About
146
Publications
31,236
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,365
Citations
Introduction
Current institution
Additional affiliations
December 2003 - November 2014
January 1995 - December 2007
Publications
Publications (146)
Inorganic mercury (iHg) is an anthropogenic pollutant that forms monomethylmercury, a neurotoxicant affecting human health through seafood consumption. Despite iHg emission reduction policies, the impact on oceanic concentrations remains unclear due to limited long-term data. Here, we present a four-year weekly time series of iHg concentrations at...
Our understanding of the significance of dimethylmercury (DMHg) to the mercury (Hg) global ocean biogeochemical cycle is unclear because of the lack of detailed DMHg measurements in the water column. To our knowledge, 30 years of published studies have generated no more than 200 DMHg data points in the ocean surface waters and marine boundary layer...
Microbes carrying the hgcAB gene pair are primarily responsible for methylmercury (MeHg) production, transforming inorganic mercury (HgII) into MeHg. Recent work based on the detection of hgcAB genes in publicly available genomic data and metagenome-assembled genomes expanded our understanding of the phylogenetic diversity of potential Hg-methylato...
Microbial community dynamics are influenced not only by biological but also physical and chemical phenomena (e.g., temperature, sunlight, pH, wave energy) that vary on both short and long-time scales. In this study, samples of continental shelf waters of the northwest Atlantic Ocean were periodically collected from pre-sunrise to post-sunset and at...
Pseudoalteromonas (BB2-AT2) is a ubiquitous marine heterotroph, often associated with labile organic carbon sources in the ocean (e.g. phytoplankton blooms and sinking particles). Heterotrophs hydrolyze exported photosynthetic material, a component of the biological carbon pump, with the use of diverse metalloenzymes containing zinc (Zn), manganese...
Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low-iron waters, such as in the southw...
The accumulation of plastic debris that concentrates hydrophobic compounds and microbial communities creates the potential for altered aquatic biogeochemical cycles. This study investigated the role of plastic debris in the biogeochemical cycling of mercury in surface waters of the San Francisco Bay, Sacramento River, Lake Erie, and in coastal seaw...
Significance
Bluefin tuna (BFT) is an apex predatory, long-lived, migratory pelagic fish that is widely distributed throughout the world's oceans. These fish have very high concentrations of neurotoxic methylmercury (MeHg) in their tissues, which increase with age. Our study shows that Hg accumulation rates (MARs) in BFT as a global pollution index...
The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sh...
The downward flux of sinking particles is a prominent Hg removal and redistribution process in the ocean; however, it is not well-constrained. Using data from three U.S. GEOTRACES cruises including the Pacific, Atlantic, and Arctic Oceans, we examined the mercury partitioning coefficient, Kd, in the water column. The data suggest that the Kd varies...
Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low iron waters, such as in the southw...
Mercury (Hg) export from glacierized watersheds is poorly understood, with very few studies worldwide on Hg concentration and speciation in glacier snow, ice, and meltwater, and on Hg fluxes to downstream freshwater and coastal ecosystems. In addition to bedrock-derived geogenic Hg, glaciers may be releasing legacy accumulations of natural and anth...
Much of the surface water of the ocean is supersaturated in elemental mercury (Hg0) with respect to the atmosphere, leading to sea-to-air transfer or evasion. This flux is large, and nearly balances inputs from the atmosphere, rivers and hydrothermal vents. While the photochemical production of Hg0 from ionic and methylated mercury is reasonably we...
Marine microeukaryotes play a fundamental role in biogeochemical cycling through the transfer of energy to higher trophic levels and vertical carbon transport. Despite their global importance, microeukaryote physiology, nutrient metabolism and contributions to carbon cycling across offshore ecosystems are poorly characterized. Here, we observed the...
Microbes transform aqueous mercury (Hg) into methylmercury (MeHg), a potent neurotoxin that accumulates in terrestrial and marine food webs, with potential impacts on human health. This process requires the gene pair hgcAB , which encodes for proteins that actuate Hg methylation, and has been well described for anoxic environments. However, recent...
In the marine environment, the reactive oxygen species (ROS) superoxide is produced through a diverse array of light‐dependent and light‐independent reactions, the latter of which is thought to be primarily controlled by microorganisms. Marine superoxide production influences organic matter remineralization, metal redox cycling, and dissolved oxyge...
Microbes transform aqueous mercury (Hg) into methylmercury (MeHg), a potent neurotoxin in terrestrial and marine food webs. This process requires the gene pair hgcAB, which encodes for proteins that actuate Hg methylation, and has been well described for anoxic environments. However, recent studies report potential MeHg formation in suboxic seawate...
The focus of this paper is to briefly discuss the major advances in scientific thinking regarding: a) processes governing the fate and transport of mercury in the environment; b) advances in measurement methods; and c) how these advances in knowledge fit in within the context of the Minamata Convention on Mercury. Details regarding the information...
A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a sui...
Numerous biogeochemical reactions occur within the oceans’ major oxygen minimum zones, but less attention has been paid to the open ocean extremities of these zones. Here we report measurements on oxygen minimum zone waters from the Eastern to the Central Tropical North Pacific, which we analysed using metaproteomic techniques to discern the microb...
Manganese (Mn) is distributed widely throughout the global ocean, where it cycles between three oxidation states that each play important biogeochemical roles. The speciation of Mn in seawater was previously operationally defined on filtration, with soluble Mn presumed to be Mn(II) and solid‐phase Mn as Mn(III/IV) oxides. Recent findings of abundan...
Mercury (Hg) is a ubiquitous metal in the ocean that undergoes in situ chemical transformations in seawater and marine sediment. Most relevant to public health is the production of monomethyl-Hg, a neurotoxin to humans that accumulates in marine fish and mammals. Here we synthesize 30 years of Hg measurements in the ocean to discuss sources, sinks,...
Many aquatic organisms can thrive in polluted environments by having the genetic capability to withstand sub-optimal conditions. However, the contributions of microbiomes under these stressful environments are poorly understood. We investigated whether a mercury-tolerant microbiota can extend its phenotype to its host by ameliorating host survival...
Submarine canyons are important stocks of commercially important fisheries whose consumption is responsible for the main monomethymercury (MeHg) human exposure. Currently, biogeochemistry of mercury in those biologically productive systems is unknown. Here, inorganic mercury (Hg(II)) and organic mercury (MeHg) distributions as well as the Hg reacti...
Humans are exposed to potentially harmful amounts of the neurotoxin monomethylmercury (MMHg) through consumption of marine fish and mammals. However, the pathways of MMHg production and bioaccumulation in the ocean remain elusive. In anaerobic environments, inorganic mercury (Hg) can be methylated to MMHg through an enzymatic pathway involving the...
Mercury (Hg) in the Arctic Ocean is a concern due to unusually high concentrations of monomethylmercury (MMHg) in fish and marine animals. Increased human exposure from consumption of these animals is a significant health concern that is related to Hg contamination in nature. Most Arctic marine Hg research has investigated the amounts, distribution...
Contaminants in the marine environment are widespread, but ship-based sampling routines are much narrower. We evaluated the utility of seabirds, highly-mobile marine predators, as broad samplers of contaminants throughout three tropical ocean regions. Our aim was to fill a knowledge gap in the distributions of, and processes that contribute to, tro...
The oceans are an important global reservoir for mercury (Hg), and marine fish consumption is the dominant human exposure pathway for its toxic methylated form. A more thorough understanding of the global biogeochemical cycle of Hg requires additional information on the mechanisms that control Hg cycling in pelagic marine waters. In this study, Hg...
We examined the relationship between tuna consumption, hair mercury levels, and knowledge of mercury exposure risk from tuna consumption in university students that were offered tuna daily at university‐run dining halls. Hair total mercury levels in tuna consumers were higher than non‐tuna consumers (average = 0.466 µg/g ± 0.328 SD, n = 20 versus 0...
Marine predators are frequently exposed to contaminants through diet, and thus contaminants like mercury have the potential to be used as tracers of foraging ecology. Mercury’s neurotoxic and endocrine-disrupting effects can have far-ranging consequences for both individuals and populations, and thus mercury concentrations could also be indicative...
Experimental plots in Great Sippewissett Marsh (Falmouth, MA USA) have been undergoing long-term (>48 years) fertilization through the application of commercial sewage sludge-based fertilizer. The experimental treatment focuses on the effect of added nitrogen on the salt marsh plots, but also supplies mercury (Hg) and other metals. This experiment...
Anthropogenic activities have increased the fluxes of many trace metals into the oceans, changing their concentrations and distribution patterns. Despite their low dissolved concentrations, a number of these metals can still pose human and ecological risks. Some of these metals are well known (e.g. Pb, Hg), while others, such as the rare earth elem...
Mercury bioaccumulation in open-ocean food webs depends on the net rate of inorganic mercury conversion to monomethylmercury in the water column. We measured significant methylation rates across large gradients in oxygen utilization in the oligotrophic central Pacific Ocean. Overall, methylation rates over 24 h incubation periods were comparable to...
Historical reconstruction of mercury (Hg) accumulation in natural archives, especially lake sediments, has been essential to understanding human perturbation of the global Hg cycle. Here we present a high-resolution chronology of Hg accumulation between 1727 and 1996 in a varved sediment core from the Pettaquamscutt River Estuary (PRE), Rhode Islan...
The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the pre...
The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the pre...
Monomethylmercury bioaccumulation in open ocean food webs depends on the net rate of inorganic mercury conversion to monomethylmercury in the water column. We measured significant methylation rates across large gradients in oxygen utilization in the oligotrophic central Pacific Ocean. Overall, methylation rates over 24 hour incubation periods were...
Graphical abstract depicting sampling methods and major findings.
In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three...
Thaumarchaea are among the most abundant microbial groups in the ocean, but controls on their abundance and the distribution and metabolic potential of different subpopulations are poorly constrained. Here, two ecotypes of ammonia-oxidizing thaumarchaea were quantified using ammonia monooxygenase (amoA) genes across the equatorial Pacific Ocean. Th...
Air-sea exchange is an important component of the global mercury (Hg) cycle as it mediates the rate of increase in ocean Hg, and therefore the rate of change in levels of methylmercury (MeHg), the most toxic and bioaccumulative form of Hg in seafood and the driver of human health concerns. Gas evasion of elemental Hg (Hg°) from the ocean is an impo...
Recent models of global mercury (Hg) cycling have identified the downward flux of sinking particles in the ocean as a prominent Hg removal process from the ocean. At least one of these models estimates the amount of anthropogenic Hg in the ocean to be about 400 Mmol, with deep water formation and sinking fluxes representing the largest vectors by w...
Within natural waters, photo-dependent processes are generally considered the predominant source of reactive oxygen species (ROS), a suite of biogeochemically important molecules. However, recent discoveries of dark particle-associated ROS production in aquatic environments and extracellular ROS production by various microorganisms point to biologi...
Many predatory marine mammals and seabirds in the Arctic have mercury (Hg) concentrations high enough to cause adverse effects in wildlife; however, the distribution of Hg species in the Arctic Ocean is unknown and there is uncertainty regarding the sources of Hg to the ocean basin and its internal production of bioaccumulative monomethylmercury. W...
Rapid changes in the volume and sources of discharge during the spring
freshet lead to pronounced variations in biogeochemical properties in
snowmelt-dominated river basins. We used daily sampling during the onset of
the freshet in the Fraser River (southwestern Canada) in 2013 to identify
rapid changes in the flux and composition of dissolved mate...
Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus...
Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrati...
Rapid changes in the volume and sources of discharge during the spring freshet lead to pronounced variations in biogeochemical properties in snowmelt-dominated river basins. We used daily sampling during the onset of the freshet in the Fraser River (southwestern Canada) in 2013 to identify rapid changes in the flux and composition of dissolved mate...
The formation of the toxic and bioaccumulating monomethylmercury (MMHg) in marine systems is poorly understood, due in part to sparse data from many ocean regions. We present dissolved mercury (Hg) speciation data from 10 stations in the North and South Equatorial Pacific spanning large water mass differences and gradients in oxygen utilization. We...
Mercury is a toxic trace metal that can accumulate to levels that threaten human and environmental health. Models and empirical data suggest that humans are responsible for a great deal of the mercury actively cycling in the environment at present. Thus, one might predict that the concentration of mercury in fish should have increased dramatically...
Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient
limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We
developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotype...
Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such pred...
Human activities over the last several centuries have transferred vast quantities of mercury (Hg) from deep geologic stores to actively-cycling earth-surface reservoirs, increasing atmospheric Hg deposition worldwide. Understanding the magnitude and fate of these releases is critical to predicting how rates of atmospheric Hg deposition will respond...
This chapter discusses mercury cycling and contamination in the Alaskan arctic. It provides a framework for investigating the behavior and fate of many contaminants in polar regions. It looks into the role atmospheric circulation and chemistry in affecting the transport and deposition of both inorganic and organic substrates on local and global sca...
The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the global mercury cycle, resulting in loadings to the ocean that have increased by at least a factor of three from pre-anthropogen...
We have developed a technique to measure monomethylmercury (MMHg) concentrations from small volumes (180-mL) of seawater at low femtomolar concentrations using direct ethylation, decreasing the required volume by 90% from current methods while maintaining a 5 fM detection limit. In this method, addition of ascorbic acid before the derivitization of...
We measured the concentration and speciation of mercury (Hg) in groundwater down-gradient from the site of wastewater infiltration beds operated by the Massachusetts Military Reservation, western Cape Cod, Massachusetts. Total mercury concentrations in oxic, mildly acidic, uncontaminated groundwater are 0.5-1 pM, and aquifer sediments have 0.5-1 pp...
Low levels of the micronutrient iron limit primary production and
nitrogen fixation in large areas of the global ocean. The location and
magnitude of oceanic iron sources remain uncertain, however, owing to a
scarcity of data, particularly in the deep ocean. Although deep-sea
hydrothermal vents along fast-spreading ridges have been identified as
im...
Environmental contamination in Castle Harbour, Bermuda, has been linked to the dissolution and leaching of contaminants from the adjacent marine landfill. This study expands the evidence for environmental impact of leachate from the landfill by quantitatively demonstrating elevated metal uptake over the last 30 years in corals growing in Castle Har...
We have developed a technique that combines a high temperature quartz furnace with inductively coupled plasma-mass spectrometry for the determination of Hg stored in the annual CaCO3 bands found in coral skeletons. Substantial matrix effects, presumably due to the discontinuous introduction of CO2 to the gas stream, were corrected for by simultaneo...
A unique seasonal pattern in dissolved elemental mercury (DEM) was
observed in the tropical monsoon-dominated South China Sea (SCS). The
DEM concentration varied seasonally, with a high in summer of 160
± 40 fM (net evasion 580 ± 120 pmol m-2
d-1, n = 4) and a low in winter of 60 ± 30 fM (net
invasion -180 ± 110, n = 4) and showed a positive correl...
Our previous work has documented a correlation between Hg concentrations and (210)Pb activity measured in wet deposition that might be used to help apportion sources of Hg in precipitation. Here we present the results of a 27-month precipitation collection effort using co-located samplers for Hg and (210)Pb designed to assess this hypothesis. Study...
In this study we used lake sediments, which faithfully record Hg inputs, to derive estimates of net atmospheric Hg deposition to Svalbard, Norwegian Arctic. With the exception of one site affected by local pollution, the study lakes show twofold to fivefold increases in sedimentary Hg accumulation since 1850, likely due to long-range atmospheric tr...
The distribution of gaseous elemental mercury (GEM) was determined in the surface atmosphere of the northern South China Sea (SCS) during 12 SEATS cruises between May 2003 and December 2005. The sampling and analysis of GEM were performed on board ship by using an on-line mercury analyzer (GEMA). Distinct annual patterns were observed for the GEM w...
We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the su...
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrien...
Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorga...
The distribution of gaseous elemental mercury (GEM) was determined in the surface atmosphere of the Northern South China Sea (SCS) during 12 SEATS cruises between May 2003 and December 2005. The sampling and analysis of GEM were performed on board ship by using an on-line mercury analyzer (GEMA). Distinct annual patterns were observed for the GEM w...
We conducted a laboratory intercomparison of total mercury (Hg) determination in seawater collected during U.S. GEOTRACES Intercalibration cruises in 2008 and 2009 to the NW Atlantic and NE Pacific Oceans. Results indicated substantial disagreement between the participating laboratories, which appeared to be affected most strongly by bottle cleanli...
Glaciers and icefields along the Alaskan coast contribute nearly half of
the freshwater discharge to the Gulf of Alaska and can play an important
role in near-shore marine ecosystems. In southeastern Alaska, glaciers
are rapidly thinning and retreating and are being replaced by temperate
forests and wetlands. This ongoing landscape evolution is alt...
Accurate determinations of trace levels of mercury (Hg) in water require scrupulously clean sampling equipment
and storage bottles. To avoid Hg contamination during storage, it has been presumed that water samples
must be stored in either glass or Teflon bottles cleaned with a rigorous method, such as submersion in hot acid.
These cleaning procedur...
Photosynthesis by marine phytoplankton requires bioavailable forms of several trace elements that are found in extremely low concentrations in the open ocean. We have compared the concentration, lability and size distribution (< 1 nm and < 10 nm) of a suite of trace elements that are thought to be limiting to primary productivity as well as a toxic...
We report a synchronous increase in accumulation of reduced inorganic sulfur since c. 1980 in sediment cores from eight of nine lakes studied in the Canadian Arctic and Svalbard (Norway). Sediment incubations and detailed analyses of sediment profiles from two of the lakes indicate that increases in sulfur accumulation may be due ultimately to a ch...
We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 µg/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the valu...
A simple and reliable gaseous elemental mercury analyzer (GEMA) was developed to investigate atmospheric gaseous elemental Hg (GEM) over the northern South China Sea (SCS). This on-line flow injection system couples the main sampling and analytical steps from sample introduction, Au amalgamation/pre-concentration to final detection/data acquisition...
The main goal of VERTIGO is the investigation of the mechanisms that control the efficiency of particle transport through the mesopelagic portion of the water column. Question: What controls the efficiency of particle transport between the surface and deep ocean? More specifically, what is the fate of sinking particles leaving the upper ocean and w...
Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 56 (2009):1143-1167, doi:10.1016/j.dsr.2009.04.001. An extensive 234Th data set wa...
The spatial variation of MeHg production, bioaccumulation, and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels, such as fish that are ultimately vectors of human and wildlife exposure. This article discusses both large and local scale processes controllin...
Previous work in Waquoit Bay, Massachusetts (USA), has found high concentrations of dissolved mercury (Hg) in bay water and implicated groundwater as a potentially important source of this toxic metal to that coastal ecosystem (Bone et al., 2007). On-going research is testing this hypothesis by examining the spatial distribution and temporal variab...
The spatial variation of MeHg production, bioaccumulation, and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels, such as fish that are ultimately vectors of human and wildlife exposure. This article discusses both large and local scale processes controllin...
As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we collected and analyzed sinking particles using sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). In this paper, we present the results of minor...
Among the parameters affecting carbon transfer to the ocean interior, particle sinking rates vary three orders of magnitude and thus more than primary production, f-ratios, or particle carbon contents [e.g., Boyd, P.W., Trull, T.W., 2006. Understanding the export of marine biogenic particles: is there consensus? Progress in Oceanography 4, 276–312,...
As part of the VERTIGO program, we collected and analyzed sinking particles using tethered and neutrally buoyant sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). This effort represented the first large-scale use of neu...
Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1522-1539, doi:10.1016/j.dsr2.2008.04.024. The VERtical Transport In...
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particu...
This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22°45′N, 158°W; Hawaii; studied during June–July 2004) and the mesotrophic Subarctic Pacific K2 site (47°N, 161°W; studied during July–August 2005). Earlier work has shown that non-lithoge...