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Abstract

Purpose: Prostate cancer classification has significantly impact on the prognosis and treatment planning

of patients. Currently, the classifying is based on the Gleason score analysis of biopsied tissues, which is

neither accurate nor risk-free. This study aims to learn discriminative features for prostate images and assist

physicians to classify prostate cancer automatically.

Methods: We develop a novel multi-parametric magnetic resonance transfer learning (MPTL) method to

automatically stage prostate cancer. We first establish a deep convolutional neural network with three branch

architectures, which transfer pre-trained model to compute features from multi-parametric MRI images

(mp-MRI) : T2w transaxial, T2w sagittal and apparent diffusion coefficient (ADC). The learned features

are concatenated to represent information of mp-MRI sequences. A new image similarity constraint is then

proposed to enable the distribution of the features within the same category in a narrow angle region. With

the joint constraints of softmax loss and image similarity loss in the fine-tuning process, the MPTL can

provide descriptive features with intraclass compactness and interclass separability.

Results: Two cohorts: 132 cases from our institutional review board approved patient database and 112

cases from the PROSTATEx-2 Challenge are utilized to evaluate the robustness and effectiveness of the

proposed MPTL model. Our model achieved high accuracy of prostate cancer classification (accuracy of

86.92%). Moreover, the comparison results demonstrate that our method outperforms both hand-crafted

feature based methods and existing deep learning models in prostate cancer classification with higher accu-

racy.

Conclusion: The experiment results showed that the proposed method can learn discriminative features

for prostate images and classify the cancer accurately. Our MPTL model could be further applied in the

clinical practice to provide valuable information for cancer treatment and precision medicine.

Keywords: Multi-parametric magnetic resonance transfer learning (MPTL), prostate cancer classifi-

cation, image similarity constraint, Gleason score.
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I. INTRODUCTION

Prostate cancer is the second most common cancer in men worldwide. According to statistics of

American Cancer Society, 164,690 new cases of prostate cancer will be examined and 29,430 cases

of cancer death will occur in the United States in 2018 [1]. Accurate grading and classifying of

prostate cancer are critical for the selection of the most suitable treatment, and ultimately reducing

prostate cancer morbidity and mortality.

Standard technique for classifying of prostate cancer is based on the Gleason score, identified

by biopsy samples acquired under transrectal ultrasound guidance. However, the sensitivity of

the standard biopsy for detection of prostate cancer, has been reported to be as low as 40% [2].

Moreover, the Gleason classification system suffers from inter- and intra-observer variability due

to its heavy reliance on human interpretation. Recent advances in prostate multi-parametric mag-

netic resonance imaging (mp-MRI) have improved cancer grading and classifying [3]. Briefly,

high-grade prostate cancer tends to have denser glandular structures and a prominent desmoplastic

stromal reaction, which can be better detected by machine learning process for MRI images. This

work is aimed at designing an automated calculation method for prostate cancer classification,

which can be used as objective references to pathologists.

Many machine learning approaches [4–16] have been proposed for prostate cancer classifica-

tion with MRI images. Most of these methods used low-level radiomics features based on the

previous clinical experiences, which could not take full advantage of the complete information

included in MRI images [17]. Moreover, the features utilized in previous methods were often

calculated with unsupervised strategies, which may include useless and redundant information or

even ignore some important clues. Recently, deep learning methods attracted great attention and

achieved inspiring performance in recognition and classification tasks of both natural images [18],

and biomedical applications [19–21]. They can jointly learn features and train classifiers. Inspired

by the excellent performance and enormous potential of emerging deep learning techniques, here

we utilize the deep learning for classifying prostate cancer.

There are a few challenges to directly apply existing deep learning models from the domain

of natural color images to medical images. First, the number of collected prostate MRI images

is very limited due to the privacy issue. Additionally annotation must be performed by multiple

specialists to ensure its validity. The lack of data makes the training very difficult and may lead

to overfitting. In order to obtain a good performance with limited training samples, the transfer
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learning strategy [22, 23], which applying the well trained deep models from other image datasets,

should be utilized. Secondly, different MRI sequences reveal different aspects of prostate cancer,

and an effective way of integrating independent sets of information must be in place. For example,

the apparent diffusion coefficient (ADC) values have negative correlation with the Gleason score

of prostate carcinoma [4]. T2-weighted (T2w) sequence is optimal for depicting the zonal anatomy

of the prostate and can be used for detailed assessment of the prostatic fossa and seminal vesicles

[24]. A complete characterization of prostate cancers is only achievable by aggregating the infor-

mation extracted from mp-MRI images. Thirdly, the traditional transfer learning model considers

each image independently without including the intra-category correlation information. Thus, the

learned deep features do not realistically reflect the clinical decision-making process [25]. But in

the real case, images in the same category should possess close deep features. Incorporation of

image similarity constraint is highly desirable to learn discriminative deep features.

In this paper, we develop a novel multi-parametric magnetic resonance transfer learning

(MPTL) method to automatically stratify prostate cancer. The proposed model is composed

of three branches of transfer learning to extract features from mp-MRI sequences: T2w transaxial,

T2w sagittal and ADC. The learned features from these categories are aggregated in the model to

characterize the MRI images. In the final fine-tuning stage, we introduce a novel image similarity

loss function to enable the learned features within the same category to be close. With inclusion of

this constraint and softmax loss constraint, the learned joint-features preserve the discriminative

representation and enlarge the feature margin between categories. Therefore, the discriminative

ability of learned features is highly improved. Our main contributions are summarized as follows.

1. We propose a novel transfer learning method to exploit mp-MRI sequences to stratify

prostate cancer. Compared with radiomics features, the joint learned features are more

discriminative and improve the robustness of prostate cancer classification.

2. Instead of using a single MRI sequence to characterize prostate cancer region, the mp-MRI

sequences are jointly considered in our end-to-end MPTL model. Thus the proposed method

can encode richer image information and make decision synergistically by integrating all

available information.

3. We embed a novel image similarity constraint into the transfer learning model, which en-

ables small intra-variances among image features. Thus the extracted high-level features

This article is protected by copyright. All rights reserved. 
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preserve image category information, and enhance the performance of prostate cancer clas-

sification. To the best of our knowledge, this work represents the first attempt to introduce

image similarity information to deal with prostate cancer classification, which are crucial in

the practical clinical applications.

4. We have done extensive experiments on the prostate cancer datasets to show the success of

the proposed MPTL model. The role of each component in the model is examined carefully.

II. RELATED WORK

A. Existing Prostate Cancer Diagnosis Methods

Many methods have been proposed to classify prostate cancer. Most of them utilized con-

ventional machine-learning techniques, which typically extract low-level radiomics features to

characterize images and train a separate classifier [4–16]. Fehr et al. [8] utilized first-order (mean,

SD, skewness, and kurtosis) and second-order texture features (Haralick Features from gray level

co-occurrence matrix (GLCM)) to assess the Gleason scores. Vignati et al. [9] used the contrast

and homogeneity of GLCM texture features on T2w images and ADC maps to help differenti-

ating between patients with different Gleason scores. Sobecki et al. [11] applied the contrast,

homogeneity, energy, angular second moment and correlation features from GLCM to present fea-

tures of prostate cancers. Then a multi-layer feed-forward Artificial neural network (ANN) with

stochastic gradient decent was implemented to classify prostate lesions. The method [5] proposed

Probabilistic Support Vector Machine (SVM) model for prostate cancer diagnosis based on mp-

MRI images. This method evaluated the class labels through minimizing a hinge loss cost function

as well as insensitive cost function together with a minimum norm constraint. A thorough review

of radiomics features was recently performed [7].

Recently, deep learning achieved inspiring performance in image classification with discrimi-

native and representative features. While lots of works have been proposed to analyzing natural

images, only a handful of works deal with the problem of prostate cancer classification with deep

learning methods [26–31]. Reda et al. [26] trained a stacked auto-encoder network with non-

negativity constraint algorithm with a logistic regression classifier to distinguish the prostate tumor

as benign or malignant with ADC images. Kiraly et al. [28] proposed multi-channel image-to-

image convolutional encoder-decoders to localize lesions and then output different tumor classes.

This article is protected by copyright. All rights reserved. 
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Chen et al. [29] used transfer learning approach with ImageNet pre-trained inceptionV3 and Vgg-

16 model to classify prostate cancers from mpMRI scans. Le et al. [30] proposed a new similarity

loss function in the multimodal convolutional neural networks for prostate cancer diagnosis to

enforce the features extracted from ADC and T2W images consistent. However, these methods

[26–31] utilized existing deep learning models to conduct prostate cancer classification task. The

specific problems (such as limited data) associated with the medical images were tacitly ignored,

which may lead to failing or overfitting in the training procedure.

B. Transfer Learning

In medical imaging, the labeled datasets are small compared to natural image datasets, making

the direct training of a convolutional neural network difficult. The transfer learning [22, 23] is an

alternative way to deal with limited data. The knowledge gained from large datasets in natural im-

ages are transferred to solve the medical imaging problems. The transfer learning methodologies

can be classified into two distinctive subdivisions.

1) Feature extractor: This strategy utilizes a pretrained model as a feature extractor. It removes

the last full connected layer (classifier layer), and then treats the other layers as a fixed feature

extractor to adapt to a new task. This strategy only trains a new classifier instead of the whole

network, which significantly speeds up the training process. However, this strategy separates the

training process of the feature extraction and the classifier, which decreases the discriminative

performance of classification.

2) Fine-Tuning: The fine-tuning strategy not only replaces and retrains the classifier on the

new dataset, but also fine-tune the weights of the pretrained network by continuing the back-

propagation.

Transfer learning has been extensively studied over the past few years, especially in the field of

medical image analysis [32, 33]. However, research that incorporates transfer learning model to

deal with prostate cancer classification is sparse [29, 30]. Moreover, these methods treated each

prostate cancer image separately and ignored the image similarity information.

This article is protected by copyright. All rights reserved. 
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III. MULTI-PARAMETRIC TRANSFER LEARNING FOR PROSTATE CANCER

In this paper, we propose a novel multi-parametric magnetic resonance transfer learning

(MPTL) model for automated prostate cancer classifying. The workflow of the proposed model

is shown in Fig. 1. We first construct three streams of transfer learning model to learn features

from different mp-MRI sequences: T2w transaxial, T2w sagittal and ADC. Then these features

are concatenated together to obtain discriminative descriptor for prostate cancer regions. Final-

ly we introduce a novel joint loss function to fine-tune MPTL model, where the softmax loss

globally enables the features of different classes to stay separate, and the image similarity loss ef-

fectively compacts the learned deep features within the same category into a narrow angle region.

Hence, the discriminative ability of the learned features could be improved, further enhance the

performance of prostate cancer classifying.

A. Single Sequence Transfer Learning to Get Features

Due to the limitation of the size of prostate cancer data, we adopt transfer learning scheme in-

stead of training a whole deep learning neural network. There are many successful deep learning

architectures include AlexNet [34], GoogleNet [35], and VGGNet [36]. These models have al-

ready been trained on ImageNets, and can be downloaded as the pretained networks. In our paper,

AlexNet is chosen. AlexNet consists of five convolutional layers and three fully connected layers.

The max-pooling layers are followed with first, second, and fifth convolutional layers to reduce the

overfitting. A rectified linear unit nonlinearity is applied to each convolutional and fully connected

layer to enable faster training.

By applying the AlexNet on mp-MRI sequences, the features of T2w transaxial, T2w sagittal

and ADC images can be calculated as f l
T 2w t , f l

T 2w s, f l
ADC. In this way, we transfer the information

learned from ImageNet to characterize prostate cancer images.

B. Feature Fusion with Multi-Sequence MRI

Different MRI sequences reveals different aspects of prostate cancer. It is reported that T2w and

ADC provide different and complementary information, and their fusion can effectively improve

accuracy of prostate cancer diagnosis [37]. In order to exploit the correlation among different MRI

sequences, it is better to learn the MRI information jointly in an end-to-end framework.

This article is protected by copyright. All rights reserved. 
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In our paper, we feed simultaneously f l

ADC(sn), f l
T 2(sn), f l

T 1(sn) to the fully connected layers.

The output of (l +1)th layer is

f l+1 = g{W l+1.[ f l
T 2w t⊕ f l

T 2w s⊕ f l
ADC]+bl+1} (1)

where W l+1 and bl+1 are the weight matrix and bias of the fully connected layer, respectively. ⊕

means concatenating the features from different sequences. f l+1 represents the feature output after

five convolutional layers and conveys both T2w and ADC information. Such fusion strategy en-

ables the feature learning process of different modalities mutually affected by each other, yielding

consistent and discriminant features related to prostate cancers. After two fully connected layers,

the output is regarded as the final joint features.

C. Fine-tuning Training Strategy with Category Similarity Loss Function

After obtaining the joint features from mp-MRI sequences, an additional fine-tuning strategy

is used to improve the performance of prostate cancer classifying. It uses the parameters learned

from a previously trained network on a specific data set and then adjusts the parameters for our

prostate cancer data.

To fine-tune the model, we keep the structure of pretrained model unchanged and remove only

the last classifier layer. In the original AlexNet, the last layer computes the probability of 1000

classes of the ImageNet data set. In this paper, we classify the prostate cancer into high grade

and low grade cancer. Thus the number of nodes in the last layer of our method is 2. With minor

modification of the number of output layers, the strategy can be extended to multiple levels of

classification in the future.

Given a training set T = {T1,T2, ...,TM}, where Tm represents training samples belonging to the

mth category. For a training sample xi belong to category m, we define its corresponding label as

li with only one element being 1 at the mth position. The traditional classification layer uses the

soft-max function as follows to calculate the loss values,

L =
1
N ∑

xi∈T
li log(l̂i), (2)

where l̂i represents the probability of image xi being correctly classified as category li. N defines

the number of training samples. This loss function calculates the differences of the predicted

output labels from the true ones.

This article is protected by copyright. All rights reserved. 
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However, this loss function treats each image equally. In the prostate cancer classification

problem, the images from the same category should preserve similar features. Therefore, we define

an image similarity constraint and add it to the loss function to describe the feature relationships

among categories. The new loss function can be represented as

L =
1
N

N

∑
i=1

li log(l̂i)+
1
N

N

∑
i=1

(1− f T
i cm

‖ fi‖‖cm‖
), (3)

where the first item is the traditional soft-max loss function. The second item represents the image

similarity item. fi is the final feature of image xi and cm = 1
Nxi∈Tm

∑xi∈Tm fi calculates the mean

features for the mth category. This loss function minimizes the angle of the feature and its intra-

class center and enables the features with the same category close to each other. The joint training

of the softmax loss and the image similarity loss reduces the feature variances among same classes

effectively, and thus enhances the discriminative performance of the deeply learned features.

During the training process, the stochastic gradient descent (SGD) [38] is used to address the

optimization problem of the loss minimization. After fine-tuning the MPTL model, we can con-

duct the prostate cancer classifying task. Since the feature descriptor and the soft-max classifier

with image category information are trained together, the MPTL model could characterize images

well and further improve the classification results.

D. Evaluation Criteria

The criteria for the prostate cancer classification is accuracy (ACC), recall (Rec), precision

(Pre) and F1-score (F1). They are calculated by:

Acc =
NT P +NT N

NT P +NT N +NFP +NFN
, (4)

Rec =
NT P

NT P +NFN
, (5)

Pre =
NT P

NT P +NFP
, (6)

F1 =
2×Rec×Pre

Rec+Pre
, (7)

where NT P,NT N ,NFP,NFN denote the number of true positives, true negatives, false positives, and

false negatives. For prostate cancer classification, images with high grade cancer are defined as

positives while the ones with low grade cancer are recognized as negatives. Moreover, the receiver
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operating characteristic (ROC) curve is plotted for evaluation. The areas under ROC curve (AUC)

is also utilized to evaluate the classification performance of prostate cancer.

IV. RESULTS

A. Datasets and Experiment Setup

We applied two cohorts to evaluate the proposed MPTL model. The first one came from

PROSTATEx-2 Challenge. 112 Gleason score findings with T2-weighted images (transaxial and

sagittal), Ktrans images (computed from dynamic contrast-enhanced images), and ADC images

(computed from diffusion-weighted imaging) are collected. The prostate MR scans were acquired

in the Prostate MR Reference Center, Radboud University Medical Centre and the detailed data set

was previously documented in [6]. The second dataset is collected from Stanford University Med-

ical Center. This dataset consists of 132 prostate cancer cases, obtained under ethical Institutional

Review Board (IRB) approval. All patients had a suspicious screening result and a core biopsy

yielding Gleason Score (GS). The prostate cancer regions were segmented independently on both

the T2w and the ADC-map by experienced radiologists. The ground truth of the Gleason score was

confirmed by pathology. We combined these two data sets to conduct experiments. After minor

data cleaning, we selected 221 prostate cancer cases. Each case includes a T2w transaxial image,

a T2w sagittal image and an ADC map. The annotations include two-class labels: clinically high

grade cancer (Gleason score=4+3, 4+4, 3+5, 5+3) and low grade cancer (Gleason score=3+3,

3+4) [4]. To be specific, our dataset consists of 123 cases with high grade cancer and 98 cases

with low grade cancer. Fig. 2 shows the example images of prostate cancers. For each prostate

cancer, we cropped a square box with a patch size P×P to represent corresponding information,

which was then upsampled and saved in a 224×224 resolution in 24-bit RGB JPEG format to fit

the size of the 3-channel input layers of the AlexNet.

The proposed MPTL model was conducted on a desktop using a Linux OS with CPU Intel

Core i7-7700@3.6 GHz, GPU NVIDIA GeForce Titan X, and 64 GB of RAM. During the s-

tandard back-propagation procedure, the momentum was set as 0.9 and weight decay was 0.005.

The learning rate was set to 0.005. The weight are updated within mini-batches, and each batch

includes 25 images. The training ends when the performance of the network does not improve

significantly with increase of iterations. We randomly chose 80% of the dataset as the training

This article is protected by copyright. All rights reserved. 
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(50%) and validation (30%) set for transfer learning and used the remaining 20% of the images as

the test set. We repeated the experiments 100 times to try different combinations of learning and

test data to get the generalized results.

To enhance the robustness of the proposed MPTL model and eliminate the possibility of over-

fitting, we utilized the strategy of data augmentation to increase the size of training set with various

image transformations. For each prostate cancer case, we cropped every cancer region from four

directions (top, bottom, left and right) in steps of 2 pixels with zero padding, and we flipped every

region of interest (ROI) patch horizontally and vertically. We also considered the neighbor 2 slices

of the cancer frames since cancers usually exist more than one slice. Therefore, for each patient,

we cropped 21 patches to do the experiments. Fig. 3 shows the corresponding patches for a given

T2w transaxial slice. Normalization was implemented to each image modality separately of each

patient as in reference [31] to reduce variations among different images.

B. Performance of MPTL Model

In our model, we cropped a given size of patch around the cancer to represent the corresponding

information. We evaluated recognition performance with different patch sizes, including 16×16,

24× 24, 28× 28 and 32× 32, and recorded corresponding average and standard deviation of

accuracy, recall and precision in Fig. 4. The proposed method could classify prostate cancers with

relatively high accuracy (range of [0.79-0.86]) throughout the changes in patch size. In general, the

best performance was obtained using a patch size of 28×28 pixels, The corresponding accuracy is

86.67%, showing the effectiveness of the proposed method for prostate cancer classification with

mp-MRI images. The relative lower standard deviation shows the robustness of our method. If the

patch is too small, it is difficult to describe the complete information about the prostate cancer. On

the other hand, large patch size involves redundant information in the training set, which would not

only degrade transfer learning performance, but also increase the calculation burdens. We fixed

patch size as 28×28 in the following experiments.

We then analyzed the deep features generated from the fine-tuned MPTL model. We extracted

features learned in each layer and applied the proposed image similarity loss constraint to conduct

the experiments. The corresponding classification performance is shown in Fig. 5. It can be found

that the accuracy increased in the first five convolutional layers. This result demonstrates the

learned features represent the information of prostate cancer, therefore, may always be beneficial

This article is protected by copyright. All rights reserved. 
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to the classification. Moreover, the features calculated by the last layer are more discriminative

than the features obtained from the fc6 and fc7 layer, since features that are closer to the final

output layer have a higher capability of abstraction.

C. Component Analysis for MPTL Model

We compared our proposed model with eight baseline methods. The first baseline experiment

is the transfer learning model without fine-tuning, which directly utilized image features learned

from ImageNet to conduct experiments. The next three baseline experiments only used single MRI

sequence with fine-tuning, such as T2w transaxial images, T2w sagittal images and ADC images,

to carry out the prostate cancer classification. The baseline experiments 5, 6, 7 utilized two MRI

parameters as input (T2w Transaxial + T2w Sagittal, T2w Transaxial + ADC and T2w Sagittal +

ADC). The baseline method 8 is MPTL model with traditional softmax loss function.

Table I records the classification results of our method and eight baseline methods. Statistical

significance tests are presented in Table II to allow evaluation of the comparisons of different

methods. It is obvious that our MPTL model presents significantly better performance compared

with these baseline experiments (P < 0.01). Our method achieves 4.97% higher accuracy when

compared with the first baseline method. This result verified the effectiveness of fine-tuning.

Actually, the fine-tuning utilizes the parameters learned from a pretrained network on a specific

data set and then adjusts the parameters for the prostate cancer classification task. Therefore, this

strategy can improve the accuracy significantly.

The proposed MPTL model shows better performance compared with the baseline methods 2,

3 and 4 with an improvement of 13.13%, 15.50% and 12.21% in accuracy with respect to discrim-

ination accuracy (P < 0.001). One possible reason is that these baseline methods only applied a

single type of MRI sequence to learn the deep features, which could not characterize the prostate

cancer region well. On the contrary, our proposed method fused different MRI sequences to learn

discriminative features considering that different MRI sequences represent various information of

prostate cancer regions. We can see that the performance of ours was better than these of only two

MRI parameters (the baseline methods 5, 6 and 7), demonstrating the necessity to use these three

MRI parameters in our experiment. This result verified that different MRI sequences complement

with each other to provide a good characterization of prostate cancers. Moreover, compared with

the baseline 8, our method also showed higher performance. This result validates the category

This article is protected by copyright. All rights reserved. 
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similarity loss has an important role to learn discriminative features.

For more quantitative comparison, the ROC curves of eight baseline methods and ours on

prostate cancer classification are shown in Fig. 6. We also conducted the DeLong test [39, 40]

to compare the differences between different AUCs, which provides a confidence interval and s-

tandard error of the difference between AUCs. Our method achieves highest AUC of 0.896 as

compared with these baseline methods (P < 0.05, Delong’s test), demonstrating the statistical sig-

nificance of the proposed MPTL model. We further evaluated the classification performance of

two modalities in comparison with the corresponding single modality. Specifically, we conducted

Delong’s test for the baseline 5 (T2W Transaxial and Sagittal) vs baseline 2 (T2W Transaxial),

baseline 3 (T2w Sagittal). The corresponding P value is less than 0.05, demonstrating the integra-

tion of these two MRI sequences are statistically significantly better compared than that obtained

using single modality. More experiments are conducted to evaluate the baseline 6 vs Baseline

2, 4 (P < 2.2× 10−5, Delong’s test) and the baseline 7 vs Baseline 3, 4 (P < 0.001, Delong’s

test). These experimental results validated the effectiveness of the contributing components in our

MPTL model: fine tuning procedure, integration of multiple MRI sequences and introduced image

similarity constraint.

D. Comparison with Existing Methods

We evaluated the classification performance of the proposed MPTL model by comparing with

the state-of-the-art prostate cancer classification methods: the radiomics based methods [8, 9,

11] and deep learning based methods [28–30]. These comparison methods have already been

introduced in Section II(B).

We conducted comparison methods on our prostate cancer datasets and followed the experiment

setting as in these papers to provide fair comparison. The average accuracy, recall and precision

achieved by these methods and ours are shown in Table III, respectively. The deep learning based

methods possess superior classification performance than the methods with radiomics features,

suggesting that the deep learning based methods can learn more discriminative high-level features

compared with the radiomics features. The proposed MPTL model shows better performance

with an improvement of 11.05%, 11.97 and 14.97% in accuracy, 12.00%, 13.29% and 16.29% in

precision, 8.60%, 9.44% and 11.25% in recall compared with methods [8, 9, 11] with significantly

higher discrimination accuracy (P < 0.005).
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Compared with the method [28], our method also shows higher recognition performance. This

is because training a deep network is often complicated by convergence and overfitting issues

with limited prostate cancer data. Although the methods [29, 30] tried the transfer learning to

deal with the problem of prostate cancer classification, they utilized the traditional softmax loss

function and treated each training image individually. In contrast, our MPTL model considered

image category information in the transfer learning model. Therefore, our method calculates more

accurate features for prostate cancer regions and achieves better performance in comparison with

state-of-the-art prostate cancer classification methods.

V. DISCUSSION

Although our proposed MPTL model demonstrates good performance in the classification of

prostate cancers, it is far from perfect. This research work focused on prostate cancer classifica-

tion. Since the prediction of disease-free survival [41–44] is the ultima goal in clinical trial, we

will further collect data and develop suitable models for survival prediction to promote the deep

learning based radiomics. Moreover, in our proposed MPTL model, we utilized the cropped patch-

es to represent the information of prostate cancer. To further promote our performance of prostate

cancer classification, we tend to propose automatic segmentation methods to obtain the accurate

prostate cancer region and then utilize these information to characterize the prostate cancer.

VI. CONCLUSION

This paper proposed a novel MPTL model to automatically classify prostate cancer. Our model

transfers the knowledge of ImageNet to facilitate the learning of features of mp-MRI sequences.

These transferred features are combined together to present the prostate cancer region and a fine-

tuned strategy with the image category loss constraint is further introduced to enhance prostate

cancer classification. This constraint enables the learned features within the same category to

be close in the feature learning procedure. Therefore, the discriminative ability of the learned

features is greatly improved. The superior performance of our model over the state-of-the-arts

is demonstrated by a series of comparative studies. Our experimental results have shown that

the proposed method is capable of classifying the stages of prostate cancer with high accuracy.

Furthermore, our results have demonstrated the potential benefits of transfer learning from natural
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images to medical field and may find widespread applications in cases in which annotated training

datasets are limited for various practical reasons.
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FIG. 1. Workflow of our proposed MPTL model for diagnosis of prostate cancer. C represents convolutional

layer while FC represents the fully connected layer.

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
(a)

(b)

FIG. 2. Illustrations of images with prostate cancers and the corresponding cropped 28× 28 patches. (a)

Prostate cancer with low grade, (b) Prostate cancer with high grade. The different columns represent the

T2w transaxial image, T2w sagittal image and ADC map, respectively. The red squares with a size of

28× 28 represent cancer region while the red points in the patch center represent the annotated cancer

region.

(a)                                    (b)                                    (c)                                    (d)

(e)                                    (f)                                    (g)                                    (h)

FIG. 3. Illustrations of cropped patches with prostate cancers. (a-d) The red square represents the cropped

28×28 patch while the green squares show the cropped cancer region from four directions (top, bottom, left

and right) in steps of 2 pixels with zero padding. (e-f) show the cropped cancer patch and (g-h) show the

horizontal and vertical flipped cancer patches.
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FIG. 4. Diagnosis performance with different patch sizes. X-axis represents different patch sizes while

Y-axis shows the corresponding classification performance.

FIG. 5. Diagnosis performance with features from different layers. X-axis represents different layers in the

proposed MPTL model while Y-axis shows the corresponding classification performance.
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FIG. 6. ROC curves for different baseline methods.
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TABLE I. Comparison results of baseline methods.

Acc Pre Rec F1

(%) (%) (%) (%)

Baseline 1 (without fune-tuning) 81.95 ± 1.83 81.85 ± 1.71 82.57 ± 1.62 82.26 ± 1.84

Baseline 2 (T2W Transaxial) 73.79 ± 1.36 71.42 ± 1.42 79.39 ± 1.24 75.44 ± 1.79

Baseline 3 (T2w Sagittal) 71.42 ± 1.14 72.14 ± 1.24 73.79 ± 1.47 72.67 ± 1.48

Baseline 4 (ADC) 74.71 ± 1.28 73.85 ± 1.71 78.31 ± 1.13 76.06 ± 1.35

Baseline 5 (T2W Transaxial and Sagittal) 74.95 ± 1.06 74.14 ± 1.28 78.56 ± 1.26 75.86 ± 1.12

Baseline 6 (T2W Transaxial and ADC) 77.78 ± 0.93 76.18 ± 1.14 80.97 ± 1.12 78.19 ± 1.06

Baseline 7 (T2W Sagittal and ADC) 75.59 ± 1.31 75.52 ± 1.27 77.85 ± 1.39 76.15 ± 1.29

Baseline 8 (MPTL with softmax) 84.57 ± 1.07 84.12 ± 1.48 85.98 ± 1.22 85.09 ± 1.13

Ours 86.92 ± 1.09 86.57 ± 0.85 88.09 ± 1.18 87.86 ± 1.23

TABLE II. Statistical significant (p-values) of accuracy for comparing baseline methods and our method.

Baseline 1 vs Ours Baseline 2 vs Ours Baseline 3 vs Ours Baseline 4 vs Ours

p-values 0.003 <0.001 <0.001 <0.001

Baseline 5 vs Ours Baseline 6 vs Ours Baseline 7 vs Ours Baseline 8 vs Ours

p-values <0.001 <0.001 <0.001 0.005

TABLE III. Comparison results of existing methods for prostate cancer classification.

Acc Pre Rec F1

(%) (%) (%) (%)

Fehr et al. [8] 75.87 ± 1.58 74.57 ± 0.79 79.49 ± 1.49 76.14 ± 0.95

Vignati et al. [9] 74.95 ± 1.17 73.28 ± 1.24 78.65 ± 1.31 75.48 ± 0.71

Sobecki et al. [11] 71.95 ± 1.63 70.28 ± 1.14 76.84 ± 1.56 73.66 ± 1.13

Kiraly et al. [28] 77.78 ± 1.26 76.58 ± 0.85 82.19 ± 1.57 79.88 ± 1.28

Chen et al. [29] 80.09 ± 1.58 78.95 ± 1.57 83.96 ± 1.34 81.61 ± 1.63

Le et al. [30] 82.09 ± 1.76 82.27 ± 1.14 82.88 ± 1.52 82.34 ± 1.38

Ours 86.92 ± 1.09 86.57 ± 0.85 88.09 ± 1.18 87.86 ± 1.23

This article is protected by copyright. All rights reserved. 


