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Abstract

Two obvious classes of quasi-injective modules are those of semisimples and injectives.
In this paper, we study rings with no quasi-injective modules other than semisimples and
injectives. We prove that such rings fall into three classes of rings, namely (i) QI-rings,
(ii) rings with no middle class, or (iii) rings that decompose into a direct product of a
semisimple Artinian ring and a strongly prime ring. Thus, we restrict our attention to only
strongly prime rings and consider hereditary Noetherian prime rings to shed some light on
this mysterious case. In particular, we prove that among these rings, QIS-rings which are
not of type (i) or (ii) above are precisely those hereditary Noetherian prime rings which are
idealizer rings from non-simple QI-overrings.
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1 Introduction
There have been various studies on the classification theory of rings in which the homological
property of injectivity plays a crucial role. A number of classes of rings have been investigated
by means of injectivity of their certain modules since the latter half of the last century. Among
these are semisimple Artinian rings (rings all of whose cyclic modules are injective), right V-
rings (rings whose simple right modules are injective), right PCI-rings (rings for which every
proper cyclic right module is injective), right SI-rings (rings whose every singular right module
is injective), and right QI-rings (rings whose quasi-injective right modules are injective).

In 2010, Alahmadi et al. [1] introduced a new class of rings, in the same direction as above
classes of rings arise, for which every (right) module is either injective or the farthest from being
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injective (in a certain sense). Such rings are said to have no (right) middle class and are referred
to as (right) NMC-rings in this current paper. NMC-rings and some of their variations have
been studied in many papers over the last decade where strong connections to aforementioned
classes of rings have been discovered (see, for example, [1, 2, 3, 10, 11, 12, 21, 26]). One intriguing
property of NMC-rings is that they have only trivial quasi-injective modules. More precisely, if R
is a ring with no right middle class, then every quasi-injective right R-module is either injective
or semisimple. However, the converse does not hold in general (see Theorem 4.8 of the present
paper and [11, Theorem 2 and Proposition 5]). Although this broader class of rings whose quasi-
injectives are injective or semisimple appeared in some papers before (see [10, 11, 21]), to the
best of our knowledge, it was merely considered in relation to the class of NMC-rings and has
never been studied in its own right. In this paper, we examine in detail the structure of rings
of the title on their right modules, that we call right QIS-rings, and give some characterizations
besides several remarkable properties of these rings.

Byrd ([5] and [6]) and Boyle ([4]) studied rings whose quasi-injective right modules are injec-
tive. Boyle referred to such rings as right QI-rings and conjectured that they are right hereditary.
Observe that right QI-rings are automatically right QIS. We prove that the class of right QIS-
rings is much broader than that of right QI-rings (see Theorem 4.8). Note that if R is a hereditary
Noetherian ring, then the phrases “R is a right QI-ring”, “R is a right V-ring”, “R is a right
PCI-ring”, and “R is a right SI-ring” are all synonymous (see [4, Corollary 10] and [14, Theorem
3.11]).

In Section 2, we classify coatoms of the lattice of left exact preradicals on right modules
over a ring R in terms of certain submodules of E(RR), the injective hull of RR, and show,
in particular, that they are in bijective correspondence with maximal proper fully invariant
submodules of E(RR) (see Proposition 2.2 and Corollary 2.3). We use information obtained
on coatoms of the lattice of left exact preradicals for the examination of the structure of right
QIS-rings in the next section.

In section 3, we give a classification of right QIS-rings by investigating the internal structure
of right QIS-rings which are not right NMC. In particular, we prove the following classification
theorem, which leads us to restrict our interest to only strongly prime rings.

Theorem. Let R be any ring. Then R is a right QIS-ring if and only if one of the following
conditions hold:

(i) R is a right QI-ring.

(ii) R is a right NMC-ring.

(iii) There exists a ring decomposition R = S × T such that S is either zero or a semisimple
Artinian ring and T is a right strongly prime right QIS-ring.

We also obtain that the classes of right QIS-rings and right NMC-rings coincide for right fully
bounded rings (in particular, for commutative rings). In this section, we also prove that for
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any ring R, if Soc(RR) ≤e RR, then R is a right NMC-ring if and only if it is a right QIS-
ring, generalizing the fact that right semiartinian right QIS-rings are right NMC, proved in [10,
Corollary 5.6] and [21, Proposition 3.1].

In the last section, we turn our attention to right Noetherian rings with restricted right socle
condition, namely right Noetherian rings whose singular right modules are semiartinian. Note
that rings with restricted right socle condition constitute a broad class including right SI-rings,
right NMC rings, and hereditary Noetherian prime rings (HNP rings for short). Thus, it is
reasonable to employ this condition while searching for ties of QIS-rings with these classes of
rings.

In view of the above theorem, we obtain a complete characterization for right Noetherian
rings with restricted right socle condition to be right QIS in the following two propositions.

Proposition. Let R be any ring which is not semisimple Artinian. Then the following conditions
are equivalent:

(i) R is a right QI-ring with restricted right socle condition.

(ii) R is a right Noetherian right V-ring with restricted right socle condition.

(iii) R is a right SI-ring with Soc(RR) = 0.

Moreover; if, in addition, R is indecomposable, then (i)–(iii) are equivalent to

(iv) R is a right NMC-ring with Soc(RR) = 0.

Proposition. Let R be a prime right Noetherian ring with restricted right socle condition. If R
is not a right V-ring, then R is right QIS if and only if the following statements hold:

(i) There exists a unique isomorphism class of non-injective simple right R-modules.

(ii) If W is a non-injective simple right R-module, then it is the only proper nonzero fully
invariant submodule of E(W ).

Furthermore, we prove that a basic idealizer ring IS(A) from an indecomposable right SI-ring
S with zero right socle is, then, a right QIS-ring which is neither right QI nor right NMC (see
Proposition 4.7). It follows that there can be found plenty of concrete examples of right QIS-
rings which are neither right QI nor right NMC. In particular, if S is chosen to be a non-Artinian
HNP ring that is a right V-ring (see, for example, [7], [8], [19], or [24]), then any basic idealizer
ring from S will be a right QIS-ring that is neither right QI nor right NMC. In fact, we see that
this is the only way for producing such rings among HNP rings (see Theorem 4.8). Moreover,
we see that HNP rings R that are right QIS but not right QI are precisely those rings such
that there exists a unique (up to isomorphism) non-injective simple right R-module and for any
non-injective simple right R-module W , the injective hull of W is a uniserial module of length 2.

Let R be a ring. For a right R-moduleM , we define the class In−1 (M), called the injectivity
domain of M , consisting of all right R-modules relative to which M is injective. Observe that
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the injectivity domain of any module contains the class of all semisimple modules (denoted
SSMod–R) and that a module M is injective if and only if In−1 (M) is the entire class of right
R-modules, denoted Mod–R. An R-module is said to be poor if its injectivity domain is equal to
SSMod–R. Note that poor modules always exist for any ring (see [11, Proposition 1]). R is said
to have no right middle class provided that every right R-module is either injective or poor, i.e.,
there are no injectivity domains other that SSMod–R and Mod–R. We refer to these rings as right
NMC-rings in this paper. One can easily see by definition that right NMC-rings are necessarily
right QIS. However, Theorem 4.8 below together with [11, Theorem 2 and Proposition 5] shows
that the converse is not true, in general. On the other hand, any indecomposable hereditary
Noetherian right QI-ring is right NMC by [11, Proposition 5].

Throughout this note, all rings are assumed to be associative rings with identity and all
modules are unitary right modules, unless specified otherwise. Given a module M , we will use
E(M), Soc(M), and Z(M) to denote the injective hull, the socle, and the singular submodule
of M , respectively. We will also use notations ≤ and ≤e to indicate submodules and essential
submodules.

Let M , N be two modules over the ring R. The submodule
∑
{Im f : f ∈ HomR(M,N)}

of N will be denoted TrR(M,N). Note that TrR(M,N) is a fully invariant submodule of N ,
i.e., f(TrR(M,N)) ⊆ TrR(M,N) for any R-endomorphism of N . We say that M is N -injective
if whenever there is an R-homomorphism g : N ′ → M , where N ′ is a submodule of N , then g
extends to an R-homomorphism h : N → M . It is not difficult to see that M is N -injective if
and only if TrR(N,E(M)) ⊆M .

Let M be a module over the ring R. M is called quasi-injective if it is injective relative to
itself. This is equivalent to saying that M is a fully invariant submodule of its injective hull.
Moreover, ifM is a fully invariant submodule of some injective module, then it is quasi-injective.
In particular, if E is an injective R-module, then TrR(M,E) is always a quasi-injective R-module.
Also, for a right ideal A (resp., left ideal B) of R and an injective R-module E, the submodule
EA (resp., annE(B)) of E is fully invariant in E; hence quasi-injective. We refer the reader to [23]
for any unexplained terminology and other details on relative injectivity and related concepts.

2 Coatoms in the lattice of left exact preradicals
As we shall see further on, the notion of left exact preradicals of torsion theory plays a key role in
our study of rings whose quasi-injective right modules are injective or semisimple (namely, right
QIS-rings). Note that left exact preradicals form a coatomic lattice and we shall see, in the next
section, that coatoms of this lattice prove crucial for the examination of right QIS-rings. Indeed,
we should refer the interested reader to [10] in which several classes of rings including the rings
of the title has been characterized by means of left exact preradicals of some specific type. In
particular, it has been proved that a ring R is right QIS if and only if every left exact preradical
strictly greater than the functor Soc is stable (see [10, Proposition 5.3] in conjunction with [21,
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Theorem 2.9]). In this short section, we focus on submodules of E(RR), the injective hull of
RR, for any ring R, determined by coatoms in the lattice of left exact preradicals on Mod–R
(denoted lep–R) and see that coatoms of lep–R are in one-to-one correspondence with maximal
proper fully invariant submodules of E(RR).

Let R be a ring. We remind that a subfunctor of the identity functor on Mod–R is called
a preradical on Mod–R. If a given preradical σ on Mod–R is left exact as a functor, then we
say that σ is a left exact preradical. Note that given a left exact preradical σ on Mod–R, the
class of right R-modules M with σ(M) = M , denoted Tσ, is closed under taking submodules,
homomorphic images, and arbitrary direct sums. Any such class of right R-modules is called
a hereditary pretorsion class. So, every left exact preradical determines a hereditary pretorsion
class. Conversely, given a hereditary pretorsion class T , one may define a functor σT on Mod–R
by σT (M) =

∑
{N ≤ M : N ∈ T } for every M ∈ Mod–R, and see that σT is a left exact

preradical. This yields a bijective correspondence which associates with every left exact preradical
on Mod–R a unique hereditary pretorsion class of right R-modules (see [27] for details). If a left
exact preradical σ on Mod–R satisfies the property that σ(M/σ(M)) = 0 for any right R-module
M , then σ is called a left exact radical. Under the aforementioned bijective correspondence, left
exact radicals are associated with hereditary torsion classes (i.e., hereditary pretorsion classes
which are closed under extensions).

It is well known that left exact preradicals on Mod–R also correspond bijectively with certain
sets of right ideals of R (see [27]). Thus lep–R corresponds bijectively to a set. Although sets
cannot include proper classes as elements, we see no harm to assume that lep–R is a set for
our purposes. An important aspect of our interest in left exact preradicals is that lep–R can be
given a lattice structure. Given two left exact preradicals σ and τ , we write σ ≤ τ provided that
σ(M) ⊆ τ(M) for every right R-module M . This defines a partial order on lep–R. On the other
hand, one can define arbitrary meets and joins as follows: given a set {σi : i ∈ I} of left exact
preradicals on Mod–R, we have

(∧
i∈I σi

)
(M) =

⋂
i∈I σi(M) for every right R-module M and∨

i∈I σi is the left exact preradical corresponding to the (unique) smallest hereditary pretorsion
class in Mod–R containing

⋃
i∈I Tσi . Together with these meet and join operations, the partially

ordered set lep–R turns into a lattice. It should be noted that this lattice is a modular coatomic
lattice (see [28, Theorem 2]) and that coatoms in lep–R are of importance in the current and the
next section.

Given a ring R, there are certain hereditary pretorsion classes of right R-modules which are
of particular interest in this work. Among them are the class of semisimple right R-modules
(denoted SSMod–R) and the class of singular right R-modules (denoted Sing–R), corresponding
to the left exact preradicals, denoted Soc and Z, respectively. We are also interested in a
particular type of hereditary pretorsion classes associated to a given right R-module M , namely,
the class of all right R-modules relative to which M is injective (denoted In−1 (M) and called
the injectivity domain of M). Clearly, In−1 (M) contains SSMod–R. It follows that there exists
a unique left exact preradical in the sublattice [Soc, 1] of the lattice lep–R which corresponds to
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In−1 (M) in the lattice of hereditary pretorsion classes of right R-modules. This corresponding
left exact preradical is denoted by iM in [10]. By [21, Theorem 2.9], we see that every left exact
preradical in [Soc, 1] is of the form iM for a suitable module M . Therefore a ring R is a right
NMC-ring if and only if Soc is a coatom in the lattice of left exact preradicals on Mod–R.

Notice that for each right R–module K, iM (K) is the largest submodule of K relative to
which M is injective. This gives that iM (K) =

⋂
{f−1(M) | f ∈ HomR(K,E(M))} (see [10,

Lemma 2.3]). Motivated by this identification of iM , we consider a particular type of preradicals
as follows: for a right R-module L and a submodule M of L, the functor σ : Mod–R→ Mod–R
defined by σ(K) =

⋂
{f−1(M) | f ∈ HomR(K,L)}, for every K ∈ Mod–R, is clearly a preradical.

Following [15], we denote this preradical σ by ωLM . Notice that iM = ω
E(M)
M for each M ∈

Mod–R. We note that preradicals of the form ωLM , where M is a fully invariant submodule
of L, are treated in [15]. Indeed, one can easily see that M is a fully invariant submodule of
L if and only if ωLM (L) = M . We also note that the preradical ωLM is left exact when L is
injective. More generally, a given preradical σ is left exact if and only if σ =

∧
{ωEσ(E) | E ∈

Mod–R and ER is injective}. Moreover, for any injective module E, the left exact preradical ωE0
is also a radical (see [15, Proposition 2.1]).

Lemma 2.1. Let σ be a coatom in lep–R. Then σ is a radical if and only if σ(E) = 0 for some
nonzero injective module E.

Proof. If σ is a radical, then Tσ is cogenerated by an injective module, E say. Hence σ(E) = 0.
Conversely, assume that there exists a nonzero injective module E such that σ(E) = 0. Then,
clearly, σ ≤ ωE0 6= id, and hence, by maximality of σ, we must have σ = ωE0 , which is a
radical.

The following proposition provides a description of coatoms in lep–R. In particular, we see
that some of these coatoms are of the form iM for some suitable quasi-injective modules M . But
before, it is convenient to mention the following two fundamental properties of the preradical
ωLM for a pair of right R-modules L, M for which M is a fully invariant submodule of L: (i) if σ
is a preradical such that σ(L) = M , then σ ≤ ωLM in the lattice of preradicals; and (ii) if N is a
fully invariant submodule of L containing M , then ωLM ≤ ωLN in the lattice of preradicals.

Proposition 2.2. Let σ be a coatom in the lattice lep–R, E = E(RR), and K = σ(E). Then
the following hold:

(i) σ = ωEK .

(ii) K is a maximal proper fully invariant submodule of E.

(iii) If K is an essential submodule of E, then it is a maximal proper quasi-injective submodule
of E and Tσ = In−1 (K). In particular, σ = iK .

(iv) If K is not essential in E, then K is injective and σ is a radical. In this case, Tσ is the
torsion class cogenerated by the injective module E/K.
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Proof. (i) Since K is a fully invariant submodule of E, it is quasi-injective. Since σ 6= id, K 6= E.
Also we have σ ≤ ωEK < id for σ(E) = K. Hence, by maximality of σ, we must have σ = ωEK .

(ii) Let L be a fully invariant proper submodule of E containing K. Then σ = ωEK ≤ ωEL < id,
so that ωEK = ωEL , by assumption. This gives that K = ωEK(E) = ωEL (E) = L. It follows that K
is a maximal fully invariant submodule of E.

(iii) Assume that K is an essential submodule of E. Then any quasi-injective module between
K and E must be a fully invariant submodule of E. Hence, by (ii) above, K is a maximal proper
quasi-injective submodule of E. Also, since K is essential in E, E is an injective hull of K, and
so σ = ωEK = iK . This also means that Tσ = In−1 (K).

(iv) Suppose that K is not essential in E. Let E1 = E(K). Then there exists a nonzero
submodule E2 of E such that E = E1 ⊕ E2. It follows that K = σ(K) ⊆ σ(E1) ⊆ σ(E) = K,
and so σ(E1) = K. Since K = σ(E) = σ(E1) ⊕ σ(E2) = K ⊕ σ(E2), we must have σ(E2) = 0.
Thus σ is a radical by Lemma 2.1. Next, we shall show that K is injective. Since TrR(E1, E)
is a fully invariant submodule of E containing E1 (and hence K), by (ii) above, we have either
K = TrR(E1, E) or E = TrR(E1, E). Suppose that E = TrR(E1, E). Then E is generated by E1.
ThusR can be embedded in a finite direct sum En1 of E1. Then E can be embedded in En1 , so there
exists a submodule E′2 of En1 that is isomorphic to E2. It follows that 0 = σ(E′2) = σ(En1 ) ∩E′2.
However, since σ(En1 ) ≤e En1 , this is impossible. Therefore K = E1 = TrR(E1, E); hence
K is injective. Now let M ∈ Tσ, i.e., σ(M) = M . Then, by (i), TrR(M,E) ≤ K, and so
HomR(M,E2) = 0. This gives that Tσ lies in the torsion class cogenerated by E2 ∼= E/K; so it
is equal to the torsion class cogenerated by E/K, by maximality of σ. This establishes (iv) and
the proof is complete.

Corollary 2.3. Let R be any ring and E = E(RR). Then the correspondence defined by K 7−→
ωEK from the set of maximal proper fully invariant submodules of E to the set of coatoms in the
lattice lep–R is a bijection whose inverse is given by σ 7−→ σ(E).

Proof. LetK be a maximal proper fully invariant submodule of E, and let σ be a coatom in lep–R
such that ωEK ≤ σ. By Proposition 2.2 (i), there exists a fully invariant proper submodule L of
E such that σ = ωEL . Then K = ωEK(E) ≤ ωEL (E) = L. By maximality of K, K = L, and hence
ωEK = ωEL = σ. It follows that ωEK is a coatom in lep–R. This shows that the correspondence
defined by K 7−→ ωEK is a mapping from the set of maximal proper fully invariant submodules
of E to the set of coatoms in the lattice lep–R. Denote this mapping by ϕ. Also, denote by
η the correspondence defined by σ 7−→ σ(E) from the set of coatoms in lep–R to the set of
submodules of E. By Proposition 2.2 (ii), η is a mapping into the set of maximal proper fully
invariant submodules of E. Clearly, for each maximal proper fully invariant submodule K of
E, ηϕ(K) = K. On the other hand, by Theorem 2.2 (i), for each coatom σ in lep–R, we have
ϕη(σ) = σ. This completes the proof.
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3 Structure of right QIS-rings
We call a ring R a right QIS-ring if every quasi-injective right R–module is either injective or
semisimple. As noted in the introductory part, the class of right QIS-rings include right QI-rings
and right NMC-rings. In this section we give a classification of right QIS-rings (see Theorem
3.12) by investigating the internal structure of right QIS-rings which are not right NMC. Note
that Proposition 3.3 provides a useful argument for distinguishing QIS-rings from NMC-rings
with the help of the notion of a semiartinian ring.

Let R be any ring. Every member of the smallest hereditary torsion class (S , say) containing
SSMod–R is said to be a semiartinian rightR-module. Also, the ringR is called right semiartinian
provided S = Mod–R, i.e, every right R-module is semiartinian. By definition, a nonzero right
R-module is semiartinian if and only if every nonzero submodule of every nonzero factor of M
contains a simple submodule. This is equivalent to saying that every nonzero factor of M has
essential socle. We recall that given a right R-module M , one can form an ascending chain
0 = S0 ⊆ S1 ⊆ . . . of submodules of M , where for every ordinal λ, Sλ+1/Sλ = Soc(M/Sλ) and if
λ is a limit ordinal, then Sλ =

⋃
µ<λ Sµ. Now M is semiartinian if and only if Sν = M for some

ordinal ν (see [9, Proposition 1]).

Proposition 3.1. If R is a right QIS-ring, then one of the following two conditions holds:

(i) R is a right NMC-ring.

(ii) Every coatom in lep–R is a radical.

Furthermore, if both (i) and (ii) hold, then R is a right QI-ring.

Proof. Note that we may assume that R is not semisimple Artinian. Let E = E(RR) and let
σ ∈ lep–R be a coatom which is not a radical. Then by Proposition 2.2, σ(E) is an essential
maximal proper fully invariant (hence quasi-injective) submodule of E. Thus, by assumption,
σ(E) is semisimple, which yields Soc(RR) = σ(E) ≤e E. We also have σ = ωESoc(RR) = iSoc(RR)

by Proposition 2.2. Hence Soc ≤ σ in lep–R.
Let D be a nonzero injective module which contains no simple submodules. Suppose that

σ(D) = D. Since σ = iSoc(RR), Soc(RR) is D-injective. This gives that the right R-module
Soc(RR)⊕D is quasi-injective which is neither injective nor semisimple, a contradiction. Hence,
σ(D) 6= D. Since σ(D) is quasi-injective, σ(D) is either injective or semisimple. Suppose
that σ(D) is an injective module. Since σ is not a radical, σ(D) 6= 0 by Lemma 2.1. Then
D = σ(D)⊕D1 for some nonzero proper submodule D1 of D. But in this case σ(D1) = 0, which
contradicts with the fact that σ is not a radical by Lemma 2.1 again. Therefore σ(D) cannot
be injective; hence it is nonzero semisimple. But this is also a contradiction since D contains
no simple submodules. It follows that any nonzero injective right R–module contains a simple
submodule. This implies that R is a right semiartinian ring, and so it is right NMC by [21,
Proposition 3.1].
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Now assume that both (i) and (ii) hold. This implies that the left exact preradical Soc is a
radical; hence R is not right semiartinian. Thus, by [11, Theorem 2 and Lemma 5], R is a right
QI-ring.

Lemma 3.2 ([26, Lemma 2.1]). Let R be any ring and let σ be a left exact preradical on Mod–R.
Then the class

Tσs := {M ∈ Mod–R : M/σ(M) is semisimple and σ(M/σ(M)) = 0}

of right R-modules is a hereditary pretorsion class containing Tσ ∪ SSMod–R.

In [21, Proposition 3.1], it is proved that for right semiartinian rings the notions of a right
NMC-ring and a right QIS-ring coincide. We generalize this result with the following

Proposition 3.3. Let R be any ring. If Soc(RR) ≤e RR, then R is a right NMC-ring if and
only if it is a right QIS-ring.

Proof. Since any ring with no right middle class is a right QIS-ring, it suffices to prove the
converse. Let Soc(RR) ≤e RR and assume that R is a right QIS-ring. Note that we may assume
that R is not semisimple Artinian. By Lemma 3.1, it is enough to show that there exists a
coatom in lep–R which is not a radical. Let E = E(RR) and let σ be a coatom in lep–R
such that Soc ≤ σ. Since Soc(RR) ≤e RR, we have σ(E) ≤e E; so σ(E) is a proper quasi-
injective submodule of E containing Soc(RR). Thus σ(E) = Soc(RR), by assumption. Therefore
σ = ωESoc(RR) by Proposition 2.2. This shows that σ is the unique coatom in lep–R such that
Soc ≤ σ. Now let B denote the class of right R–modules M such that M/Z(M) is nonsingular
semisimple. By Lemma 3.2, B is a hereditary pretorsion class containing both SSMod–R and
the class of singular right R-modules. Let β be the left exact preradical corresponding to the
hereditary pretorsion class B. Then we have Z ∨ Soc ≤ β. Suppose β = id. Then β(R) = R, or
equivalently, R/Z(RR) is a nonsingular semisimple right R-module. It follows that Z(RR) 6= 0.
Since any nonsingular semisimple right R-module is projective, Z(RR) is a direct summand of
RR, which is a contradiction. Therefore β 6= id, and so β ≤ σ since σ is the unique coatom
in lep–R such that Soc ≤ σ. Now assume that σ is a radical. Then there exists an injective
module E′ such that σ(E′) = 0 by Lemma 2.1. Since Z(E′) ≤ β(E′) ≤ σ(E′) = 0, we obtain
that E′ is nonsingular. Also since σ ≤ ωE

′

0 < id, the maximality of σ yields σ = ωE
′

0 . Thus
σ(E) = ωE

′

0 (E) =
⋂
{ker(f) | f ∈ HomR(E,E′)}. It follows that the nonzero singular module

E/σ(E) embeds in a direct product of copies of E′ which is nonsingular, a contradiction. Thus
σ is not a radical and the proof is complete.

Lemma 3.4 ([18, Proposition 3.9.1]). If S is a minimal right ideal of a ring R, then either
S2 = 0 or S = eR for some idempotent element e ∈ R.

In light of Proposition 3.3, we continue our study of right QIS-rings by focusing on rings R
whose right socle is not essential in RR. We first prove in the following lemma that such right
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QIS-rings must be semiprime and right nonsingular. But before establishing the lemma, we see
it appropriate to refer to a particular type of quasi-injective modules. Let M be a right module
over a ring R and let A be a nonempty subset of R. The subset of elements of M annihilated by
all elements of A will be denoted by annM (A). Clearly, in case A is a left ideal of R, annM (A)
is a fully invariant submodule of M . Thus, if M is an injective right R-module, then for any left
ideal A of R, the submodule annM (A) of M is quasi-injective. We also note that if M = R and
A is a left ideal of R, then annR(A) is a two-sided ideal of R and, in this case, we write annl(A)
instead of annR(A). Analogously, if A is a right ideal of R, then the subset {r ∈ R : Ar = 0} of
R, which is obviously a two-sided ideal in R, will be denoted by annr(A).

Lemma 3.5. Let R be a right QIS-ring such that Soc(RR) is not essential in RR. Then R is
semiprime and right nonsingular. In particular Soc(RR) = Soc(RR).

Proof. Let E = E(RR). Assume that there exists a nonzero two-sided ideal I of R such that
I2 = 0. Let J be a right ideal of R such that I ⊕ J ≤e RR. Then (I ⊕ J)I = JI ⊆ I ∩ J = 0;
hence I ⊕J ⊆ annE(I). Since Soc(RR) is not essential in RR, I ⊕J cannot be semisimple. Thus
annE(I) is an essential quasi-injective submodule of E which is not semisimple. Since R is a right
QIS-ring, annE(I) is injective. It follows that annE(I) = E ⊇ R, and so I = 0, a contradiction.
Therefore, R is semiprime.

Since R is semiprime, R contains no singular minimal right ideals by Lemma 3.4. Thus Z(RR)
is not semisimple as a right R-module. It follows that Z(ER) is a quasi-injective right R-module
which is not semisimple, and so, by assumption, Z(ER) is injective. Then E = Z(ER)⊕W for
some nonzero submodule W of E. Let I = W ∩ R. Now I is a nonzero right ideal of R. Since
R/I = R/(W ∩ R) ∼= (R + W )/W ≤ E/W ∼= Z(ER), R/I is a singular right R-module. But
this is possible only when Z(RR) = 0 since Z(RR) ∩ I = 0 and I 6= 0. Therefore, R is right
nonsingular. The last statement follows from the fact that R is semiprime.

Lemma 3.6. Let R be a right QIS-ring such that Soc(RR) is not essential in RR and let I be a
right ideal of R. Then E(RR)I 6= E(RR) if and only if annr(I) 6= 0.

Proof. Let E = E(RR). Assume that annr(I) 6= 0. If EI = E, then annr(I) ⊆ E. annr(I) =
EI annr(I) = 0, a contradiction. Thus EI 6= E.

Conversely, suppose that EI 6= E. We first assume that EI is semisimple as a right R-
module. Then I is semisimple since I ⊆ EI. By assumption Soc(RR) ∩A = 0 for some nonzero
right ideal of R. This yields A.Soc(RR) = 0, and since R is semiprime by Lemma 3.5, we
have Soc(RR).A = 0. Since IR is semisimple, I ⊆ Soc(RR), and so I.A 6= 0. It follows that
annr(I) 6= 0. Now we assume that EI is not semisimple as a right R-module. Observe that EI
is a fully invariant submodule of E; hence it is quasi-injective. Since R is a right QIS-ring, EI
must be an injective right R-module. In particular, E = EI ⊕K for some nonzero submodule
K of E. This gives that KI ⊆ EI ∩K = 0, and so (K ∩R)I = 0. Since R is semiprime, we have
I(K ∩R) = 0; hence 0 6= K ∩R ⊆ annr(I), completing the proof.
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Lemma 3.7. Let R be a right QIS-ring such that Soc(RR) is not essential in RR. Then for any
proper ideal A of R, either annr(A) 6= 0 or R/A is a semisimple Artinian ring.

Proof. Let A be a proper ideal of R and let M = R/A. Suppose that M is not semisimple as
a right R-module. We shall show that EA 6= E, where E = E(RR), and this will complete the
proof by Lemma 3.6. Assume the contrary. Since annE(MR)(A) is a quasi-injective submodule of
E(MR) containing M , we must have E(MR) = annE(MR)(A), by the assumption that R is right
QIS. Therefore, E(MR)A = 0. Now, consider the R-homomorphism f : R → E(MR) defined
by f(r) = r + A for all r ∈ R. f extends to a nonzero R-homomorphism g : E → E(MR).
But in this case, we have g(E) = g(EA) = g(E)A ⊆ E(MR)A = 0, a contradiction. Therefore,
EA 6= E.

Corollary 3.8. Let R be a right QIS-ring such that Soc(RR) is not essential in RR. If R is a
prime ring, then every (two-sided) ideal of R is idempotent.

Proof. Let A be a nonzero proper ideal of R. Then A2 6= 0. By above lemma, the ring R/A2

is semisimple Artinian. Then, there exists a right ideal B of R such that A + B = R and
A ∩B = A2. It follows that A2 = A2 +BA = A, completing the proof.

Lemma 3.9. Let R be a right QIS-ring such that Soc(RR) is not essential in RR and let I be a
right ideal of R. If IR is not semisimple, then E = EI ⊕ annE(RI), where E = E(RR).

Proof. Let E = E(RR) and let I be a right ideal of R. Assume that IR is not semisimple. Then,
EI is a quasi-injective right R-module which is not semisimple. Hence EI is injective. It follows
that there exists a submoduleW of ER such that E = EI⊕W . SinceWI ⊆ EI∩W = 0, we have
W ⊆ annE(RI). Now let e ∈ E such that eRI = 0. Write e = x+ y, where x ∈ EI and y ∈ W .
Suppose that x 6= 0. Then there exists r ∈ R such that 0 6= xr ∈ R. Since er = xr + yr and
erRI = 0, we have xrRI = 0. Thus RIxr = 0 since R is semiprime by Lemma 3.5. In particular,
we have Ixr = 0. This gives that xr ∈ Exr = Wxr ⊆ W . But this is a contradiction since xr
is a nonzero element of EI and EI ∩W = 0. It follows that x = 0, and hence annE(RI) = W ,
completing the proof.

Lemma 3.10. Let R be a right QIS-ring.

(i) If A is a proper ideal of R, then R/A is also a right QIS-ring.

(ii) If S is a semisimple Artinian ring, then the product R× S is also a right QIS-ring.

Proof. (i) Let M be a quasi-injective right (R/A)-module which is not semisimple and let E =
E(MR), the injective hull of M as right R-module. Notice that M ⊆ annE(A) ⊆ E. In this
case, annE(A) is a quasi-injective essential R-submodule of E, which implies by assumption that
annE(A) = E. Thus E is an injective hull of M as (R/A)-module. It follows that M is quasi-
injective as right R-module since it is fully invariant. By assumption, M is injective and the
proof is complete.
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(ii) Let T = R × S and let M be a quasi-injective right T -module which is not semisimple.
Note that there exists a decompositionM = MR⊕MS into T -submodules whereMR = annM (S)
and MS = annM (R). Let K be an injective hull of MT . Then we can decompose K in the same
way as K = KR ⊕ KS . Here KR and KS turn out to be injective hulls of MR and MS as R-
and S-modules, respectively. Since S is semisimple Artinian, we have MS = KS . Also, the
quasi-injectivity of the right T -module M yields the quasi-injectivity of the right R-module MR.
Since MT is not semisimple, MR is not semisimple. Hence, by assumption on R, we must have
MR = KR. Therefore, M = K, and so M is an injective right T -module.

Proposition 3.11. Let R be a right QIS-ring whose right socle is not essential in RR. Then
there exists a ring decomposition R = S×T where S is either zero or a semisimple Artinian ring
and T is a right QIS-ring with zero right socle.

Proof. Set S = Soc(RR) and A = annl(S). If S is zero, then there is nothing to prove. Thus,
suppose that S 6= 0. Since R is semiprime by Lemma 3.5, A contains no simple right R-
submodules. Hence, by Lemma 3.9, we have E = EA ⊕ annE(A). Also, it is not difficult
to see that semiprimeness of R yields S ≤e annl(A) as a right R-submodule. It follows that
S ≤e annE(A); hence annE(A) is an injective hull of SR. Note that HomR(EA, annE(A)) = 0
since EA is a fully invariant submodule of E. This gives that S is EA-injective. Then EA⊕ S
is a quasi-injective right R-module. Since A contains no simple submodules, EA ⊕ S must be
injective. In particular, S is injective; hence S = annE(A). It follows that E = EA⊕ S, and so
R = T ⊕ S, where T = EA ∩R is an ideal of R. This gives the desired decomposition of R.

A ring R is called right strongly prime if for any nonzero ideal A of R, there exists a finite
subset S = {a1, . . . , an} of A such that annr(S) is nonzero. Domains, prime right Goldie rings and
simple rings are natural examples of these rings. Strongly prime rings are studies by Goodearl,
Handelman and Lawrence [16, 17], Rubin [25], and Viola-Prioli [29]. Rubin and Viola-Prioli called
a ring absolutely torsion-free if σ(R) = 0 for any left exact preradical σ 6= id on Mod–R. Later,
in [17], Handelman and Lawrence proved that the class of absolutely torsion-free rings coincides
with that of right strongly prime rings. Thus, we see, in particular, that a right strongly prime
ring has zero right socle and zero right singular ideal. Moreover, right strongly prime rings are
precisely those rings such that Sing–R is the unique coatom in the lattice of hereditary pretorsion
classes of right R-modules (see, [17, Proposition V.4]). In the following theorem, we see that the
investigation of right QIS-rings which are neither right QI not right NMC reduces to strongly
prime rings.

Theorem 3.12. Let R be any ring. Then R is a right QIS-ring if and only if one of the following
conditions hold:

(i) R is a right QI-ring.

(ii) R is a right NMC-ring.
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(iii) There exists a ring decomposition R = S × T such that S is either zero or a semisimple
Artinian ring and T is a right strongly prime right QIS-ring.

Proof. We already know that if (i) or (ii) holds, then R is a right QIS-ring. Also, (iii) implies
that R is a right QIS-ring, by Lemma 3.10 (ii). For the converse, we assume that R is a right
QIS-ring which is not right NMC. Then by Proposition 3.3, the right socle of R is not essential in
RR. Thus, by Proposition 3.11, there exists a ring decomposition R = S×T such that S is either
zero or a semisimple Artinian ring and T is a right QIS-ring with zero right socle. Note that if
T is a right QI-ring, then so is R. It follows that we may assume, without loss of generality, that
R is a right QIS ring with zero right socle which is not a right QI-ring. Then we need to prove
that R is a strongly prime ring. To this end, we shall first prove that R is a prime ring.

Let A be a nonzero ideal of R. Since R is semiprime by Lemma 3.5, annr(A) = annl(A).
We denote this annihilator ideal by annR(A). Assume that annR(A) 6= 0. We shall derive a
contradiction. Set B = annR(A) and C = annR(B). Then, clearly, annR(C) = B and B∩C = 0.
Set E = E(RR). Then E = EB ⊕ annE(B), by Lemma 3.9, and C = annE(B) ∩R ≤e annE(B)
as right R-modules. Since BC = 0, we have annE(C) ⊇ EB ⊇ B. On the other hand, B =
annR(C) = annE(C) ∩ R ≤e annE(C) as right R-modules. Then we have EB = annE(C).
Thus we obtain that E = annE(C)⊕ annE(B) and annE(C) is an injective hull of B. Similarly,
annE(B) is an injective hull of C. Note that annE(B)C = annE(B). Indeed, annE(B)C is
a non-semisimple quasi-injective right R-module, hence an injective right R-module. In this
case, annE(B) = annE(B)C ⊕ U for some U ≤ ER. Then UC ⊆ annE(B)C ∩ U = 0, and so
U ⊆ annE(C) ∩ annE(B) = 0. Similarly, we have annE(C)B = annE(C).

Let S be a semisimple right (R/B)-module. Suppose that S is not injective as (R/B)-module.
Let E′ be an injective hull of SR. Then we have S ⊂ annE′(B) ⊆ E′. Since annE′(B) is an
essential fully invariant submodule E′, by assumption that R is right QIS, E′ = annE′(B),
or equivalently, E′B = 0. Let E′′ = annE(C). Recall that E′′ is an injective hull of B and
E′′B = E′′. It is now easy to see that HomR(E′′, E′) = 0. Therefore, SR is E′′-injective and
hence S ⊕ E′′ is a quasi-injective right R-module which is neither semisimple nor injective, a
contradiction. It follows that every semisimple right (R/B)-module is injective. Since R/B is also
a right QIS-ring by Lemma 3.10 (i), we obtain that R/B is a right QI-ring. Using symmetry, one
can also deduce that R/C is a right QI-ring. In particular, we obtain that R is right Noetherian
since it can be embedded in the Noetherian right R-module (R/B) ⊕ (R/C). Since R is not
prime, there exist finitely many minimal prime ideals P1, . . . , Pn of R with n ≥ 2. Now if we
write B′ = P1 and C ′ = P2 ∩ . . .∩Pn, we have B′ ∩C ′ = 0, annR(B′) = C ′ and annR(C ′) = B′.
By above arguments, we see that R/B′ and R/C ′ are both right QI-rings. Since R/B′ is a prime
right QI-ring, it is simple. Thus, R = B′ ⊕ C ′. It follows that R is a direct product of right
QI-rings, and hence R is right QI. This gives us the desired contradiction. Therefore R is a prime
ring.

We complete the proof by showing that R is strongly prime. Let σ be a left exact preradical
on Mod–R such that σ 6= id. We shall show that σ(R) = 0, which completes the proof. Assume
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contrarily that σ(R) 6= 0. Then σ(E) 6= 0. Since E contains no simple right R-submodules,
σ(E) is a fully invariant submodule of E which is not semisimple. Thus, σ(E) is an injective
right R-module by assumption on R. It follows that E = σ(E) ⊕ Y for some nonzero right
R-submodule Y of E. Since σ(E) is a fully invariant submodule of E, HomR(σ(E), Y ) = 0.
Hence we have HomR(J, I) = 0, where I = Y ∩ R and J = σ(E) ∩ R. It follows that IJ = 0,
which is a contradiction since R is prime and both I, J are nonzero right ideals of R. Therefore,
σ(R) = 0.

Remark 3.13. We note that right strongly prime rings have already some limitations in possessing
quasi-injective modules. Let R be a right strongly prime ring. Then Sing–R is the unique coatom
in the lattice of hereditary pretorsion classes by Proposition V.4 in [17]. LetH be a quasi-injective
right R-module which is not injective. Then In−1 (H) 6= Mod–R; henceH ∈ In−1 (H) ⊆ Sing–R.
It follows that any quasi-injective right R-module that is not injective must be singular. In
particular, nonsingular indecomposable injective right R-modules do not contain proper nonzero
quasi-injective submodules.

Proposition 3.14. Let R be a right fully bounded ring. Then R is a right QIS-ring if and only
if R is a right NMC-ring.

Proof. Let R be a right QIS-ring which is not a right NMC-ring. Then we may assume, by
Theorem 3.12 and [3, Lemma 2.4], that R is either a right QI-ring or a prime right QIS-ring with
Soc(RR) = 0. In the former case, R must be a semisimple Artinian ring since it is a right fully
bounded ring which is a finite direct product of simple rings (see [13, Theorem 2]). But this
yields a contradiction since semisimple Artinian rings are right NMC. Thus, we may suppose that
R is a right fully bounded prime right QIS-ring with Soc(RR) = 0. Since R modulo any nonzero
proper ideal is semisimple by Lemma 3.7, every singular right R-module is semisimple, i.e., R is
a right SI-ring. Hence, Sing–R = SSMod–R. It follows that SSMod–R is the unique coatom in
the lattice of hereditary pretorsion classes of right R-modules. However, by [21, Theorem 2.9],
this just means that R is a right NMC-ring, again a contradiction. Therefore R must be a right
NMC-ring. This completes the proof since the converse is straightforward.

Corollary 3.15. Let R be a commutative ring which is not semisimple Artinian. Then R is a
right QIS-ring if and only if there exists a ring decomposition R = S × T such that S is either
zero or a semisimple Artinian ring and T is a ring with exactly one nonzero proper ideal.

Proof. Follows from Proposition 3.14 and [3, Theorem 4.3].

4 Noetherian rings with restricted socle condition
This section is devoted to the investigation of right Noetherian right QIS-rings with restricted
right socle condition. Following [13], we say that a ring R satisfies the restricted right socle
condition if, whenever I is a proper essential right ideal of R, then R/I has at least one simple
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submodule. Notice that this is equivalent to the condition that every singular right R-module is
semiartinian. Right SI-rings and hereditary prime Noetherian rings (HNP for short) are natural
examples of rings with restricted right socle condition. Also, it is shown in [26, Propositon 2.2]
that any right NMC-ring satisfies this condition. On the other hand, Faith [13] proved that any
right QI-ring with restricted right socle condition must be right hereditary, a partial verification
of Boyle’s conjecture.

In light of Theorem 3.12, we divide our investigation of right Noetherian right QIS-rings
with restricted right socle condition into two steps. In the first step, we consider QI-rings and
NMC-rings and give the following

Proposition 4.1. Let R be any ring which is not semisimple Artinian. Then the following
conditions are equivalent:

(i) R is a right QI-ring with restricted right socle condition.

(ii) R is a right Noetherian right V-ring with restricted right socle condition.

(iii) R is a right SI-ring with Soc(RR) = 0.

Moreover; if, in addition, R is indecomposable, then (i)–(iii) are equivalent to

(iv) R is a right NMC-ring with Soc(RR) = 0.

Proof. Note that right QI-rings (resp., right Noetherian right V-rings) are precisely those rings
which are finite products of simple right QI-rings (resp., of simple right Noetherian right V-rings),
by [13, Theorem 2 and Corollary 3]. Also, any ring with zero right socle is right SI if and only if
it is a finite product of rings Morita equivalent to a right SI-domain, by [14, Theorem 3.11]. On
the other hand, it is not difficult to see that a product R1×· · ·×Rn of rings R1, . . . , Rn satisfies
the restricted right socle condition if and only if so is each Ri. Thus, we may assume that R is
an indecomposable ring.

(i) ⇒ (ii): Straightforward.
(ii)⇒ (iii): Since R is indecomposable, it is simple; hence Soc(RR) = 0. Let M be a singular

right R-module. Since R satisfies the restricted right socle condition, Soc(M) ≤e M , and so
Soc(M) = M by assumption. Thus R is right SI.

(iii) ⇒ (iv): By [14, Theorem 3.11], R is Morita equivalent to a right SI-domain. So, R is a
right NMC-ring by [26, Theorem 4.2].

(iv) ⇒ (i): Note that a right SI-domain is a (right Noetherian) right PCI-domain; hence a
right QI-domain by [4, Theorem 7]. Also, any right NMC-ring satisfies the restricted right socle
condition. Then by [26, Theorem 4.2], the proof is complete.

Lemma 4.2. Let R be a right strongly prime ring. Then every nonzero injective right R-module
is faithful.
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Proof. Let E be a nonzero injective right R-module. Since R is right strongly prime, we have
ωE0 ≤ Z, where Z(M) denotes the singular submodule of any right R-module M . It follows that
annR(E) = ωE0 (R) ⊆ Z(RR) = 0.

In the second step, we focus on right strongly prime (or, equivalently, prime) right Noetherian
right QIS-rings which are neither right QI nor right NMC. The following proposition provides a
useful characterization for a class of these rings.

Proposition 4.3. Let R be a prime right Noetherian ring with restricted right socle condition.
If R is not a right V-ring, then R is right QIS if and only if the following statements hold:

(i) There exists a unique isomorphism class of non-injective simple right R-modules.

(ii) If W is a non-injective simple right R-module, then it is the only proper nonzero fully
invariant submodule of E(W ).

In this case, R contains at most one nonzero proper (two-sided) ideal.

Proof. Let R be a right QIS-ring. Since R is not a right V-ring, there exists a non-injective simple
right R-module,W say. By assumption, every nonzero singular right R-module contains a simple
submodule, which yields, in particular, that E(W )/W has a simple submodule. It follows that
there exists a uniserial submodule U of E(W ) of length 2. Note that TrR(U,E(W )) is a non-
semisimple quasi-injective submodule of E(W ). Since R is right QIS, we have TrR(U,E(W )) =
E(W ). Since any nonzero homomorphic image of U in E(W ) contains W , E(W ) =

∑
λ∈Λ Uλ for

some index set Λ and submodules Uλ isomorphic to U for all λ ∈ Λ. In this case, E(W )/W =∑
λ∈Λ(Uλ/W ) is a homogeneous semisimple right R-module. Let W ′ be a non-injective simple

right R-module which is not isomorphic to W . If W is E(W ′)-injective, then W ⊕ E(W ′)
is quasi-injective right R-module which is neither semisimple nor injective. Thus W is not
E(W ′)-injective, and hence TrR(E(W ′), E(W )) * W . Let f : E(W ′) → E(W ) be a nonzero
R-homomorphism such that W ⊂ Im(f). Since W ′ � W , W ′ ⊆ ker(f). Thus, by above
arguments, E(W ′)/ ker(f) is nonzero semisimple. But E(W ′)/ ker(f) is embedded in E(W ),
and so Im(f) ⊆ W , a contradiction. Therefore W is the unique non-injective simple right R-
module, establishing (i). Finally, (ii) follows immediately from the assumption that R is a right
QIS-ring.

Conversely assume that the conditions (i) and (ii) are satisfied. Let H be a quasi-injective
right R-module which is not semisimple and let G = E(H), an injective hull of H. Then
G =

⊕
λ∈ΛGλ for some index set Λ and indecomposable injective right R-modules Gλ for all

λ ∈ Λ. Since H is quasi-injective, we have H =
⊕

λ∈ΛHλ, where Hλ = H ∩ Gλ. Note that
for each λ ∈ Λ, Hλ is a nonzero quasi-injective submodule of Gλ and Gλ is an injective hull of
Hλ. Given any µ ∈ Λ, there are two cases for Gµ; namely, Gµ is nonsingular or Gµ has nonzero
singular submodule. In the former case we have Hµ = Gµ since R is strongly prime which implies
that Gµ contains no nonzero proper quasi-injective submodules (see Remark 3.13). Now assume
that Gµ has nonzero singular submodule. Then Gµ contains a simple submodule. Since Gµ is
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indecomposable, it is an injective hull of a simple right R-module. By assumptions, either Gµ
is simple or it is isomorphic to E(W ), where W is the unique (up to isomorphism) non-injective
simple right R-module. In the latter case, either Hµ = Gµ or Hµ is the unique simple submodule
of Gµ by (ii). Let Λ1 = {λ ∈ Λ : Hλ = Gλ}. We shall show that Λ = Λ1. We assume the
contrary and look for a contradiction. Let ν ∈ Λ\Λ1. By above arguments, we have Gν ∼= E(W )
and Hν is the unique simple submodule of Gν . Let µ ∈ Λ1. Then Hµ = Gµ. By [23, Proposition
1.18], Hν is Gµ-injective. Thus Gµ cannot be nonsingular since R is right strongly prime. It
follows from above arguments that Gµ is either simple or isomorphic to E(W ). The latter case
is impossible since Hν

∼= W is not injective relative to E(W ). Therefore Hµ is simple for each
µ ∈ Λ1. On the other hand, Hν is simple (necessarily isomorphic to W ) for all ν ∈ Λ \ Λ1. It
turns out that H =

⊕
λ∈ΛHλ is semisimple, a contradiction. Thus Λ = Λ1, and so H = G.

Therefore R is a right QIS-ring.
For the last statement, let R be a prime right Noetherian right QIS-ring with restricted right

socle condition. If R is simple, then we are done. Thus assume that R is not simple and let A
be a nonzero proper ideal of R. Since R is right strongly prime, Soc(RR) = 0. By Lemma 3.7,
the ring R/A is semisimple Artinian. By (ii) and Lemma 4.2, R/A is a simple Artinian ring;
hence A is maximal. Therefore, every nonzero proper ideal of R is maximal. Since R is prime,
this gives that R has a unique nonzero proper ideal.

By Proposition 4.3 we see how a right QIS-ring can be close to a right V-ring. Now, in the
following lemma, we see that a right QIS-ring is also close to being a right NMC-ring.

Lemma 4.4. Let R be a right strongly prime ring with restricted right socle condition. If R
is a right QIS-ring, then there are no hereditary pretorsion classes properly between SSMod–R
and Sing–R, i.e., [SSMod–R,Mod–R] = {SSMod–R,Sing–R,Mod–R} in the lattice of hereditary
pretorsion classes of right R-modules.

Proof. We let σ ∈ lep–R such that Soc < σ < Z and look for a contradiction, by which the result
follows by correspondence. Now there exists right R-modules M , N such that Soc(M) ( σ(M)
and σ(N) ( Z(N). If L = M ⊕ N , then Soc(L) ( σ(L) ( Z(L). Set E = E(L). Then we
also have Soc(E) ( σ(E) ( Z(E). Since σ(E) is quasi-injective that is not semisimple, it must
be injective; hence σ(E) is a direct summand of Z(E), a contradiction since Z(E) has essential
socle by assumption.

Recall that a preradical σ on Mod–R is said to be stable if σ(E) is injective for every injective
right R-module E.

Lemma 4.5. Let R be any ring. Then R is a right QIS-ring if and only if every left exact
preradical σ with Soc < σ is stable.

Proof. By [21, Theorem 2.9], for any left exact preradical σ such that Soc ≤ σ, there exists a
right R-module M such that σ = iM . Thus the lemma follows from [10, Proposition 5.3].
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Proposition 4.6. Let R be a prime right Noetherian ring with restricted right socle condition.
Then the following conditions are equivalent:

(i) R is a right QIS-ring.

(ii) There are no hereditary pretorsion classes properly between SSMod–R and Sing–R.

(iii) Every singular right R-module is either injective or poor.

Proof. (i) ⇒ (ii): By Lemma 4.4.
(ii) ⇒ (i): If SSMod–R = Sing–R, then R is a right NMC-rings (since R is right strongly

prime), and so it is right QI, by Proposition 4.1. Thus assume that SSMod–R 6= Sing–R (or
equivalently, Soc < Z). Now Z and id are the only left exact preradicals strictly greater that
Soc and, since R is right nonsingular, Z is stable; hence R is a right QIS-ring by Lemma 4.5.

(i) ⇒ (iii): If R is a right V-ring, then it is right SI by Proposition 4.1. Thus assume
that R is not a right V-ring. Again by Proposition 4.1, this gives that R is not right NMC;
hence SSMod–R 6= Sing–R. Note that there exists a unique (up to isomorphism) non-injective
simple right R-module, W say, by Proposition 4.3. We first show that W is poor. Assume the
contrary. Since W is not injective, In−1 (W ) lies between SSMod–R and Sing–R. It follows
that In−1 (W ) = Sing–R by Lemma 4.4. But, in this case, W must be E(W )-injective, a
contradiction. Thus W is poor. Now let M be any singular module which is not injective.
Then In−1 (M) lies between SSMod–R and Sing–R. We shall show that In−1 (M) = SSMod–R.
Assume the contrary. Then by Lemma 4.4, In−1 (M) = Sing–R, and hence M is quasi-injective.
Since R is right QIS and M is not injective, M must be semisimple. Note that the only non-
injective semisimple right R-modules are those containing a copy of W since W is the only
non-injective simple right R-module and R is right Noetherian. Therefore M has a copy of W
as a direct summand, and so it is poor. But this yields a contradiction since, in this case, we
have SSMod–R = In−1 (M) = Sing–R, which implies that R is right NMC.

(iii) ⇒ (i): First we shall show that there exists a unique isomorphism class of non-injective
simple right R-modules. Let W and W ′ be non-injective simple right R-modules. By the re-
stricted socle condition, there exists a uniserial module U ′ of length 2 which contains W ′. Note
that every simple right R-module is singular since Soc(RR) = 0. Hence W is poor by our as-
sumption. Since U ′ is not semisimple, W cannot be U ′-injective; so TrR(U ′, E(W )) *W . Thus
there exists an R-homomorphism f : U ′ → E(W ) such that Im(f) ⊃ W . Since U ′ has length 2,
f must be an isomorphism. Indeed, if f is not an isomorphism, then we must have ker(f) = W ′,
which gives that Im(f) ∼= U ′/W ′ is simple, a contradiction. Therefore W ′ ∼= W .

Next we show that if W is a non-injective simple right R-module, then it is the only nonzero
proper fully invariant submodule of E(W ). To this end, letM be a proper nonzero fully invariant
submodule of E(W ). Then, by assumption, M is poor. Since M ∈ In−1 (M) = SSMod–R, we
must have M = W , as desired, completing the proof by Proposition 4.3.

In Theorem 3.12, we see that indecomposable right QIS-rings fall into three classes of rings,
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namely, right QI-rings, right NMC-rings, and strongly prime rings. The following proposition
provides us with a way for producing concrete examples of right QIS-rings which are neither
right QI nor right NMC using basic idealizer rings. Recall that given a ring S and a right ideal
A in S, one can form the largest subring of S, denoted IS(A), containing A as a two-sided ideal.
If A is such that SA = S and (S/A)S is isotypic (or, in other words, homogeneous) semisimple,
then we call the ring R = IS(A) a basic idealizer. Let R = IS(A) be a basic idealizer. Then
R/A is a simple Artinian ring, A is an idempotent (maximal) ideal, and if U is a simple right
S-module such that (S/A)S ∼= U (n) for some n ∈ N, then UR is a uniserial module of length 2.
If W = Soc(UR) and V = U/W , then V � W and annR(W ) = A. In this case, we say that
R = IS(A) is a basic idealizer of type U = [VW ]. Note that any simple right S-module not
isomorphic to U is also a simple right R-module. In fact, a simple right R-module is of the form
V , W , or X, where X is a simple right S-module not isomorphic to U . We refer the interested
reader to the book of Levy and Robson [20] in which a very detailed account of idealizer rings is
given.

Proposition 4.7. Let S be an indecomposable right SI-ring with Soc(RR) = 0. If R = IS(A)
is a basic idealizer for a right ideal A of S, then R is a right QIS-ring which is neither right QI
nor right NMC.

Proof. By Proposition 4.1, S is a simple right Noetherian right V-ring that is not semisimple
Artinian. Assume that the basic idealizer ring R = IS(A) is of type U = [VW ]. First, we show
that R is a prime right Noetherian ring. By [20, Theorem 4.19], we immediately see that R is
right Noetherian. Since S is simple, it does not contain a simple right ideal. It follows that A
is essential in SS , and so there exists a regular element c ∈ S contained in A. Then cS ⊆ R,
and hence R is prime and the right quotient rings of R and S coincide (see [22, 2.3.6, 3.1.4, and
3.1.6]).

Now we show that every singular right R-module is semiartinian. Note that it suffices to
consider only cyclic singular modules. Let B be a proper essential right ideal of R. We want to
show that (R/B)R is Artinian. First, we assume that B is contained in A. If B = A, then there
is nothing to prove. Thus we assume B 6= A. Note that we have B ⊆ BS ⊆ A. Suppose that
B = BS. In this case, B is a right ideal of S. Since R is prime right Noetherian, B contains
a regular element d of R. Note that d is also a regular element of S since the right quotient
rings of R and S coincide, and so S/B is a cyclic singular right S-module. Therefore, (S/B)S
is Noetherian and semiartinian by assumption. Thus (S/B)S has finite length. It follows from
[20, Corollary 4.18 (i)] that (S/B)R has finite length. In particular, SocR(A/B) 6= 0. Now
suppose that B 6= BS. Then BS/B is a nonzero semisimple right R-module by [20, Lemma
4.10]. Therefore, in any case, we have SocR(A/B) 6= 0. Let SocR(A/B) = B1/B. Then B1 is an
essential right ideal of R such that B ⊂ B1 ⊆ A. Thus replacing B with B1, above arguments
show that B2/B1 := SocR(A/B1) 6= 0. Continuing in this fashion, we obtain a strictly ascending
chain B0 = B ⊂ B1 ⊂ B2 ⊂ . . . of essential right ideals of R contained in A where Bi+1/Bi is of
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finite length for each i ≥ 0. Since R is right Noetherian, this process must terminate (necessarily
at A) after a finite number of steps, which yields that (A/B)R has finite length. Since (R/A)R
is finitely generated semisimple, it is of finite length; hence (R/B)R has finite length. Now let
B be an arbitrary proper essential right ideal of R. Then A ∩ B is an essential right ideal of R
contained in A. By above, R/(A∩B) is an Artinian right R-module, and so is R/B, as desired.

Next we prove thatW is the unique (up to isomorphism) non-injective simple right R-module
and it is the only nonzero proper fully invariant submodule of E(W ). Since US is injective, UR is
injective by [20, Proposition 4.13 (ii)]. This gives that UR ∼= E(W ). Hence WR is a non-injective
simple right R-module and it is the only nonzero proper fully invariant submodule of E(W ).
Let X be a simple right R-module which is not isomorphic to V or W . Then by [20, Corollary
4.8 (iii)], X is a simple right S-module not isomorphic to US . Since S is a right V-ring, XS

is injective. Hence XR is also injective again by [20, Proposition 4.13 (ii)]. Thus it remains to
prove that VR is injective. Since every singular right R-module contains a simple submodule, in
order to show that VR is injective, it is enough to prove that Ext1

R(Y, V ) = 0 for every simple
right R-module Y . Suppose on the contrary that there exists a simple right R-module Y such
that Ext1

R(Y, V ) 6= 0. Since Ext1
R(W,V ) ∼= Ext1

S(U,U) = 0 by [20, Theorem 5.7 (iii)] and the
fact that US is injective, we have Y �W . Also by [20, Theorem 5.7 (i)], Ext1

R(V, V ) = 0; hence
Y � V . It follows from [20, Corollary 4.8 (iii)] that Y is a simple right S-module. Therefore,
Ext1

R(Y, V ) ∼= Ext1
S(Y, U) = 0, by [20, Theorem 5.3 (iii)], a contradiction. It follows that VR is

injective, and so WR is the only non-injective simple right R-module. Therefore, R satisfies the
conditions (i) and (ii) of Proposition 4.3, proving that R is a right QIS-ring. Note that the ring
R is neither right QI nor right NMC, by Proposition 4.1, since R is an indecomposable ring with
zero right socle which is not a right V-ring.

Let S be a non-Artinian HNP ring which is also a right V-ring (see, for example, [7], [8], [19],
or [24]) and take any right ideal A of S such that (S/A)S is isotypic semisimple. Then R = IS(A)
is a basic idealizer and, by above proposition, R is a right QIS-ring which is neither right QI
nor right NMC. The following theorem shows that this is the only way in which we can produce
examples of such rings R in the class of HNP rings.

Given an HNP ring R, we mean by an overring of R any intermediate ring between R and
the ring of quotients of R. Note that every non-Artinian overring of an HNP ring is also HNP
(see [20, Theorem 13.5]).

Theorem 4.8. Let R be an HNP ring which is not simple. Then the following statements are
equivalent:

(i) R is a right QIS-ring which is not right QI.

(ii) There is exactly one isomorphism class of non-injective simple right R-modules and if W
is a non-injective simple module, then E(W ) is a uniserial module of length 2.

(iii) R is a basic idealizer ring from a right QI overring that is not simple Artinian.
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Proof. (i)⇒(ii): Let R be a right QIS ring which is not a right QI ring. By [4, Theorem 5], R
is not a right V-ring. Then by Proposition 4.3 (ii), there is exactly one isomorphism class of
non-injective simple right R-modules. Since R is not simple, there exists a nonzero maximal ideal
A of R. Let W be a simple right R-module annihilated by A. Then by [20, Theorem 15.2] W is
not injective and there exists a unique (up to isomorphism) simple right R-module V such that
Ext1

R(V,W ) 6= 0. This means that there exists a uniserial right R-module U such that W ⊂ U

and U/W ∼= V . In particular, we have W ⊂ U ⊆ E(W ). Since R contains no invertible ideals
by Lemma 3.8, it follows from [20, Proposition 15.8] that V �W , and hence V is injective. This
yields that V is faithful by [20, Theorem 15.2] (or by Lemma 4.2 of the present paper). It follows
from [20, Corollary 24.11] that U is the unique submodule of E(W ) of length 2. Observe that
for any nonzero homomorphism f : U → E(W ) is an isomorphism since V � W . This shows
that U is a fully invariant submodule of E(W ). Hence U = E(W ), by Proposition 4.3 (ii). This
establishes (ii).

(ii)⇒(i): Immediate by Proposition 4.3 (ii).
(ii)⇒(iii): Since R is not simple, there exists a nonzero maximal ideal A of R. Let W be

a simple right R-module annihilated by A. By (ii) together with [20, Theorem 15.2], W is the
unique (up to isomorphism) non-injective simple right R-module and there exists a unique simple
module V such that Ext1

R(V,W ) 6= 0. Then there exists a uniserial right R-module U of length
2 such that W ⊂ U and U/W ∼= V . By (ii), U ∼= E(W ). Then V is injective, and so V � W .
This gives that A is not invertible by [20, Proposition 15.8 (iii)]; hence it is idempotent. Thus,
by [20, Theorem 14.9], R = IS(A) is a basic idealizer of type U = [VW ], where S is the subring
of the quotient ring of R consisting of elements x such that Ax ⊆ A. Combining Theorem 4.4
and Proposition 4.13 (ii) in [20] we see that S is a right V-ring. Therefore S is a right QI ring.

(iii)⇒(i): Immediate by Proposition 4.7.
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