A NOTE ON COVERING RADIUS OF MacDonald CODES

M.C.Bhandari
Department of Mathematics,
Indian Institute of Technology Kanpur,
Kanpur, 208016(India)
mcb@iitk.ac.in

C.Durairajan,
Government Arts College,
Musiri, Tamilnadu(India)

Abstract

In this paper we determine an upper bound for the covering radius of a q-ary MacDonald code $C_{k,u}(q)$. Values of $n_q(4,d)$, the minimal length of a 4-dimensional q-ary code with minimum distance d is obtained for $d = q^2 - 1$ and $q^2 - 2$. These are used to determine the covering radius of $C_{3,1}(q), C_{3,2}(q)$ and $C_{4,2}(q)$.

Theorem 7 of the present paper gives a nice upper bound for the covering radius of a MacDonald code $C_{k,u}(q)$. Values of $n_q(4,d)$ are determined for (a) $1 \leq i \leq 3$ and q odd. These are used to determine the covering radius of $C_{3,1}(q), C_{3,2}(q)$ and $C_{4,2}(q)$.

Index Terms: Linear Codes, Covering radius, MacDonald codes, Optimal codes.

Let $F_q = \{0, 1, \alpha, \ldots, \alpha^{q-1}\}$ be a Galois field. An $[n,k,d]$ code C is a k-dimensional subspace of F_q^n having minimum Hamming distance d. One of the central problem in coding theory is to determine $n_q(k,d)$, the minimal value of n for which an $[n,k,d]$ code exists. In 1960 Solomon and Stiffler showed that

$$n_q(k,d) \geq \sum_{i=0}^{k-1} \left\lfloor \frac{d}{q^i} \right\rfloor \equiv g_q(k,d), \quad (1)$$

where $\lceil x \rceil$ denotes the least integer greater than or equal to x [1]. For binary codes the above bound was first proved by Griesmer [2] and is called the Griesmer bound. An $[n_q(k,d), k,d]$ code is called an optimal code. Well known examples of codes that meet the Griesmer bound are simplex codes $S_k(q)$ and MacDonald codes $C_{k,u}(q)$. The covering radius of a code C is the weight of a maximum weight coset leader. Determining covering radius of a code in general is a difficult task. Many lower and upper bounds have been obtained [3], [4]. Very little is known about the covering radius of simplex codes [5] and almost nothing is known about the covering radius of MacDonald codes.

Theorem 7 of the present paper gives a nice upper bound for the covering radius of a MacDonald code $C_{k,u}(q)$. Values of $n_q(4,d)$ are determined for (a) $1 \leq i \leq 2$ and $d \leq q - 1$ and q odd. These are used to determine the covering radius of $C_{3,1}(q), C_{3,2}(q)$ and $C_{4,2}(q)$.

The bound given by Theorem 7 is further improved for $u = 2$ (Corollary 15) and for $u = 1$ and $q = 3$ (Theorem 16).

It is shown that $R(S_4(3)) = 24$, $R(C_{4,2}(3)) = 23$ and $21 \leq R(C_{4,2}(3)) \leq 22$.

The covering radius of an $[n,1,n]$ repetition code is $n - \lfloor \frac{d}{q} \rfloor$ [5]. If C_0 and C_1 are binary codes generated by the matrices G_0 and G_1 respectively and if C is the code generated by the matrix

$$G = \left[\begin{array}{c|c} 0 & G_1 \\ \hline G_0 & \end{array} \right],$$

then Mattson [4] has shown that

$$R(C) \leq R(C_0) + R(C_1). \quad (2)$$

If in addition $dim(C_0) \geq dim(C_1)$ and D is the code generated by the matrix

$$\left[\begin{array}{c} G_0 \\ \hline G_1 \end{array} \right],$$

then

$$R(D) \geq R(C_0) + R(C_1). \quad (3)$$

The proof of both of these results easily extend to q-ary codes. Best known upper bound for the covering radius of an optimal code is given by the following theorem.

THEOREM 1 (6): The covering radius of an $[n_q(k,d), k,d]$ code is at most $d - b_q(k,d)$, where $b_q(k,d) = n_q(k+1,d) - n_q(k,d)$. Moreover if $b_q(k,d) = 1$, then there exists an $[n_q(k,d), k,d]$ code with covering radius $d - 1$.

Values of $n_q(3,d)$ for $d \leq q + 1$ are given by the following theorem of Dodunekov.

THEOREM 2 (7): (i) If q is even, $q \geq 4$, then $n_q(3,d) = g_q(3,d)$ for all $d \leq q + 2$. (ii) If q is odd then

$$n_q(3,d) = \begin{cases} g_q(3,d), & d \leq q - 1 \text{ or } d = q - 1 \\ g_q(3,d) + 1, & d = q. \end{cases} \quad (4)$$
A nice way of constructing new codes from a given code C is by considering residual codes of C. If C has a code word c of weight w then the code obtained from C by considering only those coordinates in which c has 0 is called a residual code and is denoted by Res(C, w). If \(w < d + \left[\frac{w}{2} \right] \), then Res(C, w) is an \([n - w, k - 1, d + 1]_C\) code with \(d + 1 \geq d - w + \left[\frac{w}{2} \right] \).

For each i, let \(A_i \) and \(B_i \) be the number of codewords of weight i in C and \(C^* \) (dual code of C), respectively. The sequence \(\{ A_i \}_{i=0}^{n} \) is called the weight distribution of C. \(A_i \)'s and \(B_i \)'s are related by the equations

\[
\sum_{j=0}^{n-i} \binom{n - j}{t} A_j = q^{k-t} \sum_{j=0}^{t} \binom{n - j}{n-t} B_j, \quad (5)
\]

for \(t = 0, 1, \ldots, n \) and are called MacWilliams identities [8]. If \(u \) and \(v \) are linearly independent elements in \(F_q^* \) then Hill and Newton [8] have shown that

\[
wt(u) + wt(v) + \sum_{\lambda \in F_q \setminus \{0\}} wt(u + \lambda v) = q(n - z) \quad (6)
\]

where \(z \) denotes the number of coordinate places in which both \(u \) and \(v \) have zero entries.

The following two lemmas give results on codes that meet the Griesmer bound.

Lemma 3 ([7]) \(-\): If \(q \) divides \(d \) and \(n_q(k, d) = g_q(k, d) \) then \(n_q(k, d - a) = g_q(k, d - a) \) for all \(1 \leq a \leq q - 1 \). Conversely, if \(q \) divides \(d \) and \(n_q(k, d - a) > g_q(k, d - a) \) for some \(1 \leq a \leq q - 1 \), then \(n_q(k, d - b) > g_q(k, d - b) \) for all \(0 \leq b \leq a \).

Lemma 4 ([8]) \(-\): Suppose \(C \) is an \([n, k, d]_C\) code which meets the Griesmer bound and suppose \(j \) is a positive integer such that \(d \leq q^{k-j+1} \). Then \(B_j = 0 \).

Let \(S_k(q) \) be a \([q^k - 1/(q - 1), k, q^{k-1}] \) simplex code and let \(G_1(q) \) be a generator matrix of \(S_k(q) \). Then columns of \(G_k(q) \) are pairwise linearly independent k-tuples over \(GF(q) \). Moreover, any two such matrices generate equivalent codes. If \(k = 2 \) then

\[
G_2(q) = \begin{bmatrix}
0 & 1 & 1 & \cdots & \cdots & 1 \\
1 & 0 & 1 & \alpha_3 & \cdots & \alpha_q
\end{bmatrix}
\]

By induction, it is easy to see that

\[
G_k(q) = \begin{bmatrix}
\alpha_q & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 1 & \cdots & \cdots & 1 \\
1 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 1 & \cdots & \cdots & 1 \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \vdots & \cdots & \cdots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & \cdots & \cdots & 0
\end{bmatrix}
\]

is a generator matrix for \(S_k(q) \).

Consider the code \(C_{k, u}(q); 1 \leq u \leq k - 1 \) generated by the matrix

\[
G_{k, u}(q) = \left[G_k(q) \setminus \left(\begin{array}{c}
0 \\
G_u(q)
\end{array} \right) \right] \quad (7)
\]

where \(0 \) is a \((k - u) \times (q^n - 1)/(q - 1) \) zero matrix and \([A \setminus B] \) denotes the matrix obtained from \(A \) by deleting the columns of \(B \). For \(q = 2 \) these codes were introduced by MacDonald [9]. For \(q \geq 3 \) these codes are defined in [10] to solve a classical combinatorial problem. The code \(C_{k, u}(q) \) is a \([q^k - q^{u+1}]/(q - 1), k, q^{k-1} - q^{u-1}] \) code that meets the Griesmer bound and is called a MacDonald code. In [11], Garg has determined the covering radius of binary MacDonald codes \(C_{k, 1}(2) \) and \(C_{k, 2}(2) \). He has also obtained lower and upper bounds for the covering radius of \(C_{k, u}(2) \) in general but they are far from the exact value. We observe that

\[
G_{k, u}(q) = \begin{bmatrix}
G_{k, k-1}(q) & G_{k-1, u}(q)
\end{bmatrix}
\]

and hence by (3)

\[
R(C_{k, u}(q)) \geq R(C_{k, k-1}(q)) + R(C_{k-1, u}(q)) \quad (8)
\]

If \(u < m \leq k - 1 \), the following lemma gives a relation between \(R(C_{k, u}(q)) \) and \(R(C_{m, u}(q)) \).

Lemma 5 \(-\):

\[
R(C_{k, u}(q)) \leq q^{k-1} - q^{u-1} + R(C_{m, u}(q)) \quad (9)
\]

In particular if \(m = u + 1 \), the above lemma gives

\[
R(C_{k, u}(q)) \leq q^{k-1} - q^u + R(C_{u+1, u}(q)) \quad (10)
\]

Lemma 6 \(-\):

If \(u \geq 3 \) then \(R(C_{u+1, u}(q)) \leq q^u - q^{u-1} - 2 \).

Proof:- Let \(u \geq 3 \). Since \(C_{u+1, u}(q) \) is an optimal code, \(R(C_{u+1, u}(q)) \leq q^u - q^{u-1} - 1 \). If \(R(C_{u+1, u}(q)) = q^u - q^{u-1} - 1 \), then there exists \(g \in F_q^* \) with \(d(g, C_{u+1, u}(q)) = q^u - q^{u-1} - 1 \). Let \(C \) be the \([q^u + 1, u + 2, q^u - q^{u-1}] \) code generated by the matrix
Then $A_w = 0$ for each $w = q^u - q^{u-1} + i; 1 \leq i \leq q^{u-1} - 1$. For if $A_w \neq 0$ for some i then Res(C, w) is a $[q^{u-1} + 1 - i, u + 1, q^{u-1} - q^{u-2} + \lfloor \frac{1}{q} \rfloor - 1]$ code. But such a code does not exist as its parameters do not satisfy the Griesmer bound given by (1). Therefore possible nonzero weights in C are $d = q^u - q^{u+1}, n - 1$ and $n = q^{u} + 1$. Since $q^u - q^{u-1} \leq q^{u-1}$ and the code C meets the Griesmer bound, by Lemma 4 $B_1 = B_2 = 0$. The MacWilliams identities (5) gives

$$A_d + A_{n-1} + A_n = q^{u+2} - 1$$

$$(q^{u+1} + 1)A_d + A_{n-1} = (q^{u+1} - 1)n$$

$$(q^{u+1} + 1)q^{u+1}/2A_d = (q^{u} - 1)n(n-1)/2$$

solving these equations we get $A_n = (q - 1)q^{u+1}(1 - q^{u-2})/(q^{u+1} - 1) < 0$, a contradiction. Hence $R(C_{u+1}, u(q)) \leq q^{u-1} - 2$.

Replacing $R(C_{u+1}, u(q))$ in (8) by the bound obtained above we get the following upper bound for the covering radius of $C_{k,u(q)}$.

THEOREM 7 : If $u \geq 3$ then $R(C_{k,u(q)} \leq q^{k-1} - q^{u-1} - 2$.

Corollary 8 $R(C_{4,3}(3)) = 16$

Proof:- Let C be the [29,5,18] ternary code with two equal co-ordinate constructed by VanEupen [13,Example 1]. A generator matrix for C can be written in the form

$$G = \begin{bmatrix} y & 1 & \cdots & 0 \\ G_{u+1,u(q)} & - & \cdots & - \\ 0 & - & \cdots & - \\ \end{bmatrix}$$

Then the matrix G_1 generates a [27,4,18] ternary code C_1 and $d(x, C_1) = 16$. Therefore $R(C_{4,3}(3)) \geq 16$ and hence by theorem 7, $R(C_{4,3}(3)) = 16$.

THEOREM 9 : $R(C_{2,1}(q)) = q - 2$ and $R(C_{3,2}(q)) = q^2 - q - 1$.

Proof:- In [12], Calderbank has shown that $n_3(q, q^2 - q) = q^2 + 1$. Therefore $b_3(2, q - 1) = 1$ and hence by theorem 1, there exists a $[q^2, 3, q^2 - q]$ code with covering radius $q^2 - q - 1$. Since equivalent codes have same covering radius, $R(C_{2,1}(q)) = q^2 - q - 1$. Similarly, by Theorem 2, $b_4(2, q - 1) = 1$ and hence by Theorem 1, $R(C_{2,1}(q)) = q - 2$.

We need the values of $n(q, q^2 - 1)$ and $n(q, q^2 - 2)$ for determining $R(C_{3,1}(q))$ and $R(C_{4,2}(q))$.

THEOREM 10 : If $q \geq 3$ then $n(q, q^2 - i) = g_3(q, q^2 - i) + 1$ for $i = 1$ and 2.

Proof:- Let A be the $[q^2 + 1, 4, q^2 - q]$ q-ary two weight code with $A_{4,2} \neq 0$ constructed in [12]. It has a generator matrix of the form

$$G_A = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & x' & 0 \\ 0 & x' & 0 & 0 \\ \end{bmatrix}$$

Let $1 \leq i \leq q - 1$ and let B be a $[q + 2 - i, 3, q - i]$ code. Then B has a generator matrix of the form

$$G_B = \begin{bmatrix} 1 & y \\ 0 & y' \\ 0 & y'' \\ \end{bmatrix}$$

and

$$G = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ G_B & G_A \\ \end{bmatrix}$$

generates a $[q^2 + q + 3 - i, 4, q^2 - i]$ code. Therefore

$$n(q, q^2 - i) \leq g_4(q, q^2 - i) + 1 \text{ for } 1 \leq i \leq q - 1$$

If $n(q, q^2 - 2) = q^2 + q = n$ and $d = q^2 - 2$, let C be a [n, 4, d] code. Then $3 \leq i \leq q$ and let $w = d + i$. If $A_w \neq 0$ for some i, then Res(C, w) is an $[n - w, 3, q + \lfloor \frac{(i-2)}{q} \rfloor]$ code. But such a code does not exist as its parameter do not satisfy (1). Hence possible nonzero weights in C are $d, d + 1, d + 2, n - 1$ and n. By Lemma 4, $B_j = 0$ for $j = 1, 2, 3$. The MacWilliams identities (5) gives

$$A_d + A_{d+1} + A_{d+2} + A_{n-1} + A_n = q^4 - 1$$

$$(q + 2)A_d + (q + 1)A_{d+1} + qA_{d+2} + A_{n-1} = (q^2 - 1)n$$

$$(q + 2)(q + 1)A_d + (q + 1)qA_{d+1} + q(q - 1)A_{d+2} = (q^2 - 1)n(n - 1)$$

$$(q + 2)(q + 1)qA_d + (q + 1)q(q - 1)A_{d+1} + q(q - 1)(q - 2)A_{d+2} = (q - 1)n(n - 1)(n - 2)$$

By (6), one of A_n and A_{n-1} must be zero. Moreover if $A_n \neq 0$ then $A_n = q - 1$. If $q \geq 3$, $A_n = q - 1$ and $A_{n-1} = 0$, then solving above equations we get $A_{d+1} < 0$, a contradiction. Hence $A_n = 0$. Solving above equations again we get $A_{d+2} < 0$, a contradiction. Therefore $n(q, q^2 - 2) \geq q^2 + q + 1 = g_3(q, q^2 - 2) + 1$ and hence
If \(n_q(4,q^2 - i) \) with \(q \geq 3 \).

Therefore by (11) and (12), \(n_q(4,q^2 - i) = g_q(4,q^2 - i) + 1 \) for \(i = 1, 2 \).

If \(q \) is odd then (12) is also true for \(3 \leq i \leq q - 1 \). If \(n_q(4,q^2 - i) = g_q(4,q^2 - i) \) for some \(i, 3 \leq i \leq q - 1 \) then there exists a \([q^2 + q + 2 - i,q^2 - i] \) code \(C \) and hence \(\text{Res}(C,q^2 - i) \) is a \([q + 2, 3, q] \) code which does not exist. Thus using (12) we have,

THEOREM 11 :- If \(q \) is odd then \(n_q(4,q^2 - i) = g_q(4,q^2 - i) + 1 \) for \(1 \leq i \leq q - 1 \).

THEOREM 12 :- \(R(C_{3,1}(q)) = q^3 - 3 \).

Proof:- Let \(x, x', x'', y, y', y'' \) be as defined in (10) and (11) for \(i = 1 \) and let \(C \) be the \([q^2 + q,3,q^2 - 1] \) code generated by the matrix

\[
G' = \left[\begin{array}{cc|ccc} x' & y' & x'' & y'' & 0 \end{array} \right].
\]

Since \(d(x,y,C) = q^2 - 3; R(C) = q^2 - 3 \). If \(R(C) = q^2 - 2 \) then there exists \(z \in F_q^{x+y+q} \) such that \(d(z,C) = q^2 - 2 \). So the matrix \(G'^t \) generates a \([q^2 + q, 4, q^2 - 2] \) code. By Theorem 11, such a code does not exist. Hence \(R(C) = q^2 - 3 \). Since \(C \) is equivalent to \(C_{3,1}(q) \), \(R(C_{3,1}(q)) = q^3 - 3 \).

THEOREM 13 :- \(R(C_{4,2}(q)) \leq q^3 - q - 2 \).

Proof:- Suppose \(R(C_{4,2}(q)) = q^3 - q - 1 \). Let \(x \in F_q^{x+y} \) with \(d(x,C_{4,2}(q)) = q^2(q-1) - 1 \). Then the matrix

\[
G = \left[\begin{array}{cc} 1 & x \\ 0 & G_{4,2}(q) \end{array} \right]
\]

generates a \([q^2 + q^2 + 1, 5, q^2 - q] \) code \(C \). So \(\text{Res}(C,q^2 - q) \) is a \([q^2 + q + 1, 4, q^2 - 1] \) code. By Theorem 10, such a code does not exist. This proves the theorem.

By taking \(m = 4 \) and \(u = 2 \) in (7) and using Theorem 14, we have

Corollary 14 \(R(C_{k,2}(q)) \leq q^{k-1} - q - 2 \).

Corollary 15 \(21 \leq R(C_{4,2}(3)) \leq 22 \).

Proof:- By Corollary 14, \(R(C_{4,2}(3)) \leq 22 \) and by (8), \(R(C_{4,2}(3)) \geq 21 \).

THEOREM 16 :- \(R(S_4(3)) = 24 \), \(R(C_{4,1}(3)) = 23 \) and \(R(C_{k,1}(3)) \leq 3^{k-1} - 4 \) for \(k \geq 4 \).

Proof:- In [5], it is shown that \(R(S_4(3)) \leq 24 \). To see that \(R(S_4(3)) \geq 24 \), let \(A \) be a \([43,5,27] \) optimal ternary linear code with three equal coordinates \([13; \text{example 3}] \). Then \(A \) has a generator matrix of the form

\[
G_A = \left[\begin{array}{ccc|c} 1 & 1 & 1 & x \\ 0 & 0 & 0 & G \end{array} \right]
\]

The matrix \(G \) generates a \([40,4,27] \) ternary code \(C \). Since \(d(x,C) = 24 \), \(R(S_4(3)) \geq 24 \).

Since \(C_{4,1}(3) \) is a punctured code of \(S_4(3) \), \(R(C_{4,1}(3)) \geq 23 \). If \(R(C_{4,1}(3)) = 24 \), then there exists a \(y \) such that \(d(y,C_{4,1}(3)) = 24 \). So the matrix

\[
G = \left[\begin{array}{cc} 1 & 1 \\ 0 & y \end{array} \right]
\]

generates a \([41,5,26] \) ternary code, a contradiction to \(n_q(5, 26) = 42 \). Therefore \(R(C_{4,1}(3)) = 23 \). Hence by (8), \(R(C_{k,1}(3)) \leq 3^{k-1} - 4 \) for \(k \geq 4 \).

References

