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Abstract. The development of techniques for the rapid, inexpensive and accurate determination of the phosphorus (P)
buffer index (PBI) in soils is important in terms of increasing the efficiency of P application for optimum crop requirements
and preventing environmental pollution due to excessive use of P fertilisers. This paper describes the successful
implementation of partial least-squares regression (PLSR) from spectra obtained with bench-top and handheld mid-
infrared (MIR) spectrometers for the prediction of PBI on 601 representative Australian agricultural soils. By contrast,
poor predictions were obtained for available (Colwell) P. Regression models were successfully derived for PBI ranges of
0–800 and 0–150, the latter range resulting in the optimum model considering the dominance of low PBI soils in the
sample set. Concentrations of some major soil minerals (mainly kaolinite and gibbsite content for high PBI, and smectites
or illites for low PBI), quartz (representative of low surface area of soils) and, to a lesser extent, carbonate and soil organic
matter were identified as the main drivers of the PBI models. Models developed with soils sieved to <2mm presented an
accuracy similar to those developed using fine-ground material. The accuracy of the PLSR for the prediction of PBI by
using bench-top and handheld instruments was also similar. Our results confirm the possibility of using MIR spectroscopy
for the onsite prediction of PBI.
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Introduction

Australian soils contain low inherent quantities of plant-
available phosphorus (P), leading to the application of P
fertilisers (Colwell 1963). Excessive use of P fertilisers leads
to P contamination of surface or groundwater via runoff and
leaching, respectively, and this has been cited as an important
source of eutrophication, algal blooms, and displacement of
native aquatic systems (Bomans et al. 2005; Burkitt et al. 2010).
Thus, it is imperative to optimise P fertiliser input in order to
increase the available P pool above the critical level required to
meet plant demand (McLaughlin et al. 2011).

The availability of P in soil and the effectiveness of P
fertilisers are determined by the ability of a soil to sorb the
applied P (Barrow 1978). Soil P sorption has traditionally been

evaluated by the P buffer capacity (PBC; Ozanne 1980), which
provides a useful tool for improved management of P in
agricultural systems (Bolland et al. 1996; Burkitt et al. 2002;
Moody 2007). A simple, single-addition P-buffering index (PBI)
was successfully developed as a surrogate of PBC in Australian
soils (Burkitt et al. 2002) and it is widely used by research and
commercial soil testing laboratories throughout Australia. This
index is routinely used to modify ‘critical’ Colwell P levels in
determining optimal yields for pastures and various crop types
across a wide range of soil types (Gourley et al. 2006; Moody
2007; Speirs et al. 2013). Additionally, the PBI is increasingly
being used to assess the risk of P loss in surface runoff (Burkitt
et al. 2010; Hart and Cornish 2012). The determination of PBI is
relatively time-consuming (Burkitt et al. 2002) and values
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measured on Australian agricultural soils vary widely (Burkitt
et al. 2002; Moody 2007). Thus, the development of a precise
but more rapid technique for the prediction of PBI would be a
considerable advantage.

Diffuse-reflectance infrared Fourier-transform (DRIFT)
spectroscopy, using the mid-infrared (MIR) spectral range
coupled with partial least-squares regression (PLSR), has
been shown to have potential for the prediction of PBI
(Forrester et al. 2003, 2010a). The DRIFT-PLSR technique
(previously described, for example, in Janik et al. 1998) has
been used for the prediction of many soil properties; it is rapid
and inexpensive, does not require chemical reagents, allows for
the simultaneous prediction of multiple analytes, and has the
potential to be easily adaptable to portable instrumentation for
in-field measurement.

The MIR frequency region is sensitive to the fundamental
vibrations of major soil components such as quartz, 2 : 1 and 1 : 1
clays (e.g. smectites/illites and kaolinite), aluminium (Al) and
iron (Fe) oxides/oxyhydroxides (e.g. gibbsite and goethite),
carbonates and soil organic matter (Van der Marel and
Beutelspacher 1976; Nguyen et al. 1991; Janik et al. 1998;
Reeves et al. 2001). Apart from quantitative prediction, the
interpretation of the spectral peaks responsible for multivariate
models assists in an understanding of the most important soil
properties controlling P sorption.

The P-sorption capacity of soils has been related to the
presence of Al and Fe oxides and hydroxides, which adsorb
phosphate by an exchange reaction (McKeague and Day 1966;
Scheinost and Schwertmann 1995; Bertrand et al. 2003; Burkitt
et al. 2006; Moody et al. 2013). In high-pH soils, calcium
carbonate, with high surface area, is a primary sorbent for P-
forming calcium phosphate (Samadi and Gilkes 1998; Bertrand
et al. 2003; Bomans et al. 2005), whereas larger carbonate and
kaolinite micro-aggregates can have reactive Al and Fe oxide
surface coatings responsible for P sorption (Ryan et al. 1984;
Bomans et al. 2005). Soil organic matter (SOM) has also been
shown to be important in P sorption (Kudeyarova et al. 1991;
Bainbridge et al. 1995).

A recent review by Soriano-Disla et al. (2014) noted that
only a few studies predicted P sorption via infrared
spectroscopy. Bainbridge et al. (1995) predicted the P
sorption isotherm slope (R2 = 0.82) for soils from South
Africa by using near-infrared (NIR) spectroscopy. However,
Cohen et al. (2007) were less successful (R2 = 0.69, n= 300) in
the prediction of P sorption in wetlands of Florida, USA, using
the visible–NIR region. Successful models for Australian soils
were previously reported for PBI by using MIR spectroscopy,
with prediction R2 values ranging from 0.87 to 0.82 (Janik
et al. 1998; Forrester et al. 2003, 2010a), and for residual P
(R2 = 0.84–0.79) after equilibration with 40mg P/L (Minasny
et al. 2009). However, apart from the study by Forrester et al.
(2003), which used soils throughout Australia, the other studies
reported on samples from a specific region, e.g. New South
Wales, and did not disclose the main spectral features
corresponding to the P sorption model.

With the recent availability of handheld MIR technology,
DRIFT spectroscopy could be adapted to on-site analysis, thus
reducing the time associated with the transport of the sample
and, in some cases, the need for sample pre-treatment (Reeves

2010). However, there are questions about the relative
performance of the handheld devices compared with bench-
top instruments. Furthermore, inter- and intra-particle
variability, as found in field conditions, can be a major
source of loss of accuracy (Stumpe et al. 2011) due to the
small sampling spot (~4mm diameter) of the incident infrared
beam of most MIR spectrometers.

To our knowledge, the single previous attempt to derive a
model for PBI using MIR, handheld instruments has been made
by Forrester et al. (2010a), using a small set of 30 soils modelled
by PLSR cross-validation, but without discussing the specific
soil mechanisms responsible for deriving the models. Thus,
there is a need to develop a robust PBI calibration using a
handheld device for a much larger range of soil types, and to test
the influence of soil sample heterogeneity on the PBI
predictions. With regard to the development of PBI models
across a range of soils, this may present a challenge, because the
soil mechanisms responsible for such calibrations may vary
depending on the characteristics of the soils being examined
(Burkitt et al. 2006; McLaughlin et al. 2011; Moody et al.
2013). Such indirect calibrations may lead to instability
problems for global calibrations over a large variety of soil
types, or over large geographical areas (Stenberg and Viscarra-
Rossel 2010).

The main aim of this study was therefore to test the
performance of a handheld MIR spectrometer for the
prediction of PBI across a wide range of Australian soil types
and PBI values. We also tested the performance of the MIR
technique to predict available (Colwell) P because of the
requirement to evaluate both Colwell P and PBI for adjusting
P fertiliser applications rates. We also set out to test the
comparative performance of bench-top and handheld MIR
spectrometers, to study the effect of sample heterogeneity,
and to identify the main soil components responsible for the
PBI calibration models.

Materials and methods

Soils

Two sets of Australian soils were collected: a relatively small
set (set A, n= 90) and a large set (set B, n= 516). Set A also
contained soil types representative of set B. The soils for both
sets were collected from throughout Australia from sites with
varying rainfall and climatic conditions, and had been under
permanent pasture, cropping, and horticultural production.
Soils ranged from those that had never received P fertiliser to
those that had been heavily fertilised.

As previously described by Burkitt et al. (2002), the
distribution of samples for set A was: 41 from Victoria, 15
from New South Wales, 13 from Queensland, 11 from Western
Australia, 5 from South Australia, and 5 from Tasmania. The
majority of soils were sampled to a depth of 0.10m, with the
exception of one soil that was sampled to a depth of 0.15m.
The soils were largely classified as Chromosols and Podosols,
with moderate contributions from Dermosols, Ferrosols,
Kandosols, Kurosols and Vertosols (Fig. 1; Isbell 1996).

Set B comprised soils from throughout Australia as above
(excluding the Northern Territory), and including some
from the archives of the National Soil Fertility Program
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(in Moody et al. 2013). The majority of the soils (n= 331) were
collected from a depth of 0.10m, and a few were collected
from other depths (n= 66 samples from 0.05m, n= 72 from
0.075m, and n= 47 from 0.15m). The soils varied widely, with
the largest proportion classified as Chromosols, Vertosols,
Sodosols and Calcarosols, with moderate contributions from
Kandosols and Kurosols and Dermosols (Fig. 1).

The primary purpose of using set A was to test the relative
performance of regression models for PBI prediction derived
using the soils sieved to <2mm (unground) and the same soils
finely ground to <0.1mm. The two sets were combined (termed
set A +B) to derive a more extensive calibration. This combined
set was also used for testing two alternative spectrometer
options: a bench-top and a handheld instrument.

Laboratory determination of PBI

The reference laboratory values of PBI were calculated
according to Burkitt et al. (2002). A single addition of
1000mgP kg–1 (as KH2PO4) was added at a 1 : 10
soil : solution ratio in 0.01M CaCl2. The suspensions were
equilibrated by shaking in an end-over-end shaker at 258C for
17 h. After equilibrium, P remaining in solution was determined,
and PBI, referred to in Burkitt et al. (2002) as PBI+Col, was
calculated as:

PBI ¼ Psþ initial Colwell P
c0:41

� �

where Ps is P sorbed (mg P kg–1 soil), c is final solution P
concentration (mg PL–1), and Colwell P (used as an estimation
of the available P) has units of mg P kg–1 (Colwell 1963). Values
of PBI are dimensionless.

Infrared spectra

The soils were oven-dried at 408C for 12 h and sieved to <2mm,
then cooled to room temperature in a desiccator before infrared
analysis. Additionally, soils from set A were further ground to
<100mm using a steel vibrating puck mill. Samples were

scanned in duplicate and the average spectra of replicates was
used for model development.

Two Fourier transform infrared (FTIR) spectrometers
were used: a bench-top Spectrum One spectrometer (Perkin
Elmer Inc., Waltham, MA, USA) in the frequency range
7800–450 cm–1, and a handheld Agilent 4100 spectrometer
(Agilent, Santa Clara, CA, USA) in the frequency range
6000–650 cm–1, both with a resolution of 8 cm–1. The
handheld instrument showed excessive noise below 800 cm–1

in the MIR and above 4000 cm–1 in the NIR (standard deviation
of noise = 0.0049 and 0.80 absorbance units for the two
ranges, respectively) compared with that of the bench-top
spectrometer (standard deviation of noise = 9.4� 10�5 and
4.7� 10�5 absorbance units, respectively). To permit a
comparison of modelling performance between the handheld
and bench-top instruments, the final frequency range used for
both instruments was restricted to the MIR spectral region
only (4000–800 cm–1).

Silicon carbide references (Perkin Elmer Inc.) were used as
a background for both spectrometers (assumed to have a
reflectance R0 = 1), and absorbance spectra, in pseudo-
absorbance (A) units (where A= log10 R0 Rs

–1), were
calculated from the reflectance units of the sample (Rs). For
multivariate analysis, the spectra were imported from the Perkin
Elmer and the Exoscan format (initially in .SP and .ASP units,
respectively) into Grams file format (.SPC) using the Grams-Al
converter software (Thermo Fisher Scientific, Waltham, MA,
USA) before importing the spectra into Unscrambler� V9.8
(Camo, Oslo, Norway) spreadsheets. The spectra were pre-
processed with the Standard Normal Variate (SNV) function
to remove the multiplicative interference of scatter and particle
size (Barnes et al. 1993), and baseline-corrected to remove
slope and baseline offset. The baseline correction used was
the Unscrambler ‘De-trending’ pre-processing application, by
fitting a first-order polynomial to the full spectrum and then
removing this as a baseline correction, thus resulting in a more
robust correction than the use of a single point on the spectrum
for estimating the degree of offset.

25

A B

20

15

10

Soil class

P
er

ce
nt

5

0

Calc
ar

os
ol

Chr
om

os
ol

Der
m

os
ol

Fe
rro

so
l

Hyd
ro

so
l

Kan
do

so
l

Kur
os

ol

Pod
os

ol

Sod
os

ol

Te
no

so
l

Ve
rto

so
l

Unc
las

sif
ied

Fig. 1. Distribution of soil classes (%) according to the Australian Soil Classification system
(Isbell 1996) for samples in set A (grey bars) and set B (black bars).
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Multivariate modelling

A principal component analysis (PCA) was carried out using
the spectral data for all samples. The PCA loadings and score
distributions were used to discern the spectral features
contributing to the spectral variance. PLSRs were derived
from the DRIFT spectra (X-predictor variables) and
experimental PBI (Y-dependent variables) values.

The following PLSR models were developed:

(i) For set A, cross-validation (with 10 sample rotation) using
fine-ground (<100mm) and unground (<2mm sieved)
soil material scanned on the bench-top instrument.
Additionally, models for unground samples were
developed by using an average of two repeat (replicate)
samples and compared with those using only a single scan
(repetition 2 v. 1).

(ii) For a composite set A +B, cross-validation using spectral
data from only the unground soils, scanned with the bench-
top and handheld instruments. In addition, this set was
used for the development of models by cross-validation
for the prediction of Colwell P with unground soils
scanned in the bench-top machine.

(iii) For the composite set, using the 0–800 and 0–150 PBI
ranges (the latter range being characteristic of Australian
soils; Burkitt et al. 2002), again with spectral data from
only the unground soils, scanned with the handheld device.

For the selected models corresponding with (iii), the samples
were randomly split, two-thirds for developing calibration
models and the remaining one-third for validation. The
calibration samples were used for the development of the
PLSR models for PBI prediction by cross-validation. During
cross-validation, an optimum number of PLSR factors was
established that minimises the root-mean-square error
(RMSE) of the cross-validation without leading to overfitting.
The resultant models were used to predict the concentrations of
the samples in the test set. Models based on samples from
0–800 PBI values were used for the prediction of samples in
the 0–800 and 0–150 PBI ranges. Similarly, models developed
with samples from 0–150 PBI were used for the prediction of
samples with 0–800 and 0–150 PBI range values. PLSR
statistics for infrared predictions are generally reported as an
average over the range of values being predicted. They are
described in terms of the coefficient of determination (R2),
RMSE, and the ratio of the standard deviation of the
reference PBI values to the RMSE of the prediction (RPD;
Williams 1987). The prediction of PBI error statistics, namely
RMSE, standard error (s.e.), bias, and the values of bias� s.e.
were calculated for PBI ranges used in the (iii) models.

The quality of PLSR for prediction purposes can be roughly
ascertained from the RPD, with values <1.5 considered poor,
1.5–1.9 suggesting indicator quality, 2.0–2.9 suggesting good
quality, and�3.0 analytical quality (Sudduth and Hummel
1996).

Results and discussion

Soil variability

The soils used in this study varied greatly in soil type and
composition. This variability was manifested by changes in the

infrared peaks due to the range of compositional soil minerals
and soil organic matter in each of the soils. Plots of PCA scores 2
v. scores 1 and the corresponding PCA loadings can be found
in Fig. 2, with the scores of the set B samples superimposed
onto those of the set A samples. The score plot suggests a high
degree of variability within the set B samples, with most of the
set A samples lying within the bounds of PC1 and PC2 for
set B, but with somewhat fewer samples from set A lying in the
negative PC1/PC2 quadrant. The first two PCA loading weights,
depicted in Fig. 2, identified the dominant soil components
within the soil set that are associated with the main spectral
features. The first PCA loading was dominated by peaks due to
quartz (negative peaks near 2000–1750, 800 and 700 cm–1, and
positive peaks near 1250–1100 cm–1) and kaolinite plus
illite–smectite clays (positive peaks 3695–3620, 3620 and
3450–3200 cm–1; Janik and Skjemstad 1995). Loading 2 was
dominated by a strong, broad negative peak due to Al–OH in
clays and absorbed water –OH attributed to 2 : 1 layer silicates
such as smectite (3620–3000 cm–1). A weak positive peak due
to carbonate was observed near 2515 cm–1. Thus, as shown in
Fig. 2, quartz and clay were the main contributors to the
variability in these spectra.

Partial least-squares regressions for Colwell P

The range of values found for the Colwell-P determination
varied widely across the soils (range <1 to 563mg kg–1) with
a standard deviation of 47mg kg–1. According to previous
reports, PLSR models developed using only the MIR spectral
range generally outperform those developed using the NIR
(Janik et al. 1998; Reeves et al. 2001; Soriano-Disla et al.
2014). For this reason, and also because of the excessive
spectral noise in the NIR region with the handheld instrument
below 800 cm–1, the spectral range used for Colwell P and PBI
models in the present study was restricted to the MIR
(4000–800 cm–1) spectral range. The PLSR models developed
for Colwell P showed a poor performance with the full
range of data (R2 = 0.28 and RMSE of cross-validation =
40mg kg–1). Restriction of the range of Colwell P values
used in the calibrations, or data transformation (e.g. square-
root transform), did not improve the regressions (data not
shown). Similar poor results were found by Viscarra Rossel
et al. (2006) for the prediction of Colwell P using MIR for a
smaller sample set (R2 = 0.20, n= 49). This is in accordance with
previous studies using MIR for the prediction of extractable P
(Soriano-Disla et al. 2014).

Partial least-squares regressions for PBI

Both set A (n= 88, PBI range 1–732, median = 91, standard
deviation = 160) and set B (n= 513, PBI range 1–779, median =
59, standard deviation = 97) comprised a predominance of
low PBI values (five samples with PBI values higher than
800 were removed). The combined dataset (A +B) resulted
in distributions similar to set B, but with a higher number of
samples available (n= 601) and a PBI range 1–779 (median = 62,
standard deviation = 115). Because of the very large range of
PBI values found in these soils, and the heavily skewed
distribution towards low values (skewness coefficient = 2.2,
4.4 and 3.8 for sets A, B and A+B, respectively),
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normalisation or linearisation (e.g. by square root or log) of the
PBI data could be an advantage (Varmuza and Filmoser 2009).
A uniform or normal distribution of reference data is preferable
for deriving PLSR models and generally results in optimum
predictions (Smith 1993; Maindonald and Braun 2010). For
these data, the square-root transformation considerably reduced
the distribution asymmetry, as illustrated in Fig. 3, and was
useful in reducing the influence of the few high PBI samples
on the PLSR models. Consequently, all PLSR modelling for the

0–800 PBI range was performed on the square-root transformed
data.

Despite the demonstrated advantages of a square-root
transform in modelling highly asymmetrical or non-linear
data distributions, there are issues with reporting the errors
associated with predicted data that have been previously
transformed (Smith 1993). Generally, the requirement is for
prediction results to be expressed in terms of their raw values
to be useful. This involves back-transforming the predicted
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data by, in this case, squaring the predicted data (in this study
taking into account the sign of the predicted values).
Consequently, the PLSR predicted data that were based on
square-root values were back-transformed for reporting the
regression statistics.

Although data transformation was expected to result in
improved PLSR models for the 0–800 PBI range, 66 of the
88 (75%) set A samples and 457 of the 513 (89%) set B samples
had PBI values <150. The restriction of the PBI values to 0–150
normalised the distribution, with skewness values dropping
sharply to 0.22, 0.55 and 0.49 for sets A, B and A+B,
respectively. In addition, this restricted set included almost all
of the original samples, covering almost the entire range of
PBI categories as proposed by Moody (2007), ranging from
extremely low (PBI <15) to high (PBI >281). Non-linear
transformation, therefore, may not be the best approach or
required for the reduced 0–150 PBI range.

Testing the effect of soil grinding

Given the heterogeneous nature of soils, some sample
preparation is often performed to limit sample heterogeneity
and other sources of non-systematic variability, thus improving
reproducibility and accuracy of predictions from the spectra.
The objective of sample pre-treatment is mainly to reduce inter-
and intra-particulate heterogeneity, but may also involve drying
the samples to reduce the effects of variable and uncontrolled
moisture contents and grinding or pulverising to reduce the
effects of varying particle size.

Fine grinding of a soil sample reduces inter- and intra-
particular heterogeneity, resulting in more accurate PLSR
(Baldock et al. 2013). Fine grinding (usually to <0.10mm)
helps to ensure a more homogenous mixture of soil micro-
aggregates, improving access to the infrared incident beam by

exposing the inner composition of soil aggregates (Janik et al.
1998; Stumpe et al. 2011). For example, Brunet et al. (2007)
found better results for the prediction of total carbon (C) and
nitrogen (N) by using NIR spectroscopy in finely ground soils.
However, soil grinding is a relatively time-consuming activity,
and for this reason, we set out to test the relative performance of
PLSR using finely ground and unground material scanned in a
bench-top instrument (Table 1).

Figure 4 shows representative spectra, recorded with the
bench-top instrument, for unground and finely ground soil
selected from near the centre of the PCA score plot (Fig. 4
also includes the spectrum recorded with the handheld
instrument, discussed later). The most notable feature was a
significant reduction of the overall spectral intensity for the
finely ground soil compared with the unground soil, probably
because of increased reflection (and therefore reduced
absorption) of the incident infrared radiation. However,
similar cross-validation models were found for both sample
pretreatments in set A (R2 = 0.87, RMSE= 59, RPD= 2.7 for
finely ground; and R2 = 0.89, RMSE=55, RPD= 2.9 for
unground soil).

Reports in the literature on the effect of sample grinding with
regard to the prediction performance of PLSR show mixed
results and depend on the specific soil property of interest
(Stenberg et al. 2010). Our results are in agreement with
Reeves et al. (2010), who found similar results for total C
and N with MIR by comparing calibrations based on air-
dried samples with air-dried + ground samples. Using NIR
spectroscopy, Nduwamungu et al. (2009) found that sieving
soil samples to <2mm appeared sufficient to reduce inter-sample
heterogeneity, because sieving to <0.2, 0.5, or 1.0mm did not
improve calibration accuracy for a range of properties.

As discussed by Brunet et al. (2007), the fine grinding of
sandy soils can result in the breaking of coarse sand particles

Table 1. Partial least-squares regression (PLSR) statistics for the prediction of phosphorus buffer index (PBI) using the bench-top and handheld
spectrometers for the mid-infrared spectral range (800–4000 cm–1)

G, Ground (<100mm); UG, unground (<2mm). Statistics are for median, standard deviation (s.d.), PLSR factors (PCs), coefficient of determination (R2),
root-mean-square error (RMSE), and ratio of the standard deviation of the reference PBI values to the RMSE of the prediction (RPD). PLSR cross-validation
used a 10-sample rotation in the 0–800 PBI range. Validation was tested in the 0–800 PBI range using the 0–800 and 0–150 PBI calibrations, and on the 0–150
PBI range using the 0–800 and 0–150 PBI calibrations as indicated. Data for PBI used in PLSR modelling were square-root transformed, unless indicated

otherwise (raw); square-root transformations applied for PLSR modelling were then back-transformed to show the final statistics

Soil set G or UG N PBI range Median s.d. Instrument
type

PCs R2 RMSE RPD

Cross-validation
A G 88 1–732 91 160 Bench-top 6 0.87 59 2.7
A UG 88 1–732 91 160 Bench-top 6 0.89 55 2.9
A (replicate-1 only) UG 88 1–732 91 160 Bench-top 6 0.85 63 2.5
A (replicate-2 only) UG 88 1–732 91 160 Bench-top 6 0.88 59 2.7
A +B UG 601 1–779 64 110 Bench-top 18 0.87 43 2.6
A +B UG 601 1–779 64 110 Portable 18 0.82 50 2.2

Validation Cal, ValA

A+B (calibration 0–800 PBI) UG 397, 204 3–769 61 115 Portable 17 0.83 53 2.2
A +B (calibration 0–800 PBI) UG 397, 177 3–150 54 35 Portable 17 0.69 24 1.4
A +B (calibration 0–150 PBI) UG 346, 177 3–150 57 35 Portable 18 0.77 17 2.1
A +B (calibration 0–150 PBI) (raw) UG 346, 177 3–150 56 35 Portable 18 0.79 16 2.1
A +B (calibration 0–150 PBI) (raw) UG 346, 204 3–769 61 115 Portable 18 0.38 98 1.2

ANumber of calibration (Cal) and validation (Val) samples.

F Soil Research S. T. Forrester et al.



and the creation of new reflection planes. Those authors found
that grinding was less beneficial for the prediction using NIR of
total C and N in sandy soils than clayey soils (Brunet et al.
2007). A similar discussion on the effect of grinding in sandy
and clayey soils can be found in Stumpe et al. (2011), who
recommended developing calibrations by using soil samples
with similar or uniform texture.

Testing the effect of replicate sampling

In order to reduce the impact of sample heterogeneity and thus
achieve optimum results, PLSR models were derived using
the average of replicate scans for each sample, which were
compared with those derived from a single scan. The optimum
model was achieved when the averaged spectrum was used
(R2 = 0.89, RMSE= 55, RPD= 2.9). By contrast, when taken
separately, there was some small variation in accuracy between
the two replicates, with a range of R2 0.85–0.88, RMSE 59–63
and RPD 2.5–2.7, suggesting that averaging for these soils for
PBI was unnecessary. These results were assumed to be due to
the reduced variability from averaging the data. The results
presented here suggest that both inter- and intra-particulate
heterogeneity in these samples is relatively low, an important
implication for direct measurement of field samples where
sample grinding is often not possible or practical.

Handheld MIR v. bench-top spectrometer

The data predicted using infrared spectroscopy can vary
according to the type of instrumentation used (Reeves 2010).
Different instrument specifications, such as, for example,
resolution, spectral range, sample accessory and instrument
performance, might influence the accuracy of the resulting
spectra, or the sensitivity of the spectra to the soil property
being studied (Soriano-Disla et al. 2014). In particular, most
FTIR bench-top infrared spectrometers have very high signal-
to-noise ratios compared with handheld instruments. Handheld
spectrometers must be easy to handle, resistant to field
conditions including high humidity, temperature and rough
handling, and be usable for extended periods without
recharging the battery. To achieve these requirements, the
instrument energy needs are kept to a minimum, and for MIR
capability, ZnSe optics are often used which, although being
resistant to moisture, reduce beam throughput and limit
the spectral range to ~5500–600 cm–1 (compared with 7800–

400 cm–1 for bench-top instruments, which use KBr optics).
Thus, and in further developing infrared PLSR for the
prediction of PBI for in-situ or field applications, the question
arises as to whether handheld FTIR devices can provide
performance similar to bench-top spectrometers.

A comparison of MIR spectra taken with both the bench-top
and handheld instruments is shown in Fig. 4. Very few
differences were observed between spectra of <2mm soil in
the 4000–1200 cm–1 spectral range. There was, however, an
enhancement of the quartz peaks below 1000 cm–1 in the
sample scanned with the handheld instrument, possibly due
to the different optical configuration of the DRIFT accessory
or differences in the reflectivity of the background material.
Prediction statistics, for the comparison of PLSR cross-
validation of the 0–800 range PBI data for the sample set
A +B and using the bench-top v. handheld spectrometers, are
summarised in Table 1. Samples were scanned unground
(<2mm) because this is more representative of the way in
which samples are prepared in the laboratory and the state of
samples potentially scanned in the field.

Results, using a PLSRmodel with 18 factors, showed that the
cross-validation accuracy for PBI in set A+B was slightly
reduced for the handheld instrument from R2 = 0.87 and
RMSE=43 for the bench-top spectrometer, to R2 = 0.82 and
RMSE=50 for the handheld instrument, thus still producing
predictions of similar accuracy.

Few studies have reported the use of portable MIR
instruments (Forrester et al. 2010a; Kuang et al. 2012;
Soriano-Disla et al. 2014). In one study (Reeves et al. 2010),
predictions of total C and N by using MIR spectroscopy with a
handheld FTIR spectrometer (SOC-400; Surface Optics Corp.,
San Diego, CA, USA) were equal to those achieved with a
bench-top instrument (Digilab FTS-7000; Varian, Palo Alto,
CA, USA). The lack of use of MIR handheld spectrometers
has been partly a result of the lack of commercial availability of
MIR handheld instruments and the easier sampling and
remote sensing capabilities of NIR instruments. The situation
has changed recently, in that truly handheld, high-performance
FTIR instruments, using diffuse reflectance sample scanning,
have become commercially available.

Although both the bench-top and handheld instruments
covered the spectral range 6000–600 cm–1, tests to determine
the optimum PLSR spectral range for PBI prediction showed
that the range 4000–800 cm–1 could be used effectively on either
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instrument, and that a spectral range beyond this frequency span
was not required. This was fortuitous because the spectral noise
level of the handheld instrument becomes very high above
5000 cm–1 and below 800 cm–1. These results expand the
applications of the technique to the on-site scanning of
samples. Further work is required to validate the models with
samples under field conditions.

Development of the optimum range for the PBI
prediction model

The ultimate objective of the present study was to derive a
viable PBI prediction model typical of soils in Australia. For
this purpose, we describe the validation results for two PLSR
calibration ranges: 0–800 PBI units covering the full range
of PBI encountered, and 0–150 PBI units accounting for
>75% of the available soils. To this end, calibrations for
these two sets were tested using the randomly selected ‘test’
set. A statistical summary is provided in Table 1 and the error
distribution statistics for these models is shown in Table 2. For
this study, Colwell P was included in the calculation of PBI
and the values were compared with uncorrected PBI (as
suggested by Burkitt et al. 2008). This resulted in a Pearson
correlation coefficient of 0.99 and an RMSE of 20, the high
correlation suggesting that models for PBI uncorrected for
Colwell P would be a good approximation for Colwell P
corrected PBI.

Initially, a PLSR calibration model of 397 samples in the
0–800 PBI range, using the handheld spectrometer spectra, was
used to predict the values (also in the 0–800 PBI range) of the
validation set. The regression plots of predicted v. reference PBI
values, in both the 0–800 and 0–150 PBI ranges but using the
0–800 PBI calibration, are illustrated in Fig. 5. The prediction
accuracy for the 0–800 PBI range validation samples was
similar (R2 = 0.83, RPD= 2.2, RMSE= 53) to that of the
cross-validation of the full 0–800 PBI samples (R2 = 0.82,
RPD= 2.2, RMSE= 50), thus confirming the robustness of
our models and the low risk of overfitting. The same model
was then used for the prediction of samples within the 0–150
range, but in this case, there was a general decrease in validation
accuracy (R2 = 0.69, RPD=1.4, RMSE= 24).

Our results confirmed previous successful results of Janik
et al. (1998, 2009) and Minasny et al. (2009) for samples
scanned on a bench-top spectrometer. However, in this study
we used unground material in a handheld device and for a wider
range of Australian soils. Specifically, our full-range model
covered a range of values similar to those used by Janik
et al. (1998) of 50–900 PBI; Janik et al. (2009) of 3–901
PBI, and a mean� standard deviation P sorption 377� 235,
RMSE=93; and Minasny et al. (2009) of 0–900 PBI, and
mean P sorption of 432, RMSE= 79. As shown for the
0–800 PBI range, our RMSE of prediction (53) was
considerably lower than those observed in the two latter
studies, possibly as a consequence of the considerably higher
proportion of low PBI values in our sample set (median
PBI = 64, mean PBI = 95). Our RMSE of prediction was also
lower than the standard error (s.e. = 90) reported by Forrester
et al. (2003) but their results included a higher proportion of
PBI values >800.

The reported error values in the prediction of low PBI
values were increased by inclusion of high PBI samples in
the calibration (Fig. 5a). This observation thus prompted
the question of whether different soil compositions were
responsible for the low and high PBI models (specifically
discussed earlier). It is evident that the 0–800 PBI calibration
model contained some spectral information correlating with the
successful prediction of samples with PBI from 0–150 units.
However, the 0–800 PBI model also contained information
relevant to the prediction of high-PBI samples, but such high
PBI correlations may be irrelevant or confounding for predicting
low PBI data.

The question of error distribution with respect to the values
of predicted PBI is now considered. Included in Fig. 5 are plots
of the prediction error distribution in the PBI ranges 0–50,
50–100, 100–150, 150–300, 300–500 and 500–800 units. The
statistical indicators accounting for prediction accuracy are
commonly calculated over the full range of soil property
values. Whereas this may be valid for normal or uniformly
distributed linear data, it does not hold for many soil
applications. For example, in most soil datasets, organic C,
carbonate, and in this case PBI demonstrate heavily skewed

Table 2. Validation error statistics for phosphorus buffer index (PBI) using the handheld spectrometer in the mid-infrared
spectral range (800–4000 cm–1)

Three calibrations were tested: (1) the back-transformed 0–800 PBI range using the square-root-transformed 0–800 PBI calibration;
(2) the 0–800 PBI range using the square-root transformed 0–150 PBI calibration; and (3) the 0–800 PBI range using the raw 0–150
PBI calibration. Error statistics expressed as root-mean-square error (RMSE), standard error (s.e.) and bias calculated for the 0–800,

0–150, and the separate 0–50, 50–100, 100–150, 150–300, 300–500 and 500–800 PBI ranges

Validation set Validation PBI range
0–800 0–150 0–50 50–100 100–150 150–300 300–500 500–800

(1) A+B (calibration
0–800 PBI)

RMSE 53 24 24 17 36 38 142 232
s.e. 33 24 22 18 36 33 68 46
Bias –6 6 7 2 8 12 –132 –210

(2) A+B (calibration
0–150 PBI)

RMSE 17 12 13 32 90 258 507
s.e. 16 10 12 30 18 19 23
Bias 0 5 0 –13 –75 –252 –496

(3) A+B (calibration
0–150 PBI) (raw)

RMSE 16 15 12 27 89 267 500
s.e. 15 13 11 26 13 11 17
Bias 2 3 1 –9 –76 –262 –489
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distributions towards low values. Models developed for soil
variables following such distributions can result in prediction
residuals with the variance distribution depending in some way
on the fitted value (heteroscedasticity; for example, when
residuals tend to fan out as fitted values increase, giving a
‘funnel’ effect). We then face a major statistical problem
when deriving confidence intervals and when testing the
regression parameters, as well as in reporting the prediction
errors for new observations (Varmuza and Filmoser 2009;
Maindonald and Braun 2010).

In an attempt to avoid such problems, data transformation
(e.g. square-root and log) is applied to the raw data before
PLSR modelling (Crawley 2007; Janik et al. 2009) to normalise
or linearise the data values. Alternatively, non-linear algorithms
such as artificial neural networks can be used to model the
raw data. Although transforms may achieve the desired
linearisation and normal distribution, back-transformation of
the predicted results to raw data format is subsequently
required, leading to skewness and/or increasing bias in the
back-transformed error distribution. We therefore propose that
the usual regression statistics are inappropriate for describing
prediction performance, and that a more detailed assessment of
error for a particular analyte value may be required.

Figure 5a shows the increasing negative error for validation
values from 0 to 800 PBI units, partly due to bias and partly due
to s.e. That is, we have a highly non-uniform error distribution,
increasing with the size of the predicted PBI values. The
resulting error distributions, with respect to the various
specific PBI ranges, are confirmed by the results in Table 2.
The lowest prediction errors for the 0–800 calibration were
found at the two ends of the 0–100 PBI range (s.e. 18–22, bias
2–7 and RMSE 17–24), but then doubled at the two ends of the
of the 100–300 range (s.e. 33–36, bias 8–12 and RMSE 36–38)
and increased even further in the 300–500 range (s.e. = 68,
bias = –132 and RMSE= 142). The s.e. for the 500–800 PBI
range was lower (46) but this value was due to the very few

samples in this range. Bias appeared to have the strongest
contribution to the increased error.

Because of the high proportion of samples in the low PBI
range, it was thought that a more accurate prediction might
result from a calibration limited to the 0–150 PBI range rather
than one using the full 0–800 range. This option was tested by a
separate validation set, using both the square-root transformed
data (as for the regressions described above) and raw, non-
transformed PBI data. In the case of the prediction of PBI in the
0–150 range from the square-root transformed data, we found
overall regression statistics of R2 = 0.77, RMSE= 17, RPD= 2.1
(see Table 1). The low RMSE suggested that this model could
be useful for prediction purposes despite the low RPD.

The error in the 0–100 PBI range of predicted values using
the 0–150 PBI square-root transformed model resulted in a
range of s.e. 10–12, bias 0–5 and RMSE 12–13. The error
increased to s.e. = 30, bias = –13, and RMSE= 32 for the
100–150 PBI values (see Table 2). A very large increase in
error occurred for the 150–800 PBI range of values (s.e. 18–23,
bias –75 to –496 and RMSE 90–507), mostly as a result of
increasing bias at higher PBI values.

The error distribution for the 150–800 PBI range values
(Fig. 6a), using the 0–150 PBI raw data model, showed a
large increase in negative bias (–76, –262 and –489 for the
150–300, 300–500 and 500–800 PBI ranges, respectively;
Table 2). The increase in RMSE observed for the overall
model in the 150–800 PBI range could thus be attributed
mostly to bias. The use of this model is, therefore, not
advisable for the prediction of high-PBI samples (Table 1;
Fig. 6a), clearly demonstrating that the spectral information
required to predict low PBI samples is not sufficient for the
prediction of high PBI samples. In a practical situation, if an
unknown is predicted as high PBI (i.e. >150), we would use the
0–800 PBI model. The validation of the 0–150 PBI range
model derived from raw (non-transformed) PBI data (see
Table 1) resulted in R2 = 0.79, RMSE= 16 and RPD= 2.1.
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This was of similar accuracy to that of the square-root
transformed data. The prediction errors from the 0–150 PBI
raw (Table 2), non-transformed calibration resulted in a range
of s.e. 11–13, bias 1–3 and RMSE 12–15 in the 0–100 range, and
s.e. = 26, bias = –9, and RMSE=27 for the 100–150 PBI value
range. This represented a slight improvement over the square-
root transformed data in this PBI range (RMSE= 32).

Soil mechanisms driving PBI predictions

Apart from quantitative predictions, MIR spectroscopy
allows a qualitative description of the soil properties and
compositions responsible for controlling PBI, by examining
the PLSR loading weights. The first few loading weights
show spectral peaks that correspond to the ‘pure’ soil

components most strongly related to the soil property of
interest (Janik et al. 1998).

In Fig. 7, we depict the loading weights for the first four
PLSR loading weights for both the 0–800 and 0–150 PBI ranges.
There was a strong negative correlation between PBI and quartz
in loading weight for PLSR factor 1. This contribution is the
most important in both the 0–800 and 0–150 ranges, along with a
positive correlation with smectite in the 0–150 range and with
kaolinite and gibbsite in the 0–800 range. Loading weights for
PLSR factors 2 and 3 are more difficult to assign but appear to
show further correlations with kaolinite and quartz and an
unidentified negative peak at 1300 cm–1. Also interesting is
the weak contribution of carbonates (2520 cm–1), which is
stronger for the 0–150 PBI model. This weak contribution
may be related to the low proportion of highly calcareous
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soils in our set of samples. The loading weight for PLSR factor 4
is characterised by kaolinite (the kaolinite peak is less intense in
the 0–150 range) and negative contributions due to SOM. Peaks
were observed near 2930–2850 cm–1 (aliphatic alkyl stretching,
–CH2), 1720 cm

–1 (alkyl acid, –COOH) and 1670 cm–1 (protein
amide, CO–NH). Despite the known sorption of P by goethite
(FeOOH, peaks at 3141, 1791, 1656, 936, 836, 685 and
552 cm–1), these peaks were not observed in the loading
weights for either the low or high PBI ranges.

Changes observed in the loading weights of the models for
the full and low range are indicative of different mechanisms
responsible for P sorption. The spectral characteristics observed
in the loading weights for the low and high PBI range
calibrations support the results found using PLSR. This was
possibly why we were unsuccessful in the prediction of 0–800
PBI samples using the 0–150 PBI calibration. Different
sorption mechanisms appeared to be operating in high and
low PBI samples, as illustrated in Fig. 8 by the average MIR
spectra taken from samples with low PBI (<4) and high PBI
(>400). In agreement with the interpretation of loading weight 1
for the PLSR models, the high PBI samples were characterised
by clay (and thus low quartz as sand) and gibbsite. The
contribution of organic matter in both average spectra was
similar.

As discussed by Lins and Cox (1989) and Cox (1994), P
sorption in soils is strongly dependent on clay content and/or
surface area. Soils with high sand contents consequently have
low clay contents, and thus typically have low P-sorption
capacities. The quartz content is related to relative low
surface area, and high surface area is related to the type and
amount of clay minerals contained in the soil.

Apart from the surface area, the variable charge
characteristics of Al and Fe oxy-hydroxides (e.g. goethite and
gibbsite) and 1 : 1 lattice clays such as kaolinite are particularly
important in P sorption by soils (Uehara and Gillman 1981).
Both the surface area and the variable charge sorption
mechanism apply to gibbsite, which has a high reactive
surface area (Lins and Cox 1989), resulting in a high
capacity to sorb P. When assessing the soil properties
correlated with PBI in set B soils, Moody et al. (2013) found
Mehlich-extractable Al correlated with PBI for the acidic
soils in the set. Likewise, Cohen et al. (2007) found oxalate-
extractable Al the primary driver of P sorption in soils of USA

wetlands. The important contribution of kaolinite as shown in
Fig. 7 is supported by Bainbridge et al. (1995), who found that
highly weathered, acidic red and yellow-brown soils with
predominantly 1 : 1-type clays and high OM, occurring
mainly in high-rainfall areas of South Africa, sorbed large
amounts of P. As discussed by McLaughlin et al. (1981), in
the case of silicate layer minerals, the layer silicates per se are
of minor significance in the sorption of P by soils. More
important is the presence of reactive (variable charge) Al/Fe
oxide coatings on kaolinite minerals, which appear to be largely
responsible for the sorption of P by increasing the number of
reactive sites (McLaughlin et al. 1981).

A negative contribution of OM was found in the fourth
loading. This contribution of OM functional groups for
explaining PBI is weak compared with other soil
components, partly because of the low concentration of OM
in the soils. This is in contrast to the finding of Moody et al.
(2013) who reported a positive correlation between PBI and
OM for 142 soils in set B that were neutral–alkaline, non-
calcareous and predominantly of 2 : 1-type clay mineralogy.
A possible explanation for the existence of an overall weak
negative relationship between OM and PBI when all set A and
set B soils are considered may be the complexation of Al/Fe
oxy-hydroxides by functional OM groups, thereby decreasing
soil P-sorption capacity (Sibanda and Young 1986; Whitehead
2000). These apparently contrasting effects of OM on PBI,
depending on which soil suite is considered, highlight the
danger of generalising about P sorption processes across soils
that vary in clay mineralogy.

Conclusions

This study demonstrates the feasibility of applying MIR-
DRIFT spectroscopy, coupled with PLSR, to the cost-
effective and rapid prediction of PBI in soils across Australia.
However, it failed to predict Colwell P. Mechanisms
responsible for the PLSR models suggested that for high PBI,
the soil surface area, represented by the inverse of quartz
content, gibbsite and alumino-silicate clay minerals such as
kaolinite, was the main soil characteristic driving the PBI
models. However, the models developed for the prediction of
low PBI samples, besides being dependent on surface area, were
also influenced by 2 : 1 clays such as smectites–illites, thus
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confirming the existence of different mechanisms responsible
for weaker P sorption.

The accuracy of the calibrations was not markedly affected
by fine grinding the soils. A handheld FTIR produced similar
calibration accuracy to that of the bench-top spectrometer.

According to the PBI ranges analysed and the model error
distributions, an optimum model was developed for the
prediction of PBI from 0 to 150 units. We also developed a
successful model with PBI values ranging from 0 to 800,
proving that the MIR-DRIFT technique can predict samples
with much higher PBI values. The PBI distribution was heavily
skewed towards low values and corrected by applying a
square-root transformation of the PBI values. This
modification, however, did not prevent the non-uniform
distribution of errors across the PBI range when the results
were back-transformed to raw PBI units.

Thus, in this manuscript we have successfully developed an
Australia-wide model for the prediction of PBI in the 0–150
range, using a handheld spectrometer for soils that have been
dried and sieved at 2mm. It is acknowledged that not all soil
types may have been included in this study. The handheld
instrument capability will potentially enable paddock-scale
mapping, which, in conjunction with yield maps, could be
used for more efficient P-fertiliser application. The calibration
model developed in this study can be used for the prediction of
PBI in Australian soils from spectra scanned on similar
handheld spectrometers, although calibration transfer
procedures may first need to be applied. For accurate, routine
applications of soils with PBI > 150, we may need to include
more high-range PBI values in the calibration model. Further
research on the effects of variable moisture contents and
heterogeneity is needed to enable in-field sampling with a
handheld MIR spectrometer.
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