C.A. García-González

C.A. García-González
University of Santiago de Compostela | USC · Department of Pharmacology, Pharmacy and Pharmaceutical Technology

PhD Chemical Process Engineer

About

96
Publications
26,904
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,809
Citations
Additional affiliations
April 2014 - September 2021
University of Santiago de Compostela
Position
  • Professor (Associate)
September 2012 - April 2014
Solvay
Position
  • R&DT engineer
May 2010 - August 2012
Technische Universität Hamburg
Position
  • PostDoc Position

Publications

Publications (96)
Article
Aerogels are materials with unique properties, among which are low density and thermal conductivity. They are also known for their exquisite biocompatibility and biodegradability. All these features make them attractive for biomedical applications, such as their potential use in photothermal therapy (PTT). This technique is, yet, still associated w...
Article
Full-text available
Chronic wounds are physical traumas that significantly impair the quality of life of over 40 million patients worldwide. Aerogels are nanostructured dry porous materials that can act as carriers for the local delivery of bioactive compounds at the wound site. However, aerogels are usually obtained with low drug loading yields and poor particle size...
Article
Full-text available
The fabrication of bioactive three-dimensional (3D) hydrogel scaffolds from biocompatible materials with a complex inner structure (mesoporous and macroporous) and highly interconnected porosity is crucial for bone tissue engineering (BTE). 3D-printing technology combined with aerogel processing allows the fabrication of functional nanostructured s...
Article
Full-text available
The outbreak of COVID-19 pandemic unveiled an unprecedented scarcity of personal protective equipment (PPE) available in sanitary premises and for the population worldwide. This situation fostered the development of new strategies to reuse PPE that would ensure sterility and, simultaneously, preserve the filtering properties of the materials. In ad...
Article
Full-text available
CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the...
Article
The access of biodegradable scaffolds to the clinical arena is constrained by the absence of a suitable sterilization technique for the processing of advanced polymeric materials. Sterilization with supercritical CO2 (scCO2) may circumvent some technological limitations (e.g., low temperature, no chemical residues on the material), although scCO2 c...
Article
Full-text available
Soil degradation and water stress in Costa Rica challenge the production of highly sensitive crops. This work is aimed at evaluating the physical and chemical changes in sandy loam (SL) and a silt loam (SiL) soil when amended with bamboo biochar while estimating the enhancement of tomato productivity. Biochar, obtained from Guadua Angustifolia bamb...
Article
3D-printing technology allows the automated and reproducible manufacturing of functional structures for tissue engineering with customized geometries and compositions by depositing materials layer-by-layer with high precision. For these purposes, the production of bioactive gel-based 3D-scaffolds made of biocompatible materials with well-defined in...
Article
Full-text available
Wounds affect one’s quality of life and should be managed on a patient-specific approach, based on the particular healing phase and wound condition. During wound healing, exudate is produced as a natural response towards healing. However, excessive production can be detrimental, representing a challenge for wound management. The design and developm...
Article
Full-text available
Hyaluronic acid (HA) and gelatin (Gel) are major components of the extracellular matrix of different tissues, and thus are largely appealing for the construction of hybrid hydrogels to combine the favorable characteristics of each biopolymer, such as the gel adhesiveness of Gel and the better mechanical strength of HA, respectively. However, despit...
Article
Full-text available
Sterilization is a quite challenging step in the development of novel polymeric scaffolds for regenerative medicine since conventional sterilization techniques may significantly alter their morphological and physicochemical properties. Supercritical (sc) sterilization, i.e. the use of scCO2 as a sterilizing agent, emerges as a promising sterilizati...
Article
Amorphous forms of silica have always raised a lot of interest by the scientific community and are nowadays rapidly growing in commercial applications. These are commercialized as aerogels or as nanoparticles, which can feature many similarities, not only in the synthesis process but also because clusters of nanoparticles are commonly released from...
Article
Full-text available
Pulmonary drug delivery has recognized benefits for both local and systemic treatments. Dry powder inhalers (DPIs) are convenient, portable and environmentally friendly devices, becoming an optimal choice for patients. The tailoring of novel formulations for DPIs, namely in the form of porous particles, is stimulating in the pharmaceutical research...
Article
Full-text available
Aerogels are the lightest processed solid materials on Earth and with the largest empty volume fraction in their structure. Composition versatility, modularity, and feasibility of industrial scale manufacturing are behind the fast emergence of aerogels in the drug delivery field. Compared to other 3D materials, the high porosity (interconnected mes...
Article
Full-text available
s Aerogels are nanostructured materials with low density, high surface area (>150 m²/g) and open porosity (typically 95-99.99%). They are obtained by solvent removal from gels while preserving network structure. Hydrogels, organogels and even tissues can be optimal sources of aerogels with limitless customization of format and texture. Aerogels mig...
Article
Full-text available
Biopolymers and biocomposites have emerged as promising pathways to develop novel materials and substrates for biomedical applications. [...]
Article
Full-text available
Demand of scaffolds for hard tissue repair increases due to a higher incidence of fractures related to accidents and bone-diseases that are linked to the ageing of the population. Namely, scaffolds loaded with bioactive agents can facilitate the bone repair by favoring the bone integration and avoiding post-grafting complications. Supercritical (sc...
Chapter
The biomarkers domain needs to identify the most sensitive, accurate, unique marker and further validate it as indicators of chemicals that act upon biological systems. Biomarkers in toxicology furnish indications on the effects of toxicants upon a specific target, whether cell, organ, or systems and they can be biomarkers of exposure, susceptibili...
Article
Starch aerogels are attractive materials for biomedical applications because of their low density and high open porosity coupled with high surface areas. However, the lack of macropores in conventionally manufactured polysaccharide aerogels is a limitation to their use as scaffolds for regenerative medicine. Moreover, the stability under storage of...
Article
Full-text available
Solid lipid microparticles (SLMPs) are attractive carriers as delivery systems as they are stable, easy to manufacture and can provide controlled release of bioactive agents and increase their efficacy and/or safety. Particles from Gas-Saturated Solutions (PGSS®) technique is a solvent-free technology to produce SLMPs, which involves the use of sup...
Article
Full-text available
The delivery of bioactive agents using active wound dressings for the management of pain and infections offers improved performances in the treatment of wound complications. In this work, solid lipid microparticles (SLMPs) loaded with lidocaine hydrochloride (LID) were processed and the formulation was evaluated regarding its ability to deliver the...
Article
Full-text available
Hierarchically porous synthetic bone grafts (scaffolds) are gaining attention in the clinical arena. Scaffolds should combine morphological (macro- and microporosity, pore interconnectivity), mechanical and biological (biocompatibility, degradation rate) properties to fit this specific use. Supercritical (sc-) foaming is a versatile scaffold proces...
Article
Full-text available
Polysaccharide-based hydrogel particles (PbHPs) are very promising carriers aiming to control and target the release of drugs with different physico-chemical properties. Such delivery systems can offer benefits through the proper encapsulation of many drugs (non-steroidal and steroidal anti-inflammatory drugs, antibiotics, etc) ensuring their prope...
Article
Full-text available
Starch recovered from an agrifood waste, pea pods, was enzymatically modified and used to prepare cryogels applied as drug carriers. The enzymatic modification of starch was performed using the laccase/(2,2,6,6-tetramethylpiperidin-1-yl)oxyl TEMPO system, at a variable molar ratio. The characterization of the ensuing starches by solution NMR spectr...
Article
Full-text available
The regenerative medicine field is seeking novel strategies for the production of synthetic scaffolds that are able to promote the in vivo regeneration of a fully functional tissue. The choices of the scaffold formulation and the manufacturing method are crucial to determine the rate of success of the graft for the intended tissue regeneration proc...
Poster
We report a methodology to provide macroporosity in biopolymers aerogels to be applied in the biomedical field.
Article
Full-text available
The increasing complexity in morphology and composition of modern biomedical materials (e.g., soft and hard biological tissues, synthetic and natural‐based scaffolds, technical textiles) and the high sensitivity to the processing environment requires the development of innovative but benign technologies for processing and treatment. This scenario i...
Article
Full-text available
Biopolymer-based aerogels can be obtained by supercritical drying of wet gels and endowed with outstanding properties for biomedical applications. Namely, polysaccharide-based aerogels in the form of microparticles are of special interest for wound treatment and can also be loaded with bioactive agents to improve the healing process. However, the p...
Article
Full-text available
Biochar is a carbon-rich organic material, obtained by the thermochemical conversion of biomass in an oxygen-limited environment, used as a soil amendment to stimulate soil fertility and improve soil quality. There is a clear need in developing countries for access to low cost, low technology options for biochar production, for example, top-lit upd...
Article
The subdivision behavior of polymeric tablets produced with the well-known polymers Soluplus® (SOL), polyvinyl pyrrolidone co-vinyl acetate (PVPVA) and hydroxypropyl methylcellulose (HPMC) was evaluated in this study. The polymeric tablets were submitted to different post-treatments (aging, thermal and exposure to compressed gaseous carbon dioxide)...
Article
Full-text available
Aerogels are a special class of nanostructured materials with very high porosity and tunable physicochemical properties. Although a few types of aerogels have already reached the market in construction materials, textiles and aerospace engineering, the full potential of aerogels is still to be assessed for other technology sectors. Based on current...
Article
Full-text available
Processing and shaping of dried gels are of interest in several fields like alginate aerogel beads used as highly porous and nanostructured particles in biomedical applications. The physicochemical properties of the alginate source, the solvent used in the gelation solution and the gel drying method are key parameters influencing the characteristic...
Article
Bone scaffolds prepared with porogens and bioactive agents can accelerate bone tissue formation by providing a suitable 3D-porous structure that promotes cell colonization and differentiation towards the osteogenic lineage. In this work, scaffolds containing poly(ε-caprolactone) (PCL) as biopolymeric matrix, silk fibroin as cell adhesion promoter,...
Article
Full-text available
Aerogels from natural polymers are endowed with attractive textural and biological properties for biomedical applications due to their high open mesoporosity, low density, and reduced toxicity. Nevertheless, the lack of macroporosity in the aerogel structure and of a sterilization method suitable for these materials restrict their use for regenerat...
Article
Chronic wounds are a prevailing cause of decreased quality of life, being microbial burden a factor hindering the normal wound healing process. Aerogels are nanostructured materials with large surface area (>250 m2/g) and high porosity (>96%). In this work, vancomycin-loaded chitosan aerogel beads were tested as a potential formulation to treat and...
Article
Inkjet printing is as an emerging technique in the biomedical field offering cost-effective solutions for flexible production and the engineering of personalized medicine solutions. Thermal inkjet printing technology in the “drop on demand” mode allows the design of fully automated deposition patterns with high spatial resolution for applications r...
Article
Smart electroactive biomaterials are sought to allow the direct delivery of electrical, electrochemical and electromechanical signals to biological tissues. Specifically, poly-(3,4-ethylenedioxythiophene) (PEDOT) is a polymer of special interest attending to its biocompatibility, tuneable electrical conductivity and processing versatility. In this...
Article
Compressed CO2 foaming allows for obtaining porous solid drug-loaded scaffolds for regenerative medicine under mild conditions and in the absence of organic solvents. However, a precise process design and optimization as well as certain modifications of the technology are still needed to tackle certain limitations like the control of the porosity o...
Article
Advanced porous synthetic scaffolds are particularly suitable for regeneration of damaged tissues, but there is the risk of infections due to the colonization of microorganisms forming biofilms. Supercritical foaming is an attractive processing method to prepare bone scaffolds regulating simulataneously the porosity and loading of bioactive compoun...
Chapter
The myriad of natural and semisynthetic polysaccharides and proteins with distinct physicochemical, mechanical and biological properties allows the processing of innovative biomedical products with advanced performances. The design of aerogels from polysaccharides and proteins has received special interest due to their good biological performance,...
Article
Cyclodextrins (CDs) are one of the most versatile substances produced by nature, and it is in the aqueous biological environment where the multifaceted potential of CDs can be completely unveiled. CDs form inclusion complexes with a variety of guest molecules, including polymers, producing very diverse biocompatible supramolecular structures. Addit...
Article
Supercritical foaming allows for the solvent-free processing of synthetic scaffolds for bone regeneration. However, the control on the pore interconnectivity and throat pore size with this technique still needs to be improved. The use of plasticizers may help to overcome these limitations. Eugenol, a GRAS natural compound extracted from plants, is...
Article
Regenerative medicine seeks advanced solutions for bone repair in the form of bioactive synthetic scaffolds by using simple and reproducible processing techniques. In this work, poly-ε-caprolactone (PCL)-based porous scaffolds with improved osteoconductive and osteoinductive properties were processed by supercritical foaming through a careful tunin...
Article
Bone regeneration requires scaffolds with a suitable nanostructured 3D-network and decorated with bioactive functionalities to promote cell ingrowth and induce the intended biological responses. In this work, highly porous poly(ε-caprolactone) (PCL) scaffolds containing biodegradable mesoporous microparticles (starch aerogel microspheres) and a bio...
Article
Full-text available
Bacterial infections often affect the wound, delaying healing and causing areas of necrosis. In this work, an aerogel in form of core-shell particles, able to prolong drug activity on wounds and to be easily removed was developed. Aerogel microcapsules consisted of a core made by amidated pectin hosting doxycycline, an antibiotic drug with a broad...
Article
Foaming technology using supercritical and compressed fluids has emerged as a promising solution in regenerative medicine for manufacturing porous polymeric scaffolds. Polymers of low inherent viscosity are particularly attractive as scaffold components due to their adequate degradation rate and clearance profiles. However, these polymers lead to s...
Article
Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers...
Article
Introduction: Polymers can be designed to modify their features as a function of the level and nature of the surrounding microorganisms. Such responsive polymers can endow drug delivery systems and drug-medical device combination products with improved performance against intracellular infections and biofilms. Areas covered: Knowledge on microorga...
Article
In recent years, there has been an increase in efforts to improve wastewater treatment as the concentration of dangerous pollutants, such as endocrine disrupting chemicals, in wastewater increases. These compounds, which mimic the effect of hormones, have a negative impact on human health and are not easily removed from water. One way to effectivel...
Article
Synthetic polymeric scaffolds to be used as surrogates of autologous bone grafts should not only have suitable physicochemical and mechanical properties, but also contain bioactive agents such as growth factors (GFs) to facilitate the tissue growth. For this purpose, cost-effective and autologous GFs sources are preferred to avoid some post-surgery...
Conference Paper
Full-text available
Pharmaceutical and biomedical industries demand simple, safe and reproducible processing methods thus urging the development of novel straightforward manufacturing approaches. The product manufacturing by the green processing of admixtures and end-product would avoid long and costly purification (downstream) steps. In this work, the green supercrit...
Article
New production insights are being prospected for regenerative medicine purposes to tackle current implant problems encountered regarding supply scarcity as well as infection and rejection episodes. Supercritical fluid technology emerges as a promising green solvent-based option for the high throughput production of solventfree scaffolds compatible...
Article
Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ket...
Article
The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, providing not only mechanical support for tissue formation but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions to design these upgr...
Article
We report the development of an organic conducting mesoporous material, as coat for invasive electrodes, by a novel methodology based on the use of starch aerogel as template. The poly(3,4-ethylenedioxythiophene) (PEDOT) aerogel was synthesized by polymerization of 3,4-ethylenedioxythiophene within a saturated starch aerogel with iron (III) p-tolue...
Article
Full-text available
A new sustainable approach for the synthesis of highly porous carbon cryogels and aerogels is presented. Such monolithic carbogels have been obtained via the hydrothermal gelation of a phenolic compound, i.e. phloroglucinol, with monosaccharides, i.e. glucose, fructose or xylose. While the carbon precursors used herein can be isolated from lignocel...
Article
Supercritical and compressed fluid technology provides a powerful tool for particle design and engineering. On the other hand, aerogels are nanoporous materials holding many world-class properties. However, the morphology of the end product can be the limiting factor for aerogels in some applications. The integration of different technologies for t...
Article
High-performance carriers of active compounds processed in a sustainable manner are being prospected in the health care industry and the life science sector in general. The preparation of natural product-based nanoporous materials is regarded as an upgraded process that fulfills the above requirements. The drying of covalently crosslinked protein-b...
Article
Aldol condensations between sugar-derived dehydrated aldehydes (e.g. furfural) and acetone have been proposed as a route to provide useful biomass-derived chemicals. In the quest of sustainable catalytic ways for such aldol condensations, this paper assesses the use of dried chitosan-gels as naturally-immobilized, readily available and non-hazardou...