Finite Element Analysis of Wheel/Rail Squeal Noise

Dr. B. C. Goo

Korea Railroad Research Institute

Contents

- **1. Introduction**
- 2. Finite element modeling
- 3. Results and discussion
- 4. Conclusions

Introduction

- squeal noise is very uncomfortable : ~100 dB(A)
 develop analysis method for complex eigenvalues
- identification of parameters influencing on the squeal noise

Introduction

Models for squeal noise

Negative damping (Mills, 1938)

$$m\ddot{x} + (c - mg\mu_2)\dot{x} + kx = 0$$

 $\mu_k=\mu_k(v_s)=\mu_1-\mu_2v_s$

μ

Mode coupling (Hoffmann et al. 2006)

Finite element modeling

Models for squeal noise

Structure Friction $(\lambda^2[M] + \lambda[C] + [K - K_f]) \{y\} = \{0\} \quad [K - K_f] : \text{ asymmetric due to friction}$

Complex eigenvalue μ : $\lambda = \alpha \pm i\omega$ Effective damping : $-\alpha / |\pi\omega|$

The generalized displacement of the disc unit, y

$$y = \sum_{k=1}^{\infty} e^{\alpha_k t} (A \sin \omega_k t + B \cos \omega_k t)$$

When the real part of the eigenvalue is positive \longrightarrow The system may be unstable

Potential squeal noise

Finite element modeling

Analysis procedure by ABAQUS

Step 1: a vertical load was applied on the pad holders in a static analysis. Tangential friction was assumed to be zero.

Step 2: a slip condition with friction was imposed on the wheel as a predefined variable \rightarrow asymmetric [K] matrix

Step 3: the real eigenvalues and mode shapes of the model were extracted. The obtained set of eigenmodes provides the subspace for computing complex eigenvalues in the next step.

Step 4: the complex eigenvalues and mode shapes were obtained.

Finite element modeling

Boundary conditions

Wheel: 860mm, 1:40 slope

Rail : UIC60, 500 mm (between sleepers)

Contact analysis- lateral creepage

 $K_x = K_y = 1000$ N/mm, $K_z = 10000$ N/mm, $\mu = 0.35$.

Unstable modes

(a) 115.56 Hz

(b) 1279.0 Hz+

Figure 5: Flatter instability, $K_x = K_y = 1000 \text{ N/mm}$, $K_z = 10000 \text{ N/mm}$, $\mu = 0.35$.+

Figure 6: Flatter instability, $K_x = K_y = 1000 \text{ N/mm}$, $K_z = 10000 \text{ N/mm}$, $\mu = 0.43$.+

10/16

Unstable modes : parametric study

Rail supporting spring constant, K		Friction coefficient,	Axial load	
$K_x = K_y$ (N/mm)	K _z (N/mm)	μ	(Kg _f)	Instable modal frequency (Hz)
1000	10000	0.09	12000	None
1000	10000	0.10	12000	1280.2
1000	10000	0.20	12000	1277.5
1000	10000	0.31	12000	116.24, 1278.9
1000	10000	0.35	12000	115.56, 1279.0
1000	10000	0.37	12000	115.17, 1278.0
1000	10000	0.40	12000	114.78, 1278.8
1000	10000	0.43	12000	114.32, 1196.3, 1278.3
1000	10000	0.45	12000	114.15, 1197.1, 1279.9
1000	10000	0.47	12000	113.76, 1197.6, 1278.9, 5520.8(r)
1000	10000	0.35	10000	114.95, 1192.5, 1272.5, <mark>6423.1(r)</mark>
1000	10000	0.35	14000	116.09, 1284.1
10000	10 ⁸	0.35	12000	212.67, 2217.2(w,r), 10675(w,r)
50000	10 ⁸	0.35	12000	214.23
10 ⁵	107	0.35	12000	215.26, 9403.7(r)
10 ⁸	10 ⁸	0.35	12000	217.68, 6916.0(w,r), 9396.9(r)
10 ⁸	10 ⁸	0.12	12000	None

Friction coeff. $\mu < 0.1 \rightarrow$ no unstable mode.

Squeal noise measured in track

Longitudinal creepage

 $K_x = K_y = 1000$ N/mm, $K_z = 10000$ N/mm, $\mu = 0.35$.

(a) Vertical load

(b) Vertical load and longitudinal slip

kx=ky=10^5, kz=10^8

Unstable modes

μ =0.35, Kx=ky=1000, kz=10000,

3027.8 Hz

6431.2 Hz

 μ < 0.19 : no unstable mode

Conclusions

- the instable modes were dependent on the friction coefficient, vertical load and the boundary conditions applied to the rails.
- The numerical eigen frequencies are in a good agreement with the measured values.
- For lateral creepage, when μ <0.1, no squeal noise.
 wheel bending modes.
- For longitudinal creepage, when μ <0.2, no squeal noise.
 Wheel twisting modes, axle bending with multiple nodes.
- Track and Rail fastening type are also key parameters. In this study, they were considered as spring constants.

Thank you very much.