Bryon S DonohoeNational Renewable Energy Laboratory | NREL · Biosciences Center
Bryon S Donohoe
PhD
About
135
Publications
58,456
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,587
Citations
Introduction
Publications
Publications (135)
Imaging in the visible spectrum is a low-cost tool that can be readily deployed for in-field or over-belt monitoring of biomass quality for bio-refining operations. Rapid image analysis coupled with innovative preprocessing may reduce the impacts of feedstock variability through identification of contaminants or other material attributes to guide s...
With the advancement of renewable energy, the processing and handling of biomass feedstocks has drawn enormous research interest. The key to economically viable and operationally reliable biomass handling processes involves a complete understanding of the flow behavior of different feedstocks as functions of the inherent critical material propertie...
Background
Multiple analytical methods have been developed to determine the ratios of aromatic lignin units, particularly the syringyl/guaiacyl (S/G) ratio, of lignin biopolymers in plant cell walls. Chemical degradation methods such as thioacidolysis produce aromatic lignin units that are released from certain linkages and may induce chemical chan...
Background
Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron c...
Background
Multiple analytical methods have been developed to determine the ratios of monolignol monomers, particularly the syringyl/guaiacyl (S/G) ratio, of lignin biopolymers in plant cell walls. Chemical degradation methods yield monomers that are either selective of certain linkages, such as thioacidolysis, or induce chemical changes rendering...
Background Multiple analytical methods have been developed to determine the ratios of aromatic lignin units, particularly the syringyl/guaiacyl (S/G) ratio, of lignin biopolymers in plant cell walls. Chemical degradation methods such as thioacidolysis produce aromatic lignin units that are released from certain linkages and may induce chemical chan...
Plastics pollution represents a global environmental crisis. In response , microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, Ideonella sakaien-sis was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically , the I. sakai...
Production of biofuels, bioproducts, and bioenergy requires a well-characterized, stable, and reasonably uniform biomass supply and well-established supply chains for shipping biomass from farm fields to biorefineries, while achieving year-round production targets. Preserving and stabilizing biomass feedstock during storage is a necessity for cost-...
The variability of chemical, physical and mechanical properties of lignocellulosic biomass feedstocks have a major impact on the efficiency of biomass processing and conversion to fuels and chemicals. Storage conditions represent a key source of variability that may contribute to biomass quality variations from the time of harvest until delivery to...
As a robust perennial C4-type monocot plant and a native species to North America, switchgrass (Panicum virgatum) has been evaluated and designated as a strong candidate bioenergy crop by the U.S. DOE. Although genetic modifications of switchgrass have been used to successfully reduce the recalcitrance of switchgrass biomass for biofuel production,...
A common and costly challenge in the nascent biorefinery industry is the consistent handling and conveyance of biomass feedstock materials, which can vary widely in their chemical, physical, and mechanical properties. Solutions to cope with varying feedstock qualities will be required, including advanced process controls to adjust equipment and rej...
Feedstock variability is a significant barrier to the scale-up and commercialization of lignocellulosic biofuel technologies. Variability in feedstock characteristics and behavior creates numerous challenges to the biorefining industry by affecting continuous operation and biofuels yields. Currently, feedstock variability is understood and explaine...
Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process wou...
Lignin solvolysis from the plant cell wall is the critical first step in lignin depolymerization processes involving whole biomass feedstocks. However, little is known about the coupled reaction kinetics and transport phenomena that govern the effective rates of lignin extraction. Here, we report a validated simulation framework that determines int...
Ferrous ion co-catalyst enhancement of dilute-acid (DA) pretreatment of biomass is a promising technology for increasing the release of sugars from recalcitrant lignocellulosic biomass. However, due to the reductive status of ferrous ion and its susceptibility to oxidation with exposure to atmosphere, its effective application presumably requires a...
Feedstock variability that originates from biomass production and field conditions propagates through the value chain, posing a significant challenge to the emerging biorefinery industry. Variability in feedstock properties impacts feeding, handling, equipment operations, and conversion performance. Feedstock quality attributes, and their variation...
The impacts and variability of inorganic material (measured as total ash) on surface area, surface energy, wettability, and cohesion of corn stover samples from Iowa were examined in this study. The impact of total ash on the acid component of surface energy was determined to be significant with the acid component increasing with increasing ash con...
Significant effort has been expended toward the discovery and/or engineering of improved cellulases. An alternative to this approach is utilizing multifunctional enzymes; however, essentially most if not all relevant bacterial enzymes of this type do not express well in fungi. Therefore, developing a systematic understanding of how to construct mul...
Background:
Low-temperature swelling of cotton linter cellulose and subsequent gelatinization in trifluoroacetic acid (TFA) greatly enhance rates of enzymatic digestion or maleic acid-AlCl3 catalyzed conversion to hydroxymethylfurfural (HMF) and levulinic acid (LA). However, lignin inhibits low-temperature swelling of TFA-treated intact wood parti...
Economic biofuel production requires high sugar yields during biomass pretreatment, however, the chemical and structural features of biomass can be obstructive towards efficient xylose hydrolysis. Here, we tested the hindrance imposed by the multi-scale structure of biomass on the hydrolysis of xylan during dilute acid pretreatment by studying the...
Background
The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endopl...
Background
Mechanical refining is a low-capital and well-established technology used in pulp and paper industry to improve fiber bonding for product strength. Refining can also be applied in a biorefinery context to overcome the recalcitrance of pretreated biomass by opening up the biomass structure and modifying substrate properties (e.g., morphol...
Background
The model yeast, Saccharomyces cerevisiae, is not known to be oleaginous. However, an industrial wild-type strain, D5A, was shown to accumulate over 20% storage lipids from glucose when growth is nitrogen-limited compared to no more than 7% lipid accumulation without nitrogen stress. Methods and resultsTo elucidate the mechanisms of S. c...
Background
Strategies for maximizing the microbial production of bio-based chemicals and fuels include eliminating branched points to streamline metabolic pathways. While this is often achieved by removing key enzymes, the introduction of nonnative enzymes can provide metabolic shortcuts, bypassing branched points to decrease the production of unde...
Significance
Synthetic polymers are ubiquitous in the modern world but pose a global environmental problem. While plastics such as poly(ethylene terephthalate) (PET) are highly versatile, their resistance to natural degradation presents a serious, growing risk to fauna and flora, particularly in marine environments. Here, we have characterized the...
Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biom...
Opuntia ficus-indica (prickly pear) and Grindelia squarrosa (gumweed) are two exceptionally drought tolerant plant species capable of growing in arid and semi-arid environments. Additionally, they have unique cell wall structures. Prickly pear contains pectin and high levels of ash (16.1%) that is predominantly Ca and K. Gumweed has high levels of...
Visualization of lignin in plant cell walls, with both spatial and chemical resolution, is emerging as an important tool to understand lignin's role in the plant cell wall's nanoscale architecture and to understand and design processes intended to modify the lignin. As such, this chapter reviews recent advances in advanced imaging methods with resp...
Background
The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates....
Background
Switchgrass (Panicum virgatum), a robust perennial C4-type grass, has been evaluated and designated as a model bioenergy crop by the U.S. DOE and USDA. Conventional breeding of switchgrass biomass is difficult because it displays self-incompatible hindrance. Therefore, direct genetic modifications of switchgrass have been considered the...
In planta expression of a thermophilic endoglucanase (AcCel5A) reduces recalcitrance by creating voids and other irregularities in cell walls of Arabidopsis thaliana that increase enzyme accessibility without negative impacts on plant growth or cell wall composition. Our results suggest that cellulose β-1–4 linkages can be cut sparingly in the asse...
The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrat...
Background
Consolidated bioprocessing (CBP) by anaerobes, such as Clostridium thermocellum, which combine enzyme production, hydrolysis, and fermentation are promising alternatives to historical economic challenges of using fungal enzymes for biological conversion of lignocellulosic biomass. However, limited research has integrated CBP with real pr...
The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conse...
Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct m...
Biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput...
Selective biomass fractionation into carbohydrates and lignin is a key challenge in the conversion of lignocellulosic biomass to fuels and chemicals. In the present study, alkaline hydrogen peroxide (AHP) pretreatment was investigated to fractionate lignin from polysaccharides in corn stover, with a particular emphasis on the fate of the lignin for...
Thermochemical pretreatment of lignocellulose is often employed to render polysaccharides more digestible by carbohydrate-active enzymes to maximize sugar yields. The fate of lignin during pretreatment, however, is highly dependent on the chemistry employed and must be considered in cases where lignin valorization is targeted alongside sugar conver...
Background
Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and incre...
It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate depletion, product inhibition or enzyme instability....
Cellulose is the primary biopolymer responsible for maintaining the structural and mechanical
integrity of cell walls, and during the fast pyrolysis of biomass may be restricting cell wall
expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two phy...
Clostridium thermocellum is the most efficient microorganism for solubilizing lignocellulosic biomass known to date. Its high cellulose digestion capability is attributed to efficient cellulases consisting of both a free-enzyme system and a tethered cellulosomal system wherein carbohydrate active enzymes (CAZymes) are organized by primary and secon...
Background:
Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible...
Biomass represents a vast source of carbon for cellulosic biofuels production. Understanding and developing better strategies for the conversion of cellulosic biomass is essential for the success of this industry. Over the years, we have used the diversity found in nature to guide the development of more efficient enzyme preparations tailored for b...
Background:
Substrate accessibility to catalysts has been a dominant theme in theories of biomass deconstruction. However, current methods of quantifying accessibility do not elucidate mechanisms for increased accessibility due to changes in microstructure following pretreatment.
Results:
We introduce methods for characterization of surface acce...
To improve the deconstruction of biomass, the most abundant terrestrial source of carbon polymers, en route to renewable fuels, chemicals, and materials more knowledge is needed into the mechanistic interplay between thermochemical pretreatment and enzymatic hydrolysis. In this review we highlight recent progress in advanced imaging techniques that...
Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to...
Alkaline pretreatment using sodium hydroxide offers a means to extract lignin and acetate from lignocellulosic biomass, in turn enabling higher enzymatic digestibility of the remaining polysaccharides and production of a lignin-enriched stream for potential valorization. Key criteria for alkaline pretreatment processes, which are important for comm...
Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of in...
Biomass has one‐third the energy density of crude oil and lacks petroleum's versatility as a feedstock for fuels and chemicals. Chemical catalysis and fast pyrolysis can overcome these limitations by transforming the main components of biomass (cellulose, xylan, and lignin) from grasses and trees directly to liquid hydrocarbons and aromatic co‐prod...
Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.
Production of value-added furans and phenols from biomass through catalytic fast pyrolysis of pine using molybdenum supported on KIT-5 mesoporous silica support was explored. Catalysts containing different loadings of molybdenum were synthesized and characterized by X-ray diffraction, nitrogen physisorption analysis, various electron microscopic te...
Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microst...
Reducing the severity of thermochemical pretreatment by incorporating iron ions as co-catalysts has been shown to enhance the sugar yield from dilute acid pretreatments and enzymatic saccharification. However, current approach of soaking iron containing acid solutions onto milled biomass prior to pretreatment is time-consuming and subject to diffus...
Renewable energy today comprises wind, photovoltaics, geothermal, and biofuels. Biomass is the leading source of renewable, sustainable energy used for the production of liquid transportation fuels. While the focus is shifting today from the ethanol towards next generation or advanced biofuels the real challenge however remains the same: reducing t...
Organosolv fractionation processes aim to separate the primary biopolymers in lignocellulosic biomass to enable more selective deconstruction and upgrading approaches for the isolated components. Clean fractionation (CF) is a particularly effective organsolv process that was originally applied to woody feedstocks. The original CF pretreatment emplo...
Enzymatic depolymerization of polysaccharides is often a key step in the production of fuels and chemicals from lignocellulosic biomass. Historically, model cellulose from model substrates to realistic biomass substrates is criticalsubstrates have been utilized to reveal insights into enzymatic saccharification mechanisms. However, translating find...