Ring Opening Polymerization of rac-Lactide by Group 4 Tetracarbamato Complexes: Activation, Propagation and Role of The Metal

Fabio Marchetti, Guido Pampaloni, Calogero Pinzino, Filippo Renili, Timo Repo, Sirpa Vuorinen

Supplementary Material

NMR Experiments

A) From 1b (0.457 mmol) and lactide (0.430 mmol), lactide / Zr molar ratio = 0.95. Before heating: ¹H NMR (d⁸-toluene) δ = 5.53 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide CH), 2.98 (q, 16 H, ³J_{HH} = 6.81 Hz, CH₂CH₃), 1.45 (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 0.83 ppm (t, 24 H, ³J_{HH} = 6.81 Hz, CH₂CH₃). ¹³C{¹H} NMR (d⁸-toluene) δ = 169.4 (O₂CN), 168.6 (lactide CO), 72.6 (lactide CH), 39.8 (CH₂CH₃), 15.9 (lactide CH₃), 13.6 ppm (CH₂CH₃). After heating (2 h): benzene / oligomer / NHEt₂ = 10 : 7 : 1.

B) From 1b (0.176 mmol) and lactide (0.375 mmol), lactide / Zr molar ratio = 2.1. Before heating: ¹H NMR (d⁸-toluene) δ = 5.44 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide *CH*), 1.42 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide *CH*₃). After heating (2 h): benzene / oligomer / NHEt₂ ratio = 10 : 14 : 1.

C) From 1b (85.0 µmol) and lactide (0.881 mmol), lactide / Zr molar ratio = 10. Before heating: ¹H NMR (d⁸-toluene) δ = 5.00 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide *CH*), 1.37 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide *CH*₃). After heating (2 h): benzene / oligomer / NHEt₂ ratio = 10 : 64 : 3.

D) From 1c (0.216 mmol) and lactide (0.208 mmol), lactide / Zr molar ratio = 0.96. Before heating: ¹H NMR (d⁸-toluene) δ = 5.57 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide *CH*), 3.73 (m, 8 H, ³J_{HH} = 6.58 Hz, *CHCH*₃), 1.48 (d, 6 H, ³J_{HH} = 6.58 Hz, lactide *CH*₃), 1.03 ppm (d, 48 H, ³J_{HH} = 6.58 Hz, *CHCH*₃). ¹³C{¹H} NMR (d⁸-toluene) δ = 169.6 (O₂*CN*), 168.6 (lactide *CO*), 72.6 (lactide *CH*), 45.1 (*CHCH*₃), 20.8 (*CHCH*₃), 16.0 ppm (lactide *CH*₃). After heating (2 h): benzene / oligomer / NH^{*i*}Pr₂ ratio = 10 : 8 : 1.

E) From 1c (0.178 mmol) and lactide (0.361 mmol), lactide / Zr molar ratio = 2. Before heating: ¹H NMR (d⁸-toluene) δ = 5.36 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide *CH*), 1.42 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide *CH*₃). After heating (2 h): benzene / oligomer / NH^{*i*}Pr₂ ratio = 10 : 15 : 1.

F) From 1c (0.072 mmol) and lactide (0.729 mmol), lactide / Zr molar ratio = 10. Before heating: ¹H NMR (d⁸-toluene) δ = 4.74 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide *CH*), 1.33 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide *CH*₃). After heating (2 h): benzene / oligomer / NH^{*i*}Pr₂ ratio = 5 : 20 : 1.

G) From 1d (0.42 mmol) and lactide (0.38 mmol), lactide / Hf molar ratio = 1. Before heating: ¹H NMR (d⁸-toluene) δ = 5.37 (q, 2 H, ³J_{HH} = Hz, lactide CH), 2.99 (q, 16 H, ${}^{3}J_{HH} = 6.96$ Hz, $CH_{2}CH_{3}$), 1.43 (d, 6 H, ${}^{3}J_{HH} =$ Hz, lactide CH_{3}), 0.86 ppm (t, 24 H, ${}^{3}J_{HH} = 6.96$ Hz, $CH_{2}CH_{3}$). ${}^{13}C{}^{1}H$ NMR (d⁸-toluene) $\delta = 169.0$ (O₂*C*N), 168.4 (lactide *C*O), 72.5 (lactide *C*H), 39.9 (*C*H₂CH₃), 15.8 (lactide *C*H₃), 13.7 ppm (CH₂*C*H₃). After heating (5 h): benzene / oligomer / NHEt₂ ratio = 10 : 8 : 1.

H) From 1d (0.093 mmol) and lactide (0.34 mmol), lactide / Hf molar ratio = 3.5. Before heating: ¹H NMR (d⁸-toluene) δ = 4.69 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide *CH*), 1.43 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide *CH*₃). After heating (2 h): benzene / oligomer / NHEt₂ ratio = 10 :28 : 1.

I) From 1d (7.8 µmol) and lactide (0.38 mmol), lactide / Hf molar ratio = 50. Before heating: ¹H NMR (d⁸-toluene) δ = 3.88 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide CH), 1.18 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃). After heating (6 h): benzene / oligomer / NHEt₂ ratio = 2 : 80 : 1.

J) From 1a (0.045 mmol) and lactide (0.45 mmol), lactide / Ti molar ratio = 10. Before heating: ¹H NMR (d⁸-toluene) δ = 5.15 (br, 1 H, OH), 4.80 (q, 2 H, ³J_{HH} = 6.59 Hz, lactide CH), 3.09 (q, 16 H, ³J_{HH} = 7.33 Hz, CH₂CH₃), 1.42 (d, 6 H, ³J_{HH} = 6.59 Hz, lactide CH₃), 0.98 ppm (t, 24 H, ³J_{HH} = 7.33 Hz, CH₂CH₃). ¹³C{¹H} NMR (d⁸-toluene) δ = 169.4 (lactide CO), 167.6 (O₂CN), 72.2 (lactide CH), 39.5 (CH₂CH₃), 15.6 (lactide CH₃), 13.8 ppm (CH₂CH₃). After heating (6 h): benzene / oligomer ratio = 1 : 3.

K) Reaction of Hf(O₂¹³CNⁱPr₂)₄ with *rac*-lactide: Hf(O₂¹³CNⁱPr₂)₄ (0.023 mmol) and *rac*-lactide (0.486 mmol) were mixed in d⁸-toluene (0.70 mL) in a NMR tube. The tube was sealed and heated at *ca*. 100°C up to maximum conversion (6 hours). The following NMR spectra were recorded at 298K. ¹H NMR (d⁸-toluene, before heating) δ = 4.12 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide CH), 3.73 (m, 8 H, CHMe₂), 1.22 (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 48 H, CHMe₂). ¹H NMR (d⁸-toluene, after heating) δ = 5.00 (m-br, polymer CH), 4.54 (q, 2 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 48 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 6 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 48 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 48 H, ³J_{HH} = 6.58 Hz, lactide CH₃), 1.06 ppm (d, 48 H, ³J_{HH} = 6.58 Hz, CHMe₂). ¹³C{¹H} NMR (d⁸-toluene, after heating) δ = 169.7÷169.5 (polymer C=O), 169.2 (O₂¹³CN), 166.6 (lactide C=O), 72.2 (lactide CH), 69.2 (polymer CH), 45.1 (CHMe₂), 20.7 (CHMe₂), 16.5 (polymer CH₃), 15.6 ppm (lactide CH₃). ¹³C NMR (d⁸-toluene, after heating, 213K) δ = 168.6 (O₂¹³CN), 124.8 ppm (¹³CO₂, see M. Aresta and A. Di Benedetto, *Dalton Trans.* 2007, 2975-2992).

Figure S1. ¹³C-NMR spectrum (CDCl₃, 298 K) of polylactide obtained with $Zr(O_2CNEt_2)_4$ as catalyst.

Figure S2. ¹H NMR spectra (CDCl₃, 298 K) of *rac*-lactide polymer after treatment with MeOH/HCl. The polymer (run 3, Table 2) was prepared by catalyst system $Hf(O_2CN^iPr_2)_4$ with 4 equivalent ^{*i*}PrOH in toluene at 100 °C.

Figure S3. DFT calculated structure of stage A, Figure 3.

Figure S4. DFT calculated structure of stage B, Figure 3.

Figure S5. DFT calculated structure of stage C, Figure 3.

Figure S6. DFT calculated structure of stage D, Figure 3.

Figure S7. DFT calculated structure of stage E, Figure 3.

Figure S8. DFT calculated Spin density surface of the radical formed by coupling of two lactide units promoted by **1a**. Positive spin density $(0.0004 \text{ electron/au}^3)$.

Figure S9. DFT calculated structure of stage A, Figure 5.

Figure S10. DFT calculated structure of stage B, Figure 5.

Figure S12. DFT calculated structure of stage D, Figure 5.

Figure S13. DFT calculated structure of stage E, Figure 5.

$ \begin{array}{c} & C1 \\ & 01A \\ & 01B \\ & 04B \\ & 04A \\ & 02B \\ & 02B \\ & 02B \\ & 02B \\ & C2 \\ & 03B \\ & 03A \\ & C3 \\ \end{array} $	Experimental	Calculated
Ti—O1A	2.0851(16)	2.107
Ti—O1B	2.0562 (15)	2.069
Ti—O2A	2.0561 (16)	2.069
Ti—O2B	2.1087 (16)	2.107
Ti—O3A	2.1013 (16)	2.107
Ti—O3B	2.0663 (16)	2.069
Ti—O4A	2.0530 (15)	2.069
Ti—O4B	2.0897 (15)	2.107
C1—O1A	1.269 (3)	1.276
C1—O1B	1.287 (3)	1.292
C2—O2A	1.281 (3)	1.292
C2—O2B	1.267 (3)	1.276
C3—O3A	1.269 (3)	1.276
C3—O3B	1.281 (3)	1.292
C4—O4A	1.272 (3)	1.276
C4—O4B	1.271 (3)	1.292
O1A—Ti—O1B	62.86 (6)	62.90
O2A—Ti—O2B	62.63(7)	62.89
O3A—Ti—O3B	62.76(6)	62.88
O4A—Ti—O4B	62.76(6)	62.89

Table S1. Comparison of experimental ^a and calculated ^a bond distances (Å) and angles (deg) for $Ti(O_2CNEt_2)_4$

^a Solid state (X-ray). Straessler, N. A.; Caudle, M. T.; Groy, T. L. *Acta Crystallogr. Sect. E* **2008**, *64*, m48. ^b Gas-phase (DFT).