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ABSTRACT   

On this work we present a Titanium:Sapphire laser with simultaneous dual wavelength operation in the 890 nm region. 
Dual wavelength operation is obtained using a novel four stage birefringent filter in which we can control wavelength 
separation by tilting one of the filter elements. The laser operates in continuous wave pumped by a 5.5 Watts 532 nm 
source producing 100 mW at both wavelengths. We obtained wavelength operation with separation of 2.0 nm to 3.0, 
corresponding to frequency separation between 0.8 THz to 1.2 THz. The ultimate goal is the development of a source in 
the terahertz (THz) region of the electromagnetic spectrum for medical applications 
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1. INTRODUCTION  
The dual wavelength laser system that we describe in this manuscript is based on a birefringent filter. An optical filter is 
a device which selectively transmits light in a particular range of wavelengths while blocking the remainder. This can be 
achieved using selective absortance in the material. When the desired outcome is the observation on a range of 
wavelengths, instead of using a set of absorbing filters a wave scanner system is needed. A wave scanner system 
normally comprises a dispersive element which separates the wavelengths and parts of them are blocked. For most 
systems the wavelength separation in the spectrum is accomplished by dispersive elements such as diffraction grating or 
prisms, interference filters, acoustical-optical filters, liquid crystal tunable filters, Michelson interferometers, Fourier 
Transform interferometers, and multi-order etalons. A type of tunable filtering widely used in lasers and solar 
spectroscopy is the Birefringent filter (BRF). On the other hand, the use of multiple wavelength sources opens new 
perspectives in relatively new fields. For example the exploring of dual wavelength sources has been used for optical 
coherence tomography (OCT) [1] or used as intermediate process for millimeter-terahertz sources (30 µm – 3mm range) 
[2]. The double source for the OCT is based on two independent low coherence sources, while the intermediate source 
for a THz laser was done by the use of a grating in a Littrow configuration using two reflective wavelengths.  

In particular we are interested on the generation of novel terahertz sources. The generation of pulsed or coherent 
radiation in the THz-regime has been an active area of research activity in the last years. Now several systems are 
commercially available, which are complex and therefore expensive in price. The lack of a compact, cheap CW THz 
laser source with acceptable power output make researches all over the world investigate on the optimization of existing 
methods or the development of new methods to generate CW THz-radiation.  

2. TWO COLOR BIREFRINGENT FILTER 
The combination of a birefringent filter consisting of several plates was first introduced by Lyot in 1933. In this proposal 
the plates oriented normal to the incident light, have cascaded lengths of a factor of two and include perfect entrance and 
exit polarizers for each element. The optical axis is located at the plates surface and at 45° to the orientation of the 
polarizer, in order to generate two equal strong polarizing components. The free spectral range (FSR) of the plates is 
repeatedly cut in half. The convolution of the single transfer functions leads to the transmission of the overall filtering 
system that consists typically of 3-4 plates. This is known to be the filter with the highest rejection.  

As a laser tuning element, the BRF is used as a intracavity tuning element as a cascaded set of filters oriented at Brewster 
angle, acting as partial polarizers, which lengths keep an integer length relation in the form 1:2:4:...:2n. The optical path 
length behave as a full wavelength phase filter, also known as zero-order retardation plate [3]. The wavelength tuning is 
achieved by rotating the filter as a unit in such a way that the relative retardation keeps a constant value.  
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Figure 1: Angle definition of a birefringent element with its optical axis on the surface and a thickness d. The angles θBe and 

θBi are the external and internal Brewster angle respectively. The angle between the optical axis and the normal to the 
extraordinary wave component is defined as γ and α is the rotation angle of the phaseplate.  

To understand the effect of the rotation and/or tilt of the thickest waveplate in the filter resulting in a double peak of the 
transfer function, we analyze the by the formulas of the induced phaseshift δ of a single waveplate at an angle θBe for the 
polarization component parallel to the plane of incidence [4]: 

 ( ) mnd
Bi

⋅⋅=⋅Δ⋅⋅= πγ
θλ

πδ 2sin
)cos(

2 2  (1) 

where λ is the central wavelength, d is the thickness of the plate, θBi is the internal transmission, γ is the angle between 
the optical axis and the propagating ray and Δn the birefringence of the plate. The thickness of the plate d is chosen in a 
way to achieve a λ-plate with an integer number m as its order. With a λ-plate the spectral transfer function has its 
maximum directly at the central wavelength. Considering the optical axis on the plane of incidence of the plate, the 
graphic definitions of the angles γ and is shown in figure 1. The internal angle θBi is calculated by the Snell law knowing 
the external incident angle θBe; usually for laser tuning elements θBe is chosen at Brewster angle.  

If the optical axis is placed on the surface of the plate, the angle γ is defined by the following angle combination [5,6]: 

 ( ) ( ) ( )αθγ coscoscos ⋅= Be  (2) 

where the angle α describes the rotation of the birefringent plate in azimuthal direction.  Moreover the free spectral range 
(FSR) for the polarization parallel to the plane of incidence of such a birefringent plate at the light incident is defined 
with consideration of the just introduced projection angles [5]:  
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Therefore, the resulting FSR and the introduced phaseshift of the ordinary and extraordinary polarization component of 
each birefringent element depend on the rotation angle α in azimuthal direction and on the angle of incidence. Typically 
the plates of a birefringent filter are designed in a way that at Brewster angle incidence allow 2π phaseshift (λ-plate).  

If the thickest plate of the birefringent filter, which has the fastest oscillating response, is rotated and/or tilted in such a 
way that the resulting phase shift is π/2 out of all the other plates, the transfer function of this plate has its minimum 
exactly at the wavelength where the shorter plates of the filter show a maximum. The convolution of the single transfer 
functions is now resulting in two peaks instead of one as before (Figure 2).  

This effect can be achieved for many combinations of tilt and rotation angles by choosing different orders of the 
phaseshift. For these different combinations also the FSR is varied as a consequence of a larger/shorter optical length 
inside the birefringent material. Although the inclusion of a tilt departs from the Brewster angle condition, the results is 
that different separations of the two filtered peaks further tuning in a dual laser frequency operation. As in a standard 
BRF the bandwidth of the transmitted peak is determined by the number of passes through the filter, which can be 
selected in a laser cavity depending on the photon lifetime defined by the cavity mirrors reflectivity. As a consequence of 
this deviation there is a reduction in the overall transmission of the BRF at the two selected wavelengths, which is an 
undesired, but tolerable effect [7,8]. 
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(a)        (b)  

Figure 2. Birefingent plates combination for with polarizers between them. Plate thicknesses have a 1:2:4:8 ratio. The single 
plate response is shown as dash-dotted: dashed:dotted:solid, respectively. The black thick line shows the overall 
response when (a) the plates are aligned and (b) the thickest plate is rotated by π/2 with respect to the others. 

3. EXPERIMENTAL SETUP 
In order to demonstrate a laser in dual wavelength operation we build a Titanium:Sapphire laser using a BRF as 
described. Titanium Sapphire was chosen for its nonhomogenous broadening [9]. We used a 5 mm long Ti:Sapphire 
crystal with Brewster windows on the standard Z-cavity configuration to correct for astigmatism (figure 3). We extend 
the cavity to form a W-configuration. The cavity is stable using an intracavity 50 mm focal length AR coated lens (L2). 
The system is pumped using an intracavity doubled Coherent® Verdi V5 laser (Nd3+:YVO4 laser doubled with a LBO 
nonlinear crystal) producing up to 5.5 Watts of 532 nm emission. 

 
Figure 3. W-shape laser setup configuration. The BRF is place in two independent mounts as described on the text. M1-M4 

are 100% mirrors. L1 is the mode matching lens. L2 is a intracavity stability lens. OC is the output coupler.  

In order to obtain dual wavelength operation we used a BRF consisting on a set of four independent crystals. Three of the 
crystals operate as a standard BRF tuning filter [6] mounted at Brewster angle. These first three crystals, named plates 1 
2 and 3, are c-cut quartz pieces of 2.0822 mm, 4.164 mm and 8.3288 mm thickness with 1 inch clear aperture (figure 4a).  
They have a thickness in a sequence 1:2:4 with respect to the thinnest crystal, operating at the 21th, 43th and 86th 
retarding order at 860 nm, respectively. The fourth element, named plate 4, is a c-cut 33.3154 mm thick crystal with a 2 
inch clear aperture, operating on the 344 retarding order at 860 nm, operating close to Brewster angle (figure 4a). This is 
a crystal 16 times thicker than the thinnest crystal. These crystals were manufactured from a single quartz crystal at High 
Plain Optics Inc. in Longmont, Colorado, USA. 
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Figure 6. Dual wavelength operation of the Ti:sapphire laser using the design BRF filter. We obtained different central 
operating wavelengths by rotating the plates 1-3 independent of plate 4. The wavelength separations of the dual 
wavelength operation on the graph are 2.48 nm (white), 2.71 nm (light gray) and 2.21 nm (dark gray) 

On a given central operating wavelength we can fine tune the system by rotating and/or tilting the thickest plate (plate 4) 
close to the Brewster angle. For example, by tilting the mount by a small amount (less than 1°) we obtain different 
operating conditions (figure 7). It is difficult to determine the exact angles because of the commonly observed unstable 
dual wavelength operation.  

882 884 886 888 890 892
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u.

λ (nm)
 

Figure 7. Dual wavelength operation of the laser using the design BRF filter tilting plate 4. The wavelength separations of 
the dual wavelength operation on the graph are 2.37 nm (solid), 1.91 nm (dash dash dot) and 2.40 nm (dash dot)  

Using the complete system we obtain up to 100 mW with the laser operating simultaneously at two wavelengths with our 
5.5 W maximum pump power. The dual wavelength operation, in spite of the theoretical analysis presented in section 2, 
is far of being stable at this point. It is relatively easy to obtain the dual wavelength operation once the laser is aligned, 
but because gain mode competition and thermal index of refraction variations in the BRF plates, specially the thickest 
plate, the desired dual wavelength operation is stable up to 15 min and falls out of the stable condition afterwards.  
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We are working on making the laser stable for longer periods of time by temperature controlling the setup. Also, at this 
moment in time we cannot be completely sure of simultaneous dual wavelength operation, as we have observed in a 
different dual wavelength laser operation using a dye laser [10], although due to the reported inhomogeneous broadening 
of the Ti:sapphire we expect to operate both wavelength simultaneously.  

5. CONCLUSIONS 
We have presented a Ti:sapphire laser operating in two wavelengths using a novel BRF. The double emission is obtained 
by means of a thick quartz plate which is tilted and/or rotated independent of a 3-plates standard BRF. Rotating the BRF 
filter we can select the central operating wavelength, whereas rotating/tilting the thickest plate we control the 
wavelengths separation. We observed wavelength separations between 1.5 and 2.9 nm on a tuning range of 20 nm on the 
860 nm vicinity with 100 mW output at both wavelength pumping with 5.5 W of 532 nm radiation. We are working on 
stabilizing the dual wavelength emission and verify simultaneous operation to obtain as ultimate goal CW THz emission. 
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