien insects and expert opinions about their impacts, we identified the world's 100 worst invasive insect...
Effective biodiversity management and policy decisions require timely access to accurate and reliable information on biodiversity status, trends, and threats. However, the process of data cleaning, aggregation, and analysis is often time-consuming, convoluted, laborious, and irreproducible. Biodiversity monitoring across large areas faces challenge...
Morphometric analysis of wings has been suggested for identifying and controlling isolated populations of tsetse (Glossina spp), vectors of human and animal trypanosomiasis in Africa. Single-wing images were captured from an extensive data set of field-collected tsetse wings of species Glossina pallidipes and G. m. morsitans. Morphometric analysis...
Driven by habitat loss from anthropogenic activities, wintering migratory birds forage together with poultry in paddy fields, and thus impose risks of cross transmitting pathogens. To date, there is little evidence for such risks of pathogen transmission between wild birds and poultry. Using the high‐throughput sequencing, we report on detected pot...
Identifying conditions and traits that allow an introduced species to grow and spread, from being initially rare to becoming abundant (defined as invasiveness), is the crux of invasion ecology. Invasiveness and abundance are related but not the same, and we need to differentiate these concepts. Predicting both species abundance and invasiveness and...
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all importa...
Trait diversity, including trait turnover, that differentiates the roles of species and communities according to their functions, is a fundamental component of biodiversity. Accurately capturing trait diversity is crucial to better understand and predict community assembly, as well as the consequences of global change on community resilience. Exist...
The number of species shared by two or more sites is a fundamental measure of spatial variation in species composition. As more sites are included in the comparison of species composition, the average number of species shared across them declines, with a rate increasingly dependent on only the most widespread species. In over 80% of empirical commu...
Introduction
Alien trees and shrubs have become increasingly common invaders globally and have caused major negative impacts to ecosystems and society. Non-native woody plant species make up the majority of legislated invasive alien taxa in South Africa and contribute substantially to recorded negative impacts. It is of management interest to eluci...
The stability and dynamics of ecological communities are dictated by interaction networks typically quantified at the level of species. 1–10 But how such networks are influenced by intra-species variation (ISV) is poorly understood. 11–14 Here, we use ~500,000 chromosomal barcodes to track high-resolution intra-species clonal lineages of Escherichi...
Biological invasions in remote areas that experience low human activity provide unique opportunities to elucidate processes responsible for invasion success. Here we study the most widespread invasive plant species across the isolated islands of the Southern Ocean, the annual bluegrass, Poa annua. To analyze geographic variation in genome size, gen...
The plasticity of performance traits can promote the success of biological invasions and therefore, precisely estimating trait reaction norms can help to predict the establishment and persistence of introduced species in novel habitats. Most studies focus only on a reduced set of traits and rarely include trait variability that may be vital to pred...
The world is firmly cemented in a notitian age (Latin: notitia, meaning data) – drowning in data, yet thirsty for information and the synthesis of knowledge into understanding. As concerns over biodiversity declines escalate, the volume, diversity and speed at which new environmental and ecological data are generated has increased exponentially. Da...
Plant invasions generate massive ecological and economic costs worldwide. Predicting their spatial dynamics is crucial to the design of effective management strategies and the prevention of invasions. Earlier studies highlighted the crucial role of long-distance dispersal in explaining the speed of many invasions. In addition, invasion speed depend...
Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for i...
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we...
The ecological and evolutionary processes that allow alien species to establish and dominate native communities (i.e., become invasive) have been a rich area of research. Past areas of inquiry have included identifying the traits necessary to invade a community and/or determining how phylogenetic relatedness of the introduced species with the resid...
Humans have translocated thousands of species, either intentionally or not, from their native ranges to non-native ones, with many established (naturalized) and some now invasive. We report here a global database on the distributions of naturalized alien insects. Currently, 7,741 naturalized alien insect species have been reported from 222 regions,...
Ecological communities are composed of different functional guilds that are engaging in multiple types of biotic interactions. We explore how ecological networks fare when confronting infectious diseases according to density-dependent (DD) and frequency-dependent (FD) transmission modes. Our model shows that network compositions can dictate both di...
Until now, biological invasions have been conceptualised and studied mainly as a linear process: from introduction to establishment to spread. This volume charts a new course for the field, drawing on key developments in network ecology and complexity science. It defines an agenda for Invasion Science 2.0 by providing new framings and classificatio...
Until now, biological invasions have been conceptualised and studied mainly as a linear process: from introduction to establishment to spread. This volume charts a new course for the field, drawing on key developments in network ecology and complexity science. It defines an agenda for Invasion Science 2.0 by providing new framings and classificatio...
At the time of writing this book, we have witnessed an extreme case of biological invasion. A virus, through an evolutionary leap, has jumped onto a new host species, Homo sapiens, and has taken advantage of the new host’s ambitions and mobility in the zealous phase of globalisation, causing a worldwide pandemic and economic meltdown. The 2019 coro...
Before diving into a discussion of open adaptive systems, we need to revisit the definition of an ecological network. Material covered in Chapters 2 and 3 showed that ecological networks are webs of co-evolving and co-fitting interactions among species residing in an ecosystem. Such networks subjected to regular incursions of new members in the for...
Astrologists have predicted the occurrence of solar eclipses with increasing precision through the ages. Predicting celestial motions invokes the dynamics of a relatively simple and rigid system; it is straightforward and akin to identifying regularities in recurrent records. Discovering regularities, however, does not necessarily impart true compr...
To assess community assembly via natural colonisation and the potential ceiling of species richness in local communities, Wilson and Simberloff (1969) fumigated nine red mangrove (Rhizophora mangle) islands in Florida Bay, United States. This exemplifies the need in ecology to elucidate the concepts regarding community succession and assembly. New...
Maps of global biomes or ecoregions show geographical clusters – unique assemblages of plants and animals that are spatially tied with associated geomorphologic and climatic features. Biomes are typically defined on the basis of broad vegetation types and the biophysical features that impose fundamental controls on the distribution of plants (Cox a...
Until now, biological invasions have been conceptualised and studied mainly as a linear process: from introduction to establishment to spread. This volume charts a new course for the field, drawing on key developments in network ecology and complexity science. It defines an agenda for Invasion Science 2.0 by providing new framings and classificatio...
This book deals with the roles and impacts of the entangled web of biotic interactions that an alien species partakes in as it infiltrates ecological networks. We partition related issues into six topics (network interactions, structures, stability, dynamics, scaling and invasibility). We start unpacking these issues here and will dive deeper into...
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknow...
Biological invasions are a leading threat to biodiversity globally. Increasingly, ecosystems experience multiple introductions, which can have significant effects on patterns of diversity. The way these communities assemble will depend partly on whether rare and common alien species respond to environmental predictors in the same manner as rare and...
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknow...
Significance
Tree diversity is fundamental for forest ecosystem stability and services. However, because of limited available data, estimates of tree diversity at large geographic domains still rely heavily on published lists of species descriptions that are geographically uneven in coverage. These limitations have precluded efforts to generate a g...
Figure S3. Graphs illustrating the mean and standard deviation for each locality with regards to shape PC3 and shape PC4. The fish outline drawings depict the variation in fish body shape for each PC axis, with the light blue line representing the average shape for all fish, while the dark blue line represents the upper and lower body shape extremi...
Figure S4. PCA analyses conducted on the combined microsatellite genotypes for the seven localities (A – D, H – J). Each dot represents a genotyped individual, with colours corresponding to sampled localities.
Figure S2. Variation in PCLINEAR1 among the age classes for each locality (A-J).