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ABSTRACT

Motivated by the rich, psycho-physiologically grounded proper-
ties of auditory cortical representations and the power of sparse
representation-based classifiers, we propose a robust music genre
classification framework. Its first pilar is a novel multilinear sub-
space analysis method that reduces the dimensionality of cortical
representations of music signals, while preserving the topology of
the cortical representations. Its second pilar is the sparse representa-
tion based classification, that models any test cortical representation
as a sparse weighted sum of dictionary atoms, which stem from
training cortical representations of known genre, by assuming that
the representations of music recordings of the same genre are close
enough in the tensor space they lie. Accordingly, the dimensionality
reduction is made in a compatible manner to the working princi-
ple of the sparse-representation based classification. Music genre
classification accuracy of 93.7% and 94.93% is reported on the
GTZAN and the ISMIR2004 Genre datasets, respectively. Both
accuracies outperform any accuracy ever reported for state of the art
music genre classification algorithms applied to the aforementioned
datasets.

Index Terms— Music genre classification, topology preserving,
non-negative tensor factorization, sparse representations

1. INTRODUCTION

The efficient organization of large music databases is of paramount
importance for the electronic music distribution. Music genre is
probably the most popular description of music content [1], although
it is not well-defined, since genre labels may depend on cultural,
artistic, or market factors and the boundaries between genres are
fuzzy [2].

The auditory representations, which are grounded on psycho-
physiological investigations on human auditory system, have been
proved a robust alternative to the conventional bag-of-features [2, 3]
approach for music genre classification [4], especially when they are
combined with the sparse representation-based classifier (SRC) [5].
By employing the auditory model proposed in [6], a given music
recording is mapped to a three-dimensional (3D) representation of
its slow spectral and temporal modulations with the same parameters
as in [4]. This 3D representation is referred to as cortical representa-
tion. The cortical representations form a dictionary of basis signals
for music genres, which is exploited next within the SRC as is pro-
posed in [7]. That is, first each music recording is represented by
its cortical representation. Second, any test cortical representation is
modeled as a sparse weighted sum of dictionary atoms, which stem

from cortical representations associated to training music recordings
whose genre is known. The underlying assumption is that repre-
sentations of the same genre are close enough in the tensor space
they lie. If sufficient training music recordings are available for each
genre, it is possible to express any test cortical representation as a
compact linear combination of the dictionary atoms of the genre,
where it actually belongs to. This representation is designed to be
sparse by involving only a small fraction of the dictionary atoms
computed efficiently via �1 optimization. The classification is per-
formed by assigning each test recording to the class associated with
the dictionary atoms, that are weighted by non-zero coefficients. The
robustness of the proposed framework is attributed to the sparsity en-
forced.

Since we would like to build an overcomplete dictionary ex-
tracted from training cortical representations, the dimensionality of
dictionary atoms must be much smaller than the cardinality of the
training set. Clearly, the dimensionality reduction facilitates the
treatment of missing data, noise, and outliers. Following the same
reasoning as in [4], multilinear dimensionality reduction techniques,
such as Non-Negative Tensor Factorization (NTF) [8], Multilinear
Principal Component Analysis (MPCA) [9], General Tensor Dis-
criminant Analysis (GTDA) [10] could be considered. However,
the just mentioned methods do not take into account the topological
structure of the original tensor data space. To reduce tensor dimen-
sions in a consistent manner with the working principle of the SRC,
one should guarantee that two tensorial data points, which are close
in the intrinsic geometry of the original tensor space, are also close
in the new tensor space after multilinear dimensionality reduction.
To this end, a novel algorithm is proposed, where the topological
structure of the original tensor space is incorporated into the NTF by
reformulating the NTF optimization problem as minimization of the
total variation norm (TVN) [11]. In particular, we extend the Topol-
ogy Preserving Non-Negative Matrix Factorization (TPNMF) [12] to
Topology Preserving Non-Negative Tensor Factorization (TPNTF)
by minimizing the TVN [11]. The non-negativity of cortical repre-
sentations is preserved maintaining their physical interpretation. A
multiplicative updating algorithm for the TPNTF is derived, which
extracts features from the cortical representations. For comparison
purposes, NTF, MPCA, and GTDA were considered, as well.

Next, the features extracted by the aforementioned multilinear
dimensionality techniques are classified by the SRC [7, 5]. The
reported genre classification accuracies are juxtaposed against the
best ones achieved by the state of the art algorithms applied to the
GTZAN and ISMIR2004 Genre datasets. In particular, the proposed
genre classification method, that extracts features using the TPNTF,
which are then classified by the SRC (i.e. TPNTF plus SRC), yields
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an accuracy of 93.7% and 94.93% on the GTZAN and ISMIR2004
Genre datasets, respectively. The aforementioned results outperform
those reported in [5], where conventional linear subspace analysis
techniques extract features from the auditory temporal modulations
representation which are then classified by the SRC. This is mainly
attributed to the topology preservation of the TPNTF, in a consistent
manner to the working principle of the SRC. To the best of the au-
thors’ knowledge, the just quoted genre classification accuracies are
the highest ever reported for both datasets.

The paper is organized as follows. In Section 2, basic multilinear
algebra concepts and notations are briefly defined. The TPNTF is
detailed in Section 3. The SRC framework, that is applied to music
genre classification, is described in Section 4. Experimental results
are demonstrated in Section 5 and conclusions are drawn in Section
6.

2. NOTATION AND MULTILINEAR ALGEBRA BASICS

Tensors are considered as the multidimensional equivalent of matri-
ces (i.e., second-order tensors) and vectors (i.e., first-order tensors)
[13]. Throughout the paper, tensors are denoted by boldface Euler
script calligraphic letters (e.g. X, A), matrices are denoted by upper-
case boldface letters (e.g. U), and vectors are denoted by lowercase
boldface letters (e.g. u). The ith row of U is denoted as ui: while
its jth column is denoted as u:j . A high-order real valued tensor X
of order N is defined over the tensor space R

I1×I2×...×IN , where
In ∈ Z and n = 1, 2, . . . , N . Mode-n unfolding of tensor X yields

the matrix X(n) ∈ R
In×In , where In = I1I2 . . . In−1In+1 . . . IN .

An N -order tensor X has rank 1, when it is decomposed as the outer
product of N vectors u(1), u(2), . . . , u(N), i.e. X = u(1) ◦ u(2) ◦
. . . ◦ u(N). The rank of an arbitrary N -order tensor X is the mini-
mal number of rank-1 tensors that yield X when linearly combined.
Next, several products between matrices will be used, such as the
Kronecker product denoted by ⊗, the Khatri-Rao product denoted
by �, and the Hadamard product denoted by ∗, whose definitions
can be found in [13], for example.

3. TOPOLOGY PRESERVING NON-NEGATIVE TENSOR
FACTORIZATION

Let {Xq|Qq=1} be a set of Q non-negative tensors Xq ∈ R
I1
+

×I2×...×IN of order N . Let us also assume that these Q tensors
lie in a smooth, nonlinear manifold embedded into the tensor space

R
I1×I2×...×IN
+ . Accordingly, we can represent {Xq|Qq=1} by a

(N +1)-order tensor A, which is assumed to lie in a nonlinear man-

ifold M in the tensor space R
I1×I2×...×IN+1
+ with IN+1 = Q. The

conventional NTF operates in the Euclidean space [8]. Therefore it
is unable to find the intrinsic low-dimensionality manifold structure.
To overcome the just mentioned limitation of the NTF, we propose
the TPNTF by considering the constrained minimization of the TVN
[11].

Let k be the desirable number of rank-1 tensors approximating
A when linearly combined. The NTF of A derives N + 1 factor
matrices U(n) ∈ R

In×k
+ , n = 1, 2, . . . , N + 1 by minimizing the

square of the Frobenius norm ‖A(n) − U(n)[Z(n)]T ‖2F subject to

U(n) ≥ 0, following an alternating minimization scheme [8]. Let
Z(n) � U(N+1) � . . . � U(n+1) � U(n−1) � . . . � U(1). The
mode-n unfolding of A is decomposed as follows

A(n) = U(n)[Z(n)]T ⇔ [A(n)]
T = Z(n)[U(n)]T . (1)

Let [z(n)]i: ∈ Mz and [a(n)]:i ∈ Ma, where Mz and Ma are
assumed to be smooth, compact, Riemmanian manifolds, non-
negatively embedded in R

k and R
In , respectively. (1) implies

that [U(n)] maps the rows of Z(n) to the columns of A(n), i.e.,

f([z(n)]i:) : Mz 
→ Ma. In order to preserve the local topology,

two neighboring points z
(n)
k: and z

(n)
l: ∈ Mz should be mapped to

neighboring points z
(n)
k: [U(n)]T and z

(n)
l: [U(n)]T ∈ Ma, and vise

versa. The mapping that best preserves the local topology can be
obtained by the constrained minimization of TVN as follows [12]

[U(n)
∗ ]T = argmin

U(n)≥0

A(n)=U(n)[Z(n)]T

∫
Mz

‖Δf(Z(n))‖2F , (2)

where Δ denotes the discrete gradient operator. For the matrix M, it
is defined as [ΔM]ij = [δx(M)]ij + [δy(M)]ij with [δx(M)]ij =

mij −m(i−1)j and [δy(M)]ij = mij −mi(j−1). Let E(U(n)) =
1
2
‖A(n) −U(n)[Z(n)]T ‖2F + λ

2
‖ΔU(n)[Z(n)]T ‖2F . The optimiza-

tion problem (2) can be expressed equivalently as [11, 12]

U(n)
∗ = argmin

U(n)≥0

E(U(n)), (3)

where λ > 0 controls the trade off between the goodness of fit to
the data tensor A and the topology preservation. The TPNTF can
be obtained by solving (N + 1) many optimization problems (3)
for n = 1, 2, . . . , N + 1 by following an alternating minimization
scheme as in NTF [8].

The partial derivative of E(U(n)) with respect to U(n) is given
by

∇U(n)E(U(n)) =

U(n)[Z(n)]TZ(n) + λU(n)[Z(n)]TZ(n)

+λU(n)[δx(Z
(n))]T δx(Z

(n))−AZ(n). (4)

Let t denote the iteration index, σ and ε be predefined small posi-

tive numbers, typically 10−8 [14]. Let also define Ũ
(n)

[t] elements

as (ũ
(n)

[t] )ij = (u
(n)

[t] )ij if [∇
U

(n)
[t]

E(U
(n)

[t] )]ij ≥ 0 and σ otherwise.

Following [14, 12] it can be proven that, given non-negative initial-

ized factor matrices (i.e. U
(n)
1 ≥ 0, n = 1, 2, . . . , N + 1) a conver-

gent iterative update rule that solves (3) is obtained by

U
(n)

[t+1] = U
(n)

[t] −
Ũ

(n)

[t]

∇+

U
(n)
[t]

E(U
(n)

[t] ) + ε
∗ ∇

U
(n)
[t]

E(U
(n)

[t] ), (5)

where ∇+

U
(n)
[t]

E(U
(n)

[t] ) is defined by the first three terms in (4) and

the division in (5) is elementwise.

4. SPARSE REPRESENTATION-BASED CLASSIFICATION

For each music recording, a 3D cortical representation is extracted
by employing the computational auditory model of Yang et al.[6]
with the same parameters as in [4]. Thus, each ensemble of record-
ings is represented by a 4th-order data tensor, which is created by
stacking the 3rd-order feature tensors associated to the recordings.
Consequently, the data tensor A ∈ R

I1×I2×I3×I4
+ , where I1 =

Iscales = 6, I2 = Irates = 10, I3 = Ifrequencies = 128, and
I4 = Isamples is obtained.
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Determining the class label of a test cortical representation,
given a number of labeled training cortical representations from
P music genres is addressed based on the SRC [7]. Let us de-
note by Ai = [ai1|ai2| . . . |aipi ] ∈ R

7680×pi
+ the dictionary

that contains pi cortical representations stemming from the ith
genre as column vectors (i.e., atoms). Given a test cortical rep-
resentation y ∈ R

7680
+ that belongs to the ith class, we can as-

sume that y is expressed as a linear combination of the atoms
that belong to the ith class, i.e. y =

∑pi
j=1 aij cij = Ai ci,

where cij ∈ R are coefficients, which form the coefficient vec-
tor ci = [ci1, ci2, . . . , cipi ]

T . Let us, now, define the matrix

D = [A1|A2| . . . |AP ] = AT
(4) ∈ R

7680×Isamples

+ by concatenat-
ing Isamples cortical representations, which are distributed across P
genres. Accordingly, a test cortical representation y that belongs to
the ith genre can be equivalently expressed as

y = D c, (6)

where c = [0T | . . . |0T |cTi |0T | . . . |0T ]T is the augmented coeffi-
cient vector whose elements are zero except those associated with
the ith genre.

Since the genre label of any test cortical representation is un-
known, we can predict it by seeking the sparsest solution to the lin-
ear system of equations (6). Formally, given the matrix D and the
test cortical representation y, an approximate solution to the sparsest
one aims to find the coefficient vector c such that

c� = argmin
c

||c||1 subject to D c = y, (7)

where ||.||1 denotes the �1 norm of a vector. The optimization prob-
lem (7) can be solved by standard linear programming methods in
polynomial time. Since we are interested in creating overcomplete
dictionaries derived from the cortical representations, the dimension-
ality of atoms must be much smaller than the training set cardinality.
Thus, we can reformulate the optimization problem in (7) as follows:

c� = argmin
c

||c||1 subject to WDc = Wy, (8)

where W ∈ R
k×7680 with k 
 min(7680, Isamples) is a pro-

jection matrix. The projection matrix W can be obtained by the
TPNTF or any other multilinear dimensionality reduction technique,
such as the NTF, the MPCA, or the GTDA. More particularly, when
the TPNTF or the NTF is applied to the data tensor A, four factor
matrices U(n) ∈ R

In×k
+ , n = 1, 2, 3, 4, are obtained, which are

associated to scale, rate, frequency, and sample modes respectively.
The projection matrix is given by W = (U(3) � U(2) � U(1))T

or W = (U(3) � U(2) � U(1))†, respectively where (.)† denotes
the Moore-Penrose pseudoinverse. Accordingly, every column of
D (i.e. vectorized cortical representation of a music recording) is
a linear combination of the basis vectors, which span the columns
of the basis matrix WT with coefficients taken from the columns
of matrix [U(4)]T . That is, D = AT

(4) = WT [U(4)]T . For the

MPCA or the GTDA, three factor matrices U(n) ∈ R
In×Jn , with

Jn < In, n = 1, 2, 3, are obtained, which are associated to scales,
rates, and frequencies, respectively. In such a case, the reduced di-
mension space is obtained by applying the projection matrix W =
(U(3) ⊗U(2) ⊗U(1))T or W = (U(3) ⊗U(2) ⊗U(1))†, respec-
tively to vectorized training tensors vec(Xq).

A test cortical representation can be classified as follows. First,
y is projected onto the reduced dimensionality space through the
projection matrix W as ŷ = Wy. Then, the following optimization
problem is solved

c� = argmin
c

||c||1 subject to WDc = ŷ. (9)

Ideally, the coefficient vector c� contains non-zero entries in posi-
tions associated with the columns of WD associated with a single
genre, so that we can easily assign the test auditory representation
y to that genre. However, due to modeling errors, there are small
non-zero elements in c� that are associated to multiple genres. To
cope with this problem, each auditory modulation representation is
classified to the genre that minimizes the �2 norm residual between
ŷ and y̆ = W D ϑi(c), where ϑi(c) ∈ R

n is a new vector whose
non-zero entries are only the elements in c that are associated to the
ith genre [7].

5. EXPERIMENTAL EVALUATION

In order to assess both the discriminating power of the features
derived by the TPNTF applied to cortical representations for di-
mensionality reduction and the accuracy of sparse representation-
based classification, experiments are conducted on two widely used
datasets for music genre classification [8, 15, 16, 4, 5, 3]. The first
dataset, abbreviated as GTZAN, was collected by G. Tzanetakis [3]
and consists of 10 genre classes. Each genre class contains 100
audio recordings 30 sec long. The second dataset, abbreviated as IS-
MIR2004 Genre, comes from the ISMIR 2004 Genre classification
contest and contains 1458 full audio recordings distributed across 6
genre classes. Since the ISMIR2004 Genre dataset consists of full
length tracks, we extracted a segment of 30 sec just after the first
30 sec of a recording in order to exclude any introductory parts that
may not be directly related to the music genre the recording belongs
to. All the recordings were preprocessed as in [5]. The cortical
representation is extracted for the aforementioned segment of 30 sec
duration for any recording from both datasets.

The best reported music genre classification accuracies obtained
for the aforementioned datasets are summarized in Table 1. On the
GTZAN dataset, Bergstra et al. [15] tested the Mel-frequency cep-
stral coefficients, the fast Fourier transform coefficients, the linear
prediction coefficients, and the zero-crossing rate and reported clas-
sification accuracy reaching 82.5% for the Adaboost meta-classifier.
Pampalk et al. [16] was the winner in the ISMIR2004 Genre clas-
sification contest, where a classification accuracy equal to 84.07%
was obtained by combining different feature sets based on fluctu-
ation patterns and Mel-frequency cepstral coefficients. The afore-
mentioned classification accuracies are the best ever reported with-
out employing sparse representations. In [5], 2D auditory temporal
modulations were used for music representation, while the sparse
representation-based classification has then been employed for genre
classification. On the GTZAN dataset then best classification accu-
racy 91.0 % was obtained when Non-negative Matrix Factorization
(NMF) [14] extracts features that are classified by the SRC while
on the ISMIR 2004 Genre dataset then best classification accuracy
93.56% was obtained, when Principal Component Analysis (PCA)
extracts features that are classified by the SRC.

Table 1. Best classification accuracies achieved by music genre clas-
sification approaches on standard datasets.

Reference Dataset Accuracy (%)
Panagakis et al. [5] GTZAN 91

Bergstra et al. [15] GTZAN 82.5

Panagakis et al. [5] ISMIR2004 93.56

Pampalk et al. [16] ISMIR2004 84.07

To make our experimental results comparable with those ob-
tained by the state-of-the-art music genre classification systems, re-
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ported in Table 1, two different experimental set-ups are employed.
In particular, following the experimental set-up used in [3, 15, 4,
5], stratified 10-fold cross-validation is employed for experiments
conducted on the GTZAN dataset. Thus each training set consists
of 900 audio files. Accordingly, the training tensor AGTZAN ∈
R

6×10×128×900
+ is constructed by stacking the cortical representa-

tions. The experiments on ISMIR 2004 Genre dataset were con-
ducted according to the ISMIR2004 Audio Description Contest pro-
tocol. The protocol defines training and evaluation sets, which con-
sist of 729 audio files each. Thus the corresponding training tensor
AISMIR ∈ R

6×10×128×729
+ is constructed. The projection matrix

W is derived from each training tensor AGTZAN and AISMIR by
employing either the TPNTF, the NTF, the MPCA or the GTDA.
Throughout the experiments the value of λ in TPNTF was empiri-
cally set to 0.5.

In Table 2, the best classification accuracies obtained by fea-
tures derived from various multilinear subspace analysis techniques
and classified then by the SRC for the GTZAN and the ISMIR2004
Genre Dataset are summarized. The fourth column in Table 2 in-
dicates the number of dimensions of the vectorized cortical repre-
sentation after dimensionality reduction. For the GTZAN dataset,
the standard deviation of the classification accuracy was estimated
thanks to the stratified 10-fold cross-validation. By inspecting Ta-

Table 2. Best classification accuracies achieved by various multilin-
ear subspace analysis techniques plus SRC for music genre classifi-
cation on standard datasets.

Method Dataset Accuracy (%) Dimension
TPNTF + SRC GTZAN 93.7 (1.88) 135

NTF + SRC GTZAN 92 (1.71) 135

MPCA + SRC GTZAN 89.7 (2.31) 216

GTDA + SRC GTZAN 92.1 (2.85) 216

TPNTF + SRC ISMIR2004 94.93 135

NTF + SRC ISMIR2004 94.38 135

MPCA + SRC ISMIR2004 92.05 216

GTDA + SRC ISMIR2004 92.05 216

ble 2 the classification accuracy obtained by TPNTF and SRC out-
performs that obtained with features extracted by all other multilin-
ear subspace analysis techniques. Clearly, the reported classification
by TPNTF and SRC outperforms those listed in Table 1.

6. CONCLUSIONS

In this paper, a robust music genre classification framework has been
proposed. The framework resorts to cortical representations for mu-
sic representation, while sparse representation-based classification
has been employed for genre classification. A multilinear subspace
analysis technique (i.e. TPNTF) has been developed, which incor-
porates the underlying topological structure of the cortical represen-
tations with respect to the music genre into the NTF. The best clas-
sification accuracies reported in this paper outperform any accuracy
ever obtained by state of the art music genre classification algorithms
applied to both GTZAN and ISMIR2004 Genre datasets.

In many real applications, both commercial and private, the
number of available audio recordings per genre is limited. Thus, it is
desirable that the music genre classification algorithm performs well
for such small sets. Future research will address the performance of
SRC framework under such conditions.
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