World Applied Sciences Journal 4 (5): 741-747, 2008 ISSN 1818-4952 © IDOSI Publications, 2008

Screening of Lactic Acid Bacteria Strains Isolated from Some Nigerian Fermented Foods for EPS Production

¹Bukola C. Adebayo-tayo and ²Abiodun A. Onilude

¹Department of Microbiology, University of Uyo, Uyo Akwa Ibom State, Nigeria ²Department of Botany and Microbiology, University of Ibadan, Ibadan, Oyo State Nigeria

Abstract: This study was embarked upon to obtain laboratory strains of lactic acid bacteria from some traditional fermented foods, with potential for the production of exopolysaccharides (EPSs), which is an important factor in assuring the proper consistency and texture of fermented food. One hundred and fifteen strains of Lactic Acid Bacteria (LAB) were isolated and characterized from some fermented dairy ("Nono", "Fura", Yogurt, "Wara") and non-dairy foods ("Ogi" and "Fufu"). Lactic acid bacteria species identified were L. fermentum, L.casei, L.plantarum, L. brevis, L.cellobiosus, L. delbrueckii, L..corvniformis, L. coprophilus, L.gensenii, L. lechmanii and Leu paramesenteroides. 103 LAB isolates were screened for their EPS producing activity. The investigation in the screening for EPS synthesis by LAB isolated from dairy and non dairy product showed that more than 50% of the studied *L.plantarum* strains are active producers of Exopolysaccharide while 40% of the studied L.fermentum, 50% of L.delbrueckii, Leu. mesenteroides ssp dextranicum, 20% of Leu.mesenteroides ssp mesenteroides, Leu. gelidium, 10% of L.casei, L. cellobiosus, Leu. amelbiosum, Lact. plantarum, Lact. piscium respectively are active producer of exopolysaccharides. The L casei ssp pseudoplantarum, L.casei ssp tolerans, Leu. mesenteroides ssp hordinae, Leu. pseudoplantarum Lact. raffinolactis, Lact. lactis ssp cremoris manifest poor production activity while Lact. raftinolactis and Lact.gravieae did not reveal any exopolysaccharides activity. Their EPS ranged between 01.00-196.0 mg l^{-1} respectively.

Key words: Lactic acid bacteria · EPS · Identification · species · fermented foods

INTRODUCTION

A variety of polysaccharides produced by plants (cellulose, pectin and starch), algae (agar, alginates and carrageen an) and bacteria (alginate, dextran, gellan, pullulan and xanthan gum) are commonly used as food additives for their gelling, stabilizing or thickening properties [1]. However, the use of polysaccharides excreted during the manufacture of food, such as yoghurt, might be attractive for the food industry and should constitute a new generation of food thickeners. To date, exopolysaccharides (EPSs) produced by Lactic Acid Bacteria (LAB) have received increasing interest mainly because of their GRAS (generally regarded as safe) status [1] and their rheological (LAB) properties in food to improve the texture of fermented products [2]. Some EPSs produced by LAB present potential health-beneficial properties, such as immune stimulation [3], anti-ulcer and

cholesterol-lowering activities [4]. Lactic acid bacteria are found in the range of fermented foods, therefore much interest has been shown in their use since they could be considering "natural" products. Some LAB is capable of producing a range of EPS. Of those, which have been investigated for EPS production, the majority has been isolated from dairy products [5-11]. A lot of Lactic Acid Bacteria (LAB) that produce exopolysaccharide (EPS) are available from indigenously fermented foods but lack of a local central culture collection center could not bring out the quality, quantity and physiological characteristics of such organisms or their EPS. However, information on their biosynthesis and molecular organization and fermentation strategy is rather scarce and the kinetics of EPS formation is poorly described. Moreover, the production of EPS is low and often unstable and their downstream processing is difficult. This study was therefore, aimed at isolation and identification of LAB

Corresponding Author: Dr. Bukola C. Adebayo-tayo, Department of Microbiology, University of Uyo. Uyo Akwa Ibom State, Nigeria

from some Nigeria fermented foods and to screen the isolate for their potential for EPS production.

MATERIALS AND METHODS

Collection of samples: The lactic acid bacteria isolates were obtained from fermented dairy products (Yoghurt, "Nunu", "Fura" "Fura da nono" and "wara") and non dairy traditionally prepared "fufu" from cassava and "ogi" made from white and yellow maize (*Zea mays*) and red guinea corn (*Sorghum bicolor*) collected from various locations in Nigeria. (Bodija market and Sabo in Ibadan, Oyo State, Oja Oba and Oke Ope market in Ilorin, Kwara State, Usmadan Fodio University, Sokoto, Sokoto State, Ariaria main market and new market in Aba, Abia State and Uyo main market in Uyo, Akwa Ibom State respectively). Samples were taken to the laboratory for microbiological analysis.

Isolation of lactic acid bacteria: Serial dilutions of homogenized "fufu" and "ogi", "Fura", "Nunu", "Fura da nunu", "Wara" and yoghurt samples in 0.1% peptone saline were used for microbial isolation on MRS agar [13] respectively. Plates were incubated at 24 h at 35°C for isolation of mesophilic LAB. Isolation methods were similar to those recommended by Van den Berg *et al.* [9]. The isolates were maintained on MRS agar plates (Oxoid No. CM361) containing 50 mg 1^{-1} of nystatin (Sigma, Australia) kept at 4°C under anaerobic conditions.

Culture identification: Gram staining, catalase activity, gas production from glucose, growth in NaCl 6.5% was determined according to methods for lactic acid bacteria [13].

The identification work was done according to the methods described in Bergey's Manual [15] and the Prokaryotes [16]. All the strains were maintained by weekly sub culturing from 48hrs MRS agar cultures. The cultures were examined microscopically by staining and morphological characteristics noted. Gram staining, catalase activity, oxidase test Gelatin hydrolysis were done using the method of Harigon and McCance [16]. Growth characteristics were monitored daily at 15°C, 30 and 45°C in tubes of MRS broth over 7days period. Salt tolerance was assessed after 3days of incubation at concentration of 40 and 65 g l^{-1} NaCl in MRS broth. Production of ammonia from arginine was done according to the method described by AbdEL-Malek and Gibson [17], Nitrate reduction was done as described by Gerhardt et al. [18].

Isolates were identified (genus and species) using the API 50 CH system (Bio-merieux, France). This identity kit works on the principle that each of the different types of carbohydrate fermentation patterns is unique to each bacterium and thus differentiates between them.

Screening of the isolates for EPS production: The identified isolates were screened for EPS producing activity by propagating them in ESM (Exopolysaccharides selection medium) used by van den Berg *et al.* [9] and labeled mESM. This medium contained 5% skim milk, 0.35% ^w/v yeast extract, 0.35% ^w/v peptone and 5% ^w/v glucose.

The isolates were transferred in MRS agar slants into 10 ml MRS broths and incubated for 24h at 30°C. A loopful of each of these cultures was transferred into 100 ml conical flasks containing 10ml of mESM broth and the broths were incubated anaerobically for 24h at 30°C. The 10 ml inocula were transferred into 200 ml conical flasks containing 90 ml of mESM broth and incubated at 30°C for 30h.

Samples were taken for analysis at the end of the fermentation period.

Measurement of growth: The optical density at 620 mm was used to monitor cell growth after appropriate dilution of samples.

Isolation, purification and quantification: The exopolysaccharides were isolated according to the method of Garcia-Garibay and Marshall [19]. The lactic acid culture was treated with 17% (w/v) of 80% trichloroacetic acid solution and centrifuged at 16,000-x g at 4°Cfor 30min. The clarified supernatant was concentrated 5 times by evaporation using a rotavap evaporator. The exopolysaccharides were precipitated by adding 3 volumes of cold absolute ethanol and stored overnight at 4°C. Finally, the recovered precipitates were redissolved with distilled water and dialyzed against the same solution for 24h at 4°C. To remove residual lactose from the medium. The polysaccharides were freeze-dried and stored at 4°C. The total amount of carbohydrates in the polysaccharides was determined by the phenolsulfuric acid method described by Dubois et al. [20]. The exopolysaccharides production was expressed as mg 1^{-1} .

RESULT AND DISCUSSION

A total of One hundred and thirteen lactic acid bacteria isolates were obtained from seven fermented

foods (Wara'', "nono", "fura", "fura da nono", yoghurt, "fufu" and "ogi") in Nigeria. The isolates were initially differentiated on the basis of their cultural and cellular morphological studies after which they were subjected to various physiological and biochemical tests.

The isolates were Gram positive, rods, cocci, ovoid and produce no endospore. They showed moderate or scanty growth on MRS agar. The isolates were oxidase, catalase, gelatin, casein hydrolysis, Nitrate reduction, hydrogen sulphide and Voges Proskauer negative. Some strains hydrolysed starch and they were facultative anaerobes and were fermentative rather than being oxidative in nature. These were *L. fermentum, L.casei, L.plantarum, L.brevis, L.cellobiosus, L.delbrueckii, L.coryniformis, L.coprophilus, L.jensenii, L.leichmanii* and Leu. pseudoplantarum, Lact. plantarum, Lacto. *Raffinolactis and Lact.piscium.*

After the preliminary characterization test, 57 of them were found to belong to genus Lactococcus, 28 strains were determined to subspecies level and were identified as *L.casei ssp pseudoplantarum LCN4 and LCN5*, *L.casei ssp tolerant, L.coryniformis ssp coryniformis, L.coryniformis ssp tonquence, Leu. mesenteroides ssp mesenteroides, Leu. mesenteroides ssp cremoris, Leu. mesenteroides ssp dextranicum, Lact. lactis ssp cremoris, Lact. Hordinae and Lact.lactis ssp plantarum.* All the bacteria isolated from the fermented foods fit the classification of LAB as Gram-positive, catalase negative and oxidase negative [21]. Classification of the isolates led to identification of species.

The frequency of occurrence of lactic acid bacteria in the categorized fermented dairy and non-dairy food are shown in Table 1. The most predominant LAB species isolated was *Lactobacillus plantarum* followed by *Leu. mesenteroides ssp mesenteroides*. As in the earlier reports [22] on the occurrence of lactic acid bacteria spectrum, *L. plantarum* constituted the highest number of LAB isolated from fermented plant materials. The involvement of various types of LAB in fermented vegetables and plant materials had earlier been reported [23-25].

Thus LAB were present in fermenting foods, because of their ability to produce high levels of lactic acid as well as being able to survive under high acidic conditions. High percentage of *L.plantarum* recorded in this present study could be due to the fact that majority of the substrate used in the preparation of the fermented foods are of plant origin.

The identification of different types of LAB species in the present study could be due to the fact that majority of the substrate used in the preparation of the fermented Table 1: Species and frequency of occurrence of lactic acid bacteria isolated from fermenteddairy and non-dairy food

		Freqency of	
Source	Lab strains	occurrence (%	
White "Ogi"	Lactobacillus plantarum	30.8	
	Leuconostoc mesenteroides		
	subsp hordinae	8.0	
	Leuconostoc gelidium	8.0	
	Leuconostoc amellbiosum	8.0	
	Lactobacillus delbrueckii	15.4	
	Leuconostoc pseudomesenteroides	8.0	
	Lactobacillus raffinolactis	8.0	
	Lactobacillus helveticus	8.0	
	Lactobacillus cellobiosus	8.0	
Yellow "Ogi"	Leuconostoc pseudomesenteroides	20.0	
	Lactobacillus plantarum	20.0	
	Leuconostoc amellbiosum	20.0	
	Lactobacillus sp	20.0	
	Lactobacillus cellobiosus	20.0	
Brow "Ogi"	Lactobacillus lactis spp cremoris	33.3	
	Lactobacillus fermentum	33.3	
	Lactobacillus plantarum	33.3	
"Nono"	Lactobacillus brevis	5.3	
	Lactobacillus plantarum	15.8	
	Lactobacillus fermentum	5.3	
	Lactobacillus casei	5.3	
	Leuconostoc lactis	10.5	
	Lactobacillus curvatus	5.3	
	Lactobacillus piscium	15.8	
	Leuconostoc mesenteriodes		
	subsp mesenteroides	5.3	
	Lactobacillus casei		
	subsp pseudoplantarum	10.5	
	Lactobacillus casei subsp tolerans	5.3	
	Leuconostoc gelidium	10.5	
	Lactobacillius fructovoran	5.3	
Fura	Lactobacillius coprophilus	14.3	
	Leuconostoc amellbiosum	28.5	
	Lactococcus hordniae	14.3	
	Lactobacillius helveticus	14.3	
	Lactobacillius plantarum	14.3	
	Leuconostoc mesenteroides		
	subsp cremoris	14.3	
"Fura da Nono"	Lactobacillius plantarum	25.0	
	Leuconostoc mesenteroides		
	subsp dextranicum	25.0	
	Leuconostoc mesenteroides		
	subsp cremoris	25.00	
	Lactobacillius plantarum	25.00	

Table 1: Continued

"Wara"	Lactococcus garvieae	6.25
	Lactococcus raffinolactis	6.25
	Leuconostoc mesenteroides	
	subsp mesenteroides	6.25
	Leuconostoc mesenteroides	6.25
	Leuconostoc gelidium	12.50
	Lactococcus lactis subsp cremoris	6.25
	Leuconostoc pseudomesenteroides	6.25
	Lactobacillus coryniformis	0.20
	subsp coryniformis	6.25
	Lactobacillus cellobiosus	6.25
	Lactobacillus plantarum	6.25
	Lactobacillus casei	6.25
	Lactococcus hordniae	6.25
	Leuconostoc amellbiosum	6.25
	Lactococcus lactis ssp hordniae	6.25
	Lactococcus mesenteroides ssp. cremoris	6.25
Choice Milk	*	20.00
	Lactobacillus sp	20.00
Yogurt	Lactobacillus brevis	20.00
	Lactobacillus sp	
	Lactobacillus lactis subsp cremoris Lactobacillus desidiosus	20.00 20.00
		20.00
Topson Yogurt	Leuconostoc mesenteroides	
	subsp mesenteroides	16.7
	Lactobacillus sp	16.7
	Lactobacillus jensenii	16.7
	Lactobacillus coryniformis	
	subsp torquens	16.7
	Leuconostoc mesenteroides	
	subsp mesenteroides	16.7
	Leuconostoc mesenteroides	
	ssp dextranicum	16.7
Peak Yogurt	Lactobacillus vinduscens	25.0
	Lactobacillus leichmanii	25.0
	Lactobacillus plantarum	25.0
	Lactobacillus lactis subsp plantrum	25.0
Sunmilk	Lactobacillus salvarius	66.7
Yogurt	Lactobacillus lactis subsp plantrum	33.3
Garden city	Leuconostoc lactis	25.0
Yogurt	Lactobacillus fermentum	25.0
č	Lactobacillus plantarum	25.0
	Lactobacillus lactis ssp plantarum	25.0
Fanmilk	Lactobacillus fermentum	25.0
Yogurt	Lactococcus mesenteroides	25.0
c	Leuconostoc amellbiosum	25.0
	Lactococcus	
	mesenteroides ssp. mesenteroides	25.0
"Fufu"	Lactobacillus plantarum	64.3
	Lactobacillus casei ssp tolerans	7.1
	Lactobacillus casei	7.1
	Lactobacillus hilgardii	7.1
		··•
	Lactobacillus cellobiosus	7.1

foods are of different plant and animal origins and each particular plant species provides a unique environment in terms of completing micro-organisms natural plant antagonists, type availability and concentration of substrate and various physical factors. These conditions allow for the development of epiphytic flora, from which arises a population and sequence of fermentation microorganisms when the plant materials harvested and prepared for fermentation.

One hundred and three isolates were screened for EPS producing activity. 191 isolates from the selected food samples showed EPS production; only two isolates did not produce EPS (Table 2). This was in contrast to studies reported by Van den Berg *et al.* [9]. In which only 30 strains out of 607 tested showed the ability to produce exopolysacchrides.

The investigation in the first stage of screening for EPS synthesis by LAB isolated from dairy and non dairy product showed that more than 64.29% of the studied L. plantarum strains are active producers of Exopolysaccharide while 42.85% of the studied L. fermentum, 50% of L.delbrueckii, Leu. mesenteroides, L. casei ssp pseudoplantarum and L. lactis, 100% of L. casei ssp tolerans, L. brevis, L. coryniformis, Leu. mesenteroides ssp dextranicum and L. ssp, 40% of Leu. gelidium, L. cellobiosus, 66.7% of Lact. lactis ssp plantarum and 2.57% of Leu. amellbiosum respectively are active (EPS above 40 mg l^{-1}) producer of exopolysaccharides. As shown in Table 2. The Lact. lactis ssp cremoris, Lact. gravieae and Lact. plantarum manifest poor (below 40 mg l^{-1}) production activity while Lact. raftinolactis (ORWI) and Lact.gravieae(OGW2) did not reveal any exopolysaccharides activity. These results agreed with results about EPS from LAB produced by other authors [4].

The EPS ranged between 0.10-185.2 mg l^{-1} . *L.plantarum (LPWO11)* strains isolated from white "ogi" had the highest while the strain isolated from "brown ogi" (LPBO14) had the lowest EPS activity. Among the *L. fermentum* strains the EPS ranged between 5.3-141.5 mg l^{-1} . *L. fermentum (LFFN3)* isolated from yoghurt had the highest while the strain isolated from" Brown ogi" (LFY4) had the least.

Among the *L.casei* strains, the EPS ranged between 6.4-138.8 mg l^{-1} in which *L.casei ssp tolerans (LCN6)* isolated from "fufu" had the highest and *L.casei* (LCW2) isolated from "brown ogi" had the least. Two strains of L.brevis isolated from "nono" and yogurt produced reasonable quality of EPS. Among the *L.cellobiosus* strains the EPS ranges between 14.9-74.0 mg l^{-1} in which

		Exopolysa		0
		-ccarides	~	Occurrenc
	Lactic acid bacteria	$(Mg l^{-1})$	Sources	(%)
	Screening of Lab for Eps J			
1	L.plantarum LPN1	170.0	"Nono"	64.29
2	L.plantarum LPN2	17.0	"Nono"	64.29
3	L.plantarum LPFN3	144.9	"Furada nono"	64.29
4	L.plantarum LPW4	17.2	"Wara"	64.29
5	L.plantarum LPF5	62.2	"Fura"	64.29
6	L.plantarum LPN6	115.8	"Nono"	64.29
7	L.plantarum LPW7	5.0	"Wara"	64.29
8	L.plantarum LPY8	164.4	Yogurt	64.29
9	L.plantarum LPY9	98.0	Yogurt	64.29
10	L.plantarum LPW010	79.4	White "ogi"	64.29
11	L.plantarum LPW011	185.2	White "ogi"	64.29
12	L.plantarum LPW012	5.8	White "ogi"	64.29
13	L.plantarum LPY013	62.2	Yellow "ogi"	64.29
14	L.plantarum LPB014	1.0	Brown "ogi"	64.29
15	L. fermentum LFNI	17.0	"Fura da nono"	42.85
16	L. fermentum LFN3	86.9	Yogurt	42.85
17	L. fermentum LFFN3	41.0	Yogurt	42.85
18	L. fermentum LFY4	141.5	Yogurt	42.85
19	L. fermentum LFY5	05.3	Brown "ogi"	42.85
20	L. fermentum LFB06	175.0	Yogurt	42.85
21	L. fermentum LFY7	54.3	Fufu	42.85
22	L. casei LCFU	148.2	"Nono"	50.0
23	L. casei LCN1	55.5	"Wara"	50.0
24	L. casei LCW2	64.0	"Brown ogi"	50.0
25	L. casei LCN3	62.2	"Nono"	50.0
26	L. casei ssp			
	pseudoplantarum LCN4	1.0	"Nono"	50.0
27	L. casei ssp	1.0	10110	20.0
_ /	pseudoplantarum LCN5	43.4	"Nono"	50.0
28	L. casei ssp	т <i>.</i> т	TUNO	50.0
20	tolerans LCN6	138.8	Fufu	50.0
29	L. casei ssp	150.0	Fulu	50.0
29	tolerans LCF7	43.4	Fufu	50.0
20	L. brevis LBN1		ruiu "Nono"	
30		197.4		100.0
31	L. brevis LBY2	80.0	"Yogurt"	100.0
32	L. cellobiosus LCEWI	74.0	"Wara"	40.0
33	L. cellobiosus LCEW2	14.9	"Wara"	40.0
34	L. cellobiosus LCE03	17.3	"Ogi"	40.0
35	L. cellobiosus LCEY04	22.3	Yellow "ogi'	40.0
36	L. cellobiosus LCEW5	40.5	"Wara"	40.0
37	L.delbrueckii LD01	116.4	"ogi"	500.0
38	L.delbrueckii LD02	2.5	"ogi"	50.0
39	L.coprohilus COFNI	64.7	"Fura da nono"	100.0
40	L. coryniformis ssp			
	coryniformis LCOW1	68.2	"Wara"	50.0
41	L.coryniformis ssp			
	torquens CYY2	138.0	Yogurt	50.0

Table 2: Production of exopolysaccharides by lactic acid bacteria isolate

Table 2: Continued

Tabl	e 2: Continued			
42	L.fructvorans FW	29.0	"Wara"	0.0
43	L.helveticus HF1	50.1	"Fura"	50.0
44	L.helveticus hN2	12.7	"Nono"	50.0
45	L.curvatus CY1	36.6	Yogurt	0.0
46	L.decidious DY1	174.0	Yogurt	100.0
47	L.jensenii JY1	138.0	Yogurt	100.0
48	L. vinducens VTI	137.9	Yogurt	100.0
49	L.leichmanii LY1	123.5	Yogurt	100.0
50	L.salvarius SY1	167.9	Yogurt	100.0
51	L.higardi. LHFU	196.0	Fufu	100.0
52	Leu. mesenteroides			
	UMN1	33.0	"Nono"	50.0
53	Leu. mesenteroides ssp			
	mesenteroides UMM2	83.8	Yogurt	50.0
54	Leu. mesenteroides ssp			
	mesenteroides UMMY3	35.9	Yogurt	50.0
55	Leu. mesenteroides ssp			
	mesenteroides UMMY4	86.9	Yogurt	50.0
56	Leu. mesenteroides ssp			
	mesenteroides UMMY5	118.2	Yogurt	50.0
57	Leu. mesenteroides ssp			
	mesenteroides UMMW6	35.9	"Wara"	50.0
58	Leu. mesenteroides ssp			
	mesenteroides UMMN7	47.8	"Nono"	50.0
59	Leu. mesenteroides ssp			
	mesenteroides UMMW8	48.7	"Wara"	50.0
60	Leu. mesenteroides ssp			
	mesenteroides UMMW9	32.8	"Wara"	50.0
61	Leu. mesenteroides ssp			
	mesenteroides UMMN10	3.1	"Wara"	50.0
62	Leu. mesenteroides ssp			
	hordinae UMMHW10	3.1	White"Ogi"	0.0
63	Leu. mesenteroides ssp			
	hordinae UMMHW011	26.1	White"Ogi"	0.0
64	Leu. mesenteroides ssp			
	dextranicum UMMDFN12	138.0	"Fura da nono"	100.0
65	Leu. mesenteroides ssp			
	dextranicum UMMDFN13	138.0	"Fura da nono"	100.0
66	Leu. mesenteroides ssp			
	cremoris UMMC FN14	16.3	"Fura da nono"	0.0
67	Leu. mesenteroides ssp			
	cremoris UMMC FN15	18.3	"Fura da nono"	0.0
68	Leu. gelidium UGW1	26.5	"Wara"	40.0
69	Leu. gelidium UGFN2	26.8	"Fura da nono"	40.0
70	Leu. gelidium UGFN3	50.2	"Fura da nono"	40.0
71	Leu. gelidium UGW4	74.0	"Wara"	40.0
72	Leu. gelidium UGW05	6.6	White "ogi"	40.0
73	Leu.pseudoplantarum			
- ·	UPW1	35.2	"Wara"	33.0
74 75	Leu.pseudoplantarum UP02	13.7	"ogi"	33.0
75	Leu.pseudoplantarumUPYO	11.3	Brown "Ogi"	33.0

Table 2: Continued

Tabl	e 2: Continued			
76	Leu.amellbiosum UAY 1	165.3	Yogurt	28.57
77	Leu.amellbiosum UAF 2	20.7	"Fura"	28.57
78	Leu.amellbiosum UAW03	5.8	White "ogi"	28.57
79	Leu.amellbiosum UAB04	5.9	Brown "ogi"	28.57
80	Leu.amellbiosum UABF5	7.3	"Fura"	28.57
81	Leu.lactis	158.6	"Nono"	50.00
82	Leu.lactis	16.6	"Nono"	50.00
83	Lact.plantarum L002	5.2	"ogi"	0.00
84	Lact.plantarum L003	29.8	"ogi"	0.00
85	Lact.raffinolactis ORWI	0.00	"Wara"	0.00
86	Lact. raffinolactis ORN2	39.8	"ogi"	0.00
87	Lact. piscium OPN1	33.0	"Nono"	50.00
88	Lact. piscium OPN2	70.3	"Nono"	50.00
89	Lact.lactis ssp			
	cremoris OLCN1	12.5	"Wara"	0.0
90	Lact.lactis ssp			
	cremoris OLCY2	5.0	Yogurt	0.0
91	Lact.lactis ssp			
	cremoris OLCB03	3.0	Brown "ogi"	0.0
92	Lact. hordiniae OLHW4	72.2	"Wara"	100.0
93	Lact. hordiniae OLHW5	63.3	"Wara"	100.0
94	Lact. hordiniae OLHF6	63.3	"Fura"	100.0
95	Lact.lactis ssp			
	plantarum OLPY7	1.6	Yogurt	66.7
96	Lact.lactis ssp			
	plantarum OLPY8	141.5	Yogurt	66.7
97	Lact.lactis ssp			
	plantarum OLPY9	110.2	Yogurt	66.7
98	Lact.sp OSFU	16.0	"Fufu"	0.0
99	Lact. gravieae OGWI	1.5	"Wara"	0.0
100	Lact. gravieae OGFN1	0.0	"Wara"	0.0
101	L.sp	137.0	"Fufu"	100.0
102	L.sp	101.1	"Fufu"	100.0
103	L.sp	86.7	"Fufu"	100.0

strain isolated from wara (LCEW1) had the highest. The two *L.debrueckii strains* were isolated from "ogi" and their EPS ranged between 2.5-116.4 mg l⁻¹ respectively. Among the 13 strains of *Leu.mesenteroides*, EPS produced ranged between 03.1-138.0 mg l⁻¹. *Leu. mesenteroides ssp mesenteroides* (UMMY5) isolated from yogurt had the highest while *Leu. mesenteroides ssp hordinae* (UMMHW10) isolated from wara had the lowest. Cultures shown to be the same isolated species did not show similar EPS production. For example, the four *L.plantarum* isolates produces EPS yields from 01.0-185.7 mg l⁻¹. Thus, the amount of EPS production differs between species and varied within a species (i.e. different strains of LAB). It may also be dependent upon growth medium, temperature, dissolve oxygen and other environmental factors [2, 4, 7, 8] The highest exoploysacchride producing isolate was a strain of *L.brevis* LBF6 isolate from "fufu".

But From this research work it was observed that mesophilic LAB isolated from dairy and non-dairy fermented foods has potential for EPS production.

Lactic acid bacteria play an important role in food fermentation, as the product obtained with their aid is characterized by hygienic safety, storage, stability and attractive sensory properties. Since starter cultures are blended emphatically for the desired characteristics of the final product, maintenance of the optimal strain balance throughout the fermentation process is important.

EPS in their natural environment are known to play a role in the protection of the microbial cell against phygocytosis, phage attack, antibiotics or toxic compounds, predation by protozoan, osmotic stress, adhesion to solid surfaces and in cellular recognition. In food industry, microbial EPS are used as thickeners or viscosifiers, stabilizing or emulsifying agents or texturizers [26]. The functional properties of exopolysacchrides are influenced by their primary structure [26].

Our results demonstrate the diversity of LAB in dairy and non-dairy fermented foods in Nigeria. The selected fermented foods contain several species of LAB, which were identifying physiologically and have potential for EPS production. These strains can be use as starter culture with predictable characteristics and contribute to the development of small scale and commercial production of fermented food with stable consistent quality.

REFERENCES

- Sutherland, I.W., 1998. Novel established application of microbial polysaccharides. Trends Biotechnol., 16: 41-46.
- Cerning, J., 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev., 87: 113-130.
- Oda, M., H. Hasegawa, S. Komatsu, M. Kambe and F. Tsuchiya, 1983. Antitumour polysaccharides from *Lactobacillus* sp. Agric. Biol. Chem., 47: 1623-1625.
- Nakajima, H., T. Jirota, T. Toba, T. Itoh and S. Adachi, 1992a. Structure of the extra cellular polysaccharides from slime-forming *Lactococcus lactis subsp.cremoris* SBT 0495. Carbohydr. Res., 224: 245-253.

- Cerning, J. C.M. Renard, G.C. Thibault, J.F. Bouillanne, C. Landon, M. Desmazeaud and L. Topisirovic, 1994. Carbon source requirements for expolysaccharide production by *Lactobacillus casei* GCII and partial structure analysis of the polymer. Applied Environ. Microbiol., 60: 3914-3919.
- Cerning, J., C. Bouillanne, M. Landon and M. Desmazeaud, 1992. Isolation and characterization of exopolysaccharides from slime forming mesophilic lactic acid bacteria. J. Dairy Sci., 75: 692-699.
- Cerning, J., C. Bouillanne, M.J. Desmazeaud and M. Landon, 1988. Extrocellular polysaccharide production by *Streptococcus thermophilus*. Biotechnol Lett., 10: 255-260.
- Cerning, J., C. Bouillanne, M.J. Desmazeaud and M. Landon, 1986. Isolation and characterization of exocellular polysaccharides produced by Lactobacillus bulgaricus Biotechnol Lett., 8: 652-628.
- Van den Berg, D.J.C, A. Smith, B. Pot, A.M. Ledeboer, K. Kerstens, J.M.A. Verbakel and C.T. Verrips, 1993. Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections. Food Biotechnol., 7: 189-205.
- Toba, T., S. Abe and S. Adadri, 1987. Modification of KPL medium for polysaccharide production by *Lactobacillus sp.* Isolated from kefir grain. Jpn. J. Tech. Sci., 58: 987-990.
- Pidoux, M., J.M. Brillouet and B. Quemener, 1988. Characterization of the polysaccharides from a *Lactobacillus brevis* and from sugary kefir grains. Biotechnol. Letts., 10: 415-420.
- De Man, J.C., M. Rogosa and M.E. Sharpe, 1960. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol., 23: 130-135.
- Roissart, H. and F.M. Luguet, 1994. Bacteries lactiques. Aspects fondamentaux et technologiques. Uriage, Lorica, p. 605. by Lactococcus lactis subsp cremoris B40. Carbohydr. Polym., 37: 123-130.
- Garvie, L.I., 1986. Pediococcus. In Bergey's manual of Systematic Bacteriology. Ed. Sneath A.H.O., Mair S.H. Sharp M.E Holt G.R. Williams and Wilkins Baltimore, USA, pp: 1043-1080.
- Holzapfel, H.W. and U. Schillinger, 1992. The genus Leuconostoc in: *The prokaryotes* (2nd Edn.). Eds. Balows. A Truper H.G. Dwinkin M.Harder W and Schleifer K. Springer-Verlag, New York, USA, pp: 1508-1534.

- Hargrove, R.E. and J.A. Alford, 1978. Growth rate and feed efficiency of rats fed yoghurt and other fermented milks. J. Dairy Sci., 61: 11-19.
- Abdel-Malik, Y. and T. Gibsoren, 1948. Studies on the bacteriology of milk. The Streptococci of milk. J. Dairy Res., 15: 233.
- Gerhardt, P., R.G.E. Murray, R.N. Costilow, E.W. Nester, W.A. Wood, N.R.. Kneg and G.B. Philips, 1981. Manual of Methods for General Bacteriology. eds. Gerhardt P. Murray R.G.E. CostiloSw R.N. Nester E.W. Wood, W.A. Krieg N.R. Philips G.B. Am. Soc. Microbiol., Washington USA, pp: 419.
- 19. Garicia-Garbay, M. and V.M.E. Marshall, 1991. Polymer production by *Lactobacillus delbrueckii ssp. Bulgaricus*. J. Appl. Bacteriol., 70: 325-328.
- Dubois, M., K. Gillies, I. Hamilton, P. Peters and E. Smith, 1956. Colometric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.
- Salminen, S. and Von Wright., 1993. Lactic Acid Bacteria. Marcel Dekker Inc., New York.
- Olukoya, D.K., P.S. Tichazek, A. Butsch, R.F. Vogel and W.P. Hammes, 1993. Characterization of the bacteriocins produced by *Lactococcus pentosus* DK7 isolated from "ogi" and *Lactococcuc plantarum* DK9 from "fufu". Chem. Microbiol. Technol. Lebensm., 15: 65-68.
- Cooke, R.D., D.R.. Twiddy and P.J. Alan Reilly, 1987. Lactic acid fermentation a low cost means of food preservation in tropical countries. FEM Microbiol. Rev., 46: 369-379.
- 24. Steinkraus, K.H., 1983. Handbook of Indigenous Fermented Foods. New York, USA: Marcel Dekker Inc.
- Sharpe, M.E., 1981. The genus *Lactobacillus*. In: The Prokaryotes. A handbook on habitat, isolation and identification of bacteria. Starr, M.P., H. Stolp, H.G. Truperm, A. Balows and H.G. Schelegel (Eds.). Springer-Verlag, Berlin, pp: 1653-1679.
- Sutherland, I.W., 1994. Structure-function relationships in microbial exopolysaccharides. Biotechnol. Adv., 12: 393-448.