
Decentralizing Authorities into
Scalable Strongest-Link Cothorities

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, and Bryan Ford
Yale University

ABSTRACT
Online infrastructure often depends on security-critical au-
thorities such as logging, time, and certificate services. Au-
thorities, however, are vulnerable to the compromise of one
or a few centralized hosts yielding “weakest-link” security.
We propose collective authorities or cothorities, an archi-
tecture enabling thousands of participants to witness, vali-
date, and co-sign an authority’s public actions, with mod-
erate delays and costs. Hosts comprising a cothority form
an efficient communication tree, in which each host vali-
dates log entries proposed by the root, and contributes to col-
lective log-entry signatures. These collective signatures are
small and efficient to verify, while embodying “strongest-
link” trust aggregated over the collective. We present and
evaluate a prototype cothority implementation supporting log-
ging, timestamping, and public randomness (lottery) func-
tions. We find that cothorities can scale to support over
4000 widely-distributed participants while keeping collec-
tive signing latencies to within a few seconds.

1. INTRODUCTION
Our online (and offline) infrastructure often depends on

authorities that provide conceptually simple but security-
critical services that many higher-level services and applica-
tions depend on. For example, timestamp servers attest that
a document existed at a particular time [1]; notaries attest
that a document was signed by particular parties [2]; certifi-
cate authorities attest that a human-readable name is owned
by the holder of a given public key [18]; directory authori-
ties maintain lists of servers available to support particular
applications [26,69]; randomness authorities produce public
random numbers useful in games or lotteries [58, 61].

Authorities are conventionally implemented via one or a
few centralized servers, creating attractive targets for pow-
erful adversaries. In the Certificate Authority (CA) system
underlying SSL/TLS [24, 34], for example, attackers who
steal secret keys from any of hundreds of CAs [27] can and
have misused CA authority to impersonate popular web sites
and spy on users [5, 12, 13].

Proposed logging and monitoring solutions such as Cer-
tificate Transparency [43,44] unfortunately offer only retroac-

tive defense, leaving clients vulnerable to fake certificates
for a time unless they first verify all certificates with multi-
ple independent logs and monitors. The alternative of split-
ting an authority into a small consensus group, as in the Tor
directory service [74,75], protects clients from any one com-
promised server. It is questionable, however, whether com-
promising or exfiltrating keys from a few servers in such a
group remains beyond the capabilities of today’s adversaries,
particularly from increasingly powerful and often purport-
edly legal state-level hacking activities [35, 66].

We propose to replace high-value authorities with large-
scale collective authorities, which we call cothorities. The
basic goal is to split trust across a large and diverse body of
independently-run servers. A cothority guarantees strongest-
link security whose strength increases as the collective grows,
instead of decreasing to weakest-link security as in today’s
CA system. Each of potentially thousands of hosts com-
prising a cothority independently validates each public out-
put, contributing a share of a collective digital signature to
each validated output, or withholding its signature and rais-
ing an alarm if misbehavior is detected. Clients can vali-
date a cothority’s output – such as a log record, timestamp,
certificate, or random number – using a single inexpensive
cryptographic operation comparable to conventional signa-
ture verification. This collective signature attests to the client
that not just one but many well-known servers (ideally thou-
sands) independently checked and signed off on that output.

The formal foundation for cothorities already exists in the
form of cryptographic threshold signatures [70], aggregate
signatures [11], and multisignatures [8,54], but to our knowl-
edge these primitives have been deployed only in small groups
(e.g., ≈ 10 nodes) in practice. Our main contribution is to
demonstrate how to scale these techniques across thousands
of servers in practical environments. A first-order techni-
cal challenge is limiting the computation and network band-
width costs imposed on each participating server; we solve
this challenge using tree-based communication structures com-
parable to those long used in multicast protocols [15, 76].

A second-order challenge is handling server failures, which
we expect to be rare but non-negligible, and if not addressed
would make a cothority vulnerable to crashes or denial-of-
service attacks by any server. We explore two solutions

1

ar
X

iv
:1

50
3.

08
76

8v
1

 [
cs

.C
R

]
 3

0
M

ar
 2

01
5

to this availability challenge. First, we allow each log en-
try’s signature to contain a few exceptions explicitly listing
servers whose contributions to the collective signature could
not be obtained promptly. Second, we can require cothor-
ity servers to secret-share their temporary signing keys with
a group of independent insurers, who can reconstruct the
server’s key if the server fails. These two approaches to
guaranteeing availability represent tradeoffs and may be em-
ployed independently or together.

We have built a working cothority server prototype im-
plementing collectively signed logging, timestamping, and
vote-counting services. Experimental evaluations on Deter-
Lab [23] demonstrate that the prototype scales easily to over
4000 participant servers, handling hundreds of thousands of
client requests per second in aggregate. These large exper-
imental cothorities can produce, validate, and sign new log
entries with typical latencies of only 1–5 seconds – delays
easily tolerable by typical authority services.

This paper makes the following contributions: (a) it pro-
poses cothorities, a scalable approach to strongest-link trust
for security-sensitive services; (b) it designs CoSi, the first
protocol to make multisignatures scale to thousands of nodes;
and (c) it presents and evaluates a prototype cothority im-
plementation demonstrating that large-scale cothorities are a
viable alternative to current centralized-trust authorities.

Section 2 of this paper explores the background and moti-
vation for cothorities. Section 3 then presents CoSi, the col-
lective signing protocol we use for the cothority architecture.
Section 4 details the challenges and approaches to dealing
with availability issues and failures. Section 5 describes the
details of our implementation and Section 6 experimentally
evaluates it. Section 7 further discusses the applicability of
cothorities to real-world applications as well as outlines fu-
ture work. Section 8 summarizes related work and Section 9
concludes.

2. BACKGROUND AND MOTIVATION
This section briefly reviews several types of conventional

authorities, their weaknesses, and how a cothority architec-
ture might strengthen them. We revisit prototype implemen-
tations of some of these applications later in Section 5.

Tamper-Evident Logging Authorities.
Many storage systems and other services rely on tamper-

evident logging [19,46]. Logging services, however, are vul-
nerable to equivocation where a malicious log server rewrites
history or presents different “views of history” to different
clients. Solutions include weakening consistency guaran-
tees as in SUNDR [46], or adding trusted hardware as in
TrInc [45]. Equivocation is the fundamental reason Byzan-
tine agreement in general requires N = 3f + 1 total nodes
to tolerate f arbitrary failures [16]. A cothority architecture
does not change this basic ratio, but enables both N and f
to be large: e.g., with N > 3000 participants independently

checking and co-signing each new log entry, arbitrarily col-
luding groups up to 1000 participants cannot successfully
equivocate or rewrite history.

Timestamping Authorities.
A timestamping authority [1, 37] typically enables clients

to incorporate a cryptographic hash of some document (e.g.,
a design to be patented) into a timestamped public log. The
client can later prove to a third-party that the document ex-
isted at a historical date by pointing to the authority’s log
entry containing the document’s hash. A corrupt timestamp
authority, however, might mount the history-rewriting and
equivocation attacks above, or might incorrectly timestamp
(e.g., pre-date) otherwise properly-sequenced log entries. In
a cothority, many participants can not only protect the log’s
structure but independently verify that each entry’s times-
tamp is reasonably close to the present time.

Certificate Authorities for Public-Key Infrastructure.
Certificate Authorities (CAs) sign certifcates attesting that

the holder of a public key legitimately represents a name
such as google.com, to authenticate SSL/TLS connec-
tions [24, 34]. Current web browsers directly trust dozens
of root CAs and indirectly trust hundreds of intermediate
CAs [27], any one of which can issue fake certificates for
any domain if compromised. Due to this “weakest-link” se-
curity, hackers have stolen the “master keys” of CAs such as
DigiNotar [5, 13] and Comodo [12] and abused certificate-
issuance mechanisms [41, 42] to impersonate popular web-
sites and attack their users.

As a stopgap, browsers such as Chrome hard-code pinned
certificates for particular sites such as google.com [29] –
but browsers cannot ship with hard-coded certificates for the
whole Web. Generalizations of this approach pin the first
certificate a client sees [20, 50, 71], protecting a site’s regu-
lar users but not new users. An alternative is for browsers
to check server certificates against public logs [6, 39, 43, 44,
64, 73], which independent monitors may check for invalid
certificates. Monitoring can unfortunately detect misbehav-
ior only retroactively, placing victims in a race with the at-
tacker. Web browsers could check all certificates they re-
ceive against such logs and/or via multiple Internet paths [3,
7, 49, 77], but such checks add delays to the critical page-
loading path. Further, these approaches assume Web users
can connect to independent logging, monitoring, or relay-
ing services without interference, but this assumption fails
when the user’s own ISP is the adversary – a scenario that
has unfortunately become all too realistic whether motivated
by state-level repression [5, 13] or profit [38].

By federating today’s hundreds of CAs into a single cer-
tificate cothority, each CA could in principle validate cer-
tificates proposed by all other CAs before they are collec-
tively signed. For example, the CA currently responsible for
a given domain such as google.com could verify that no

2

other CA proposes a google.com certificate, raising an
alarm and proactively preventing the signing of fake certifi-
cates in the first place. Each certificate would still be vali-
dated by a single digital signature, but that signature would
embody much stronger and broader-based trust.

Public Randomness Authorities.
Randomness authorities [58, 61] generate non-secret ran-

dom numbers or coin-flips, which are useful for many pur-
poses such as lotteries, sampling, or choosing elliptic curve
parameters. NIST’s Randomness Beacon [58], for example,
produces a log of signed, timestamped values from a hard-
ware source. If compromised, however, a randomness au-
thority could deliberately choose its “random” values as to
win a lottery, or could look into the future to predict a lot-
tery’s outcome. In the wake of the DUAL-EC-DRBG deba-
cle [17], the NIST beacon has been skeptically called “the
NSANIST Randomness Beacon” [72] and “Project ‘Not a
backdoor’” [62]. A randomness cothority, in contrast, could
combine many independent randomness sources into a sin-
gle log of collectively-signed random values, preventing even
a substantial set of compromised servers from controlling or
predicting its output.

Directory Authorities.
Clients of the Tor anonymity system [74] rely on a direc-

tory authority [75] to obtain a list of available anonymiz-
ing relays. A compromised directory authority could give
clients a list containing only attacker-controlled relays, how-
ever, thereby de-anonymizing all clients. To mitigate this
risk, Tor clients accept a list only if it is signed by a ma-
jority of a small consensus group, currently about 8 servers.
Because these directory servers and their private directory-
signing keys represent high-value targets for increasingly
powerful state-level adversaries it is increasingly question-
able whether splitting trust over such a small, relatively cen-
tralized group offers adequate security. A cothority architec-
ture, in contrast, could spread this trust across a much wider
base of hundreds or even thousands of directory servers.

3. COLLECTIVE SIGNING
This section presents CoSi, the first practical collective

signing protocol we know of to build large-scale cothorities.

3.1 Principles of Operation
We consider a given cothority to be implemented by a sin-

gle instance of the CoSi protocol, whose conceptual archi-
tecture is illustrated in Figure 1. For simplicity we first con-
sider an architecture whose participants play two asymmet-
ric roles: there is a single distinguished leader and any num-
ber N of signers. Later in Section 4.3 we will address leader-
rotation mechanisms to support homogeneous groups.

The leader implements the cothority’s authoritative logic:
e.g., assigning timestamps or certificates, generating random

Figure 1: CoSi protocol architecture

numbers, etc. The signers are additional reliable, indepen-
dently-run servers maintained by individuals or organiza-
tions who may have volunteered – or contracted with the
leader – to monitor, validate, and co-sign the leader’s author-
itative actions. Of course most realistic authorities provide
a service to clients (e.g., users requesting timestamps or cer-
tificates), but these clients do not directly participate in the
CoSi protocol so we will ignore them for now.

We assume for now that the leader and its set of signers
is fixed, and that all participants know and agree on each
others’ public keys. For example, the leader might adminis-
tratively create and publish a roster listing its public key and
those of all N signers. We can preclude disagreement by
taking a cryptographic hash of this roster as as a unique iden-
tifier for the cothority and its instance of the CoSi protocol,
so that different rosters represent different cothorities. We
consider extensions for dynamic leader selection and roster
evolution later in Section 4.4.

We assume that the leader’s authoritative actions – such
as assigning timestamps or certificates – are to be recorded
or summarized publicly in a tamper-evident log, and that the
information in this log suffices to validate the leader’s ac-
tions. To append to this log, the leader periodically initiates
a new round of the CoSi protocol. In each round, the leader
announces a record to be added to its log, assigning each
record a consecutive sequence number starting from 1. Af-
ter announcing the next record, the leader coordinates with
all of its signers to validate the log entry and generate a col-
lective signature for it. The result of a successful round is
thus a collectively signed log entry, which anyone may sub-
sequently check against the roster, to verify that not only the
leader but all signers in the roster saw and attested to the
validity of each log entry.

In general the signers will perform application-specific
semantic checks on each of the leader’s proposed log en-

3

tries before “signing off” on them. For simplicity of exposi-
tion, however, we assume for now that the signers treat each
record’s content as opaque, and merely ensure that these
records form a properly sequenced log. Thus, for now sign-
ers verify only that the leader indeed assigns sequence num-
bers consecutively, and never attempts to roll back or rewrite
history, or to equivocate by signing multiple records with the
same sequence number. This basic, “semantic-free” instan-
tiation of CoSi thus implements an anti-equivocation mech-
anism: a decentralized analog of TrInc [45]. Section 3.5 will
later cover ways to incorporate application-specific data and
validation rules.

We assume for now that participants never fail or become
disconnected, relaxing this admittedly unrealistic assump-
tion later in Section 4. However, we are not at the moment
highly concerned about minimizing the latency of collective
signing operations.

3.2 Schnorr (Multi-)Signatures
While CoSi could in principle build on many digital sig-

nature schemes that support efficient public key and signa-
ture aggregation, we focus here on the simplest and most
well-understood such scheme we are aware of: Schnorr sig-
natures [68] and multisignatures [8, 54].

Schnorr signatures rely on a group G of prime order q in
which the discrete logarithm problem is believed to be hard;
in practice we now use elliptic curves for G. Given a well-
known generator G of G, each user chooses a random pri-
vate key x < q, and computes her corresponding public key
X = Gx. (We use multiplicative-group notation for con-
sistency with the historical literature on Schnorr signatures,
although additive-group notation may be more natural with
elliptic curves.)

Schnorr signing is conceptually a prover-verifier or Σ-
protocol [21], which we make non-interactive using the Fiat-
Shamir heuristic [31]. To sign a message M , the prover
picks a random secret v < q, computes a commit, V = Gv ,
and sends V to the verifier. The verifier responds with a
random challenge c < q, which in non-interactive operation
is simply a cryptographic hash c = H(V ||M). The prover
finally produces a response, r = v − cx, where x is the
prover’s private key. The challenge-response pair (c, r) is
the Schnorr signature, which anyone may verify using the
signer’s public key X = Gx, by recomputing V ′ = GrXc

and checking that c ?
= H(V ′||M).

With Schnorr multisignatures [59], there are N signers
with individual private keys x1, . . . , xN and corresponding
public keys X1 = Gx1 , . . . , XN = GxN . We compute an
aggregate public key X from the individual public keys as
X =

∏
i Xi = G

∑
i xi . The N signers can collectively sign

a message M as follows. Each signer i picks a random se-
cret vi < q, and computes a commit Vi = Gvi . One partici-
pant (e.g., a leader) collects all N commits, aggregates them
into a collective commit V =

∏
i Vi, and uses a hash func-

tion to compute a collective challenge c = H(V ||M). The
leader distributes c to the N signers, each of whom com-
putes and returns its response share ri = vi − cxi. Finally,
the leader aggregates the response shares into r =

∑
i ri,

to produce a collective signature (c, r). Anyone can verify
this constant-size signature against the message M and the
aggregate public key X using the normal Schnorr signature
verification scheme above.

When forming an aggregate public key X from a ros-
ter of individual public keys X1, . . . , XN , all participants
must validate each individual public key Xi by requiring
its owner i to prove knowledge of the corresponding pri-
vate key xi, e.g., with a zero-knowledge proof or self-signed
certificate. Otherwise, a dishonest node i can perform a
related-key attack [55] against a victim node j by choosing
Xi = GxiX−1j , and thereafter produce collective signatures
apparently signed by j without j’s actual participation.

While multisignatures are well-understood and formally
analyzed, to our knowledge they have so far been consid-
ered practical only in small groups (e.g., N ≈ 10). The next
sections describe how we can make multisignatures scale to
thousands of participants, and address the availability chal-
lenges that naturally arise in such contexts.

3.3 Forming Trees for Collective Signing
To make multisignatures scale to many participants, CoSi

distributes the communication and computation costs of mul-
tisignatures across a communication tree analogous to those
long utilized in multicast protocols [15].

We assume that all N CoSi servers have been organized
into a communication tree rooted at the distinguished leader,
whose structure is defined by a tree roster known to and
agreed upon by all participants. We assume for now that
this tree roster is static, deferring liveness and evolution is-
sues to Section 4. We represent this tree roster efficiently as
a Merkle tree [52] whose structure mirrors the communica-
tion topology, with one Merkle node per CoSi server.

The Merkle node for each host i includes: (a) i’s public
key Xi = Gxi and self-signed certificate, (b) cryptographic
hash-links to the Merkle nodes representing i’s immediate
children, and (c) a partial aggregate public key X̂i com-
bining i’s public key with those of its descendants. If Di

is the set of i’s descendants including i itself, then X̂i =∏
j∈Di

Xj = G
∑

j∈Di
xj . The leader’s aggregate public key,

X̂0, combines the public keys of all participants, and may be
verified by anyone via a bottom-up traversal of the tree ros-
ter. While verifying the full tree roster takes O(N) time,
we assume this is done rarely – e.g., on administrative time
scales – and not during each CoSi protocol round.

3.4 Tree-based Signing
Each CoSi protocol round consists of four phases, As men-

tioned before, each node i has a public key Xi = Gxi , where
xi is i’s private key and G is a generator of a suitable inte-

4

ger or elliptic curve group. For each node i, we define the
composite public key X̂i as the combination of the public
keys of node i and all its descendants using the group op-
eration: X̂i =

∏
j∈Di

Xj = G
∑

j∈Di
xj , where Di is the

set of transitive descendants of i including i itself. Taking
node 0 to be the root, each log entry produced by CoSi will
be verifiable using the network-wide composite public key
X̂0, hence producing these log entry signatures will require
the participation of every node i with its “share” xi of the
composite private key.

A single round of the CoSi protocol consists of four phases,
representing two communication “round-trips” through the
spanning tree:
1. Announcement: The leader announces a message M

to be signed, which signers forward multicast-style down
through the tree. Signers may check M against application-
specific validity rules – e.g., verifying that the sequence
numbers of log entries increase consecutively – but CoSi’s
basic signing mechanism is agnostic to the particular set
of validation rules applied.

2. Commitment: Each node i picks a random secret vi and
computes its individual commit Vi = Gvi . In a bottom-
up process, each node i waits for a message (Vj , V̂j) from
each node j among its set of immediate children Ci. Node
i then computes partial aggregate commit V̂i = Vi

∏
j∈Ci

V̂j ,
then passes (Vi, V̂i) up to its parent, unless i is the leader.

3. Challenge: The leader computes a collective challenge
c = H(V̂0||M), and multicasts it down through the tree.

4. Response: In a final bottom-up phase, each node i waits
to receive a partial aggregate response r̂j from each of
its immediate children j ∈ Ci. Node i now computes its
individual response ri = vi−cxi, and its partial aggregate
response r̂i = ri +

∑
j∈Cj

r̂j . Node i finally passes r̂i up
to its parent, unless i is the root.
Notice that during phase 4, each node i’s partial aggre-

gate response r̂i, together with the collective challenge c,
forms a valid Schnorr multisignature on message M , veri-
fiable against i’s partial aggregate commit V̂i and the corre-
sponding partial aggregate public key X̂i from the tree ros-
ter. Thus, each node in the tree can immediately check its
childrens’ responses for correctness, and expose any node
producing an incorrect response. While nothing prevents a
malicious node i from computing Vi or V̂i dishonestly in
phase 2, i will be unable to produce a correct response in
phase 4 unless it knows the discrete logarithm vi such that
Vi = Gvi .

The final collective signature is (c, r̂0), which any third-
party may then verify as a standard Schnorr signature by re-
computing V̂ ′0 = Gr̂0X̂c

0 and checking that c ?
= H(V̂ ′0 ||M).

The scheme’s correctness stems from the fact that V̂0 =
G

∑
i vi , r̂0 =

∑
i vi − c

∑
i xi, and X̂0 = G

∑
i xi . The

scheme’s unforgeability stems from the fact that the hash
function makes c unpredictable with respect to V̂0, and the
collective cannot produce the corresponding response r̂0 with-

out the (collective) knowledge of the secret key xi of ev-
ery node i whose public key is aggregated into X̂0. These
properties are direct implications of the structure of Schnorr
signatures, and are neither novel nor surprising theoretically
and in fact proven secure in [8, 54], although we are not
aware of prior practical systems that have actually imple-
mented efficient signing trees of this kind.

3.5 Contributory Signing Protocol
We now relax the simplifying assumption that only the

leader proposes values to sign. Signers can use CoSi in an
contributory fashion such that the resulting signature is on a
cryptographic summary of items proposed by all signers.

The CoSi protocol works like before, but the message M
now corresponds to the top of a Merkle tree built on poten-
tially application-specific contributions from all signers. The
signers build the Merkle tree of contributions in a bottom-up
process following a leader announcement of a new round.
Each signer proposes its contribution, hashes it with the con-
tributions received from its children and passes it upward to
its parent who repeats the process until it reaches the leader
(the top of the Merkle tree). In response, the leader adds
its own contribution which results in a top hash — a cryp-
tographic summary of all items propagated throughout the
tree. Finally, the leader passes down the top hash along with
a proof that he properly incorporated the children’s contribu-
tions. In turn, each signer repeats the process until each node
in the tree receives the top hash and its own proof that its
contribution was included and therefore witnessed by other
signers.

Application semantics determine how signers combine their
contributions during this process. In an aggregation mode,
each signer proposes a unique value, which is aggregated
into a single, collective value that is a function of each signer’s
input. This mode is useful for generating cryptographic ran-
dom numbers for example. In a logging mode, each signer’s
proposed contribution is opaque to others, consisting of a
hash of a single or many values (e.g., consisting of items its
clients requested to log or time-stamp). Each signer’s signa-
ture represents an acknowledgement that a particular contri-
bution was indeed seen and merged together. This mode, in
fact, becomes a mechanism for tamper-evident logging. A
validation mode gives each signer an opportunity to view
and validate other signer’s contributions and withhold its
signature, raising an alarm and alerting others to a poten-
tial wrongdoing, if some contribution is invalid according to
application-specific checks. Therefore, the collective signa-
ture not only conveys that each contribution was seen at a
particular time but also that it was validated by each signer.
While this is the most expensive mode with O(N) as op-
posed to O(log n) cost, it gives signers a unique ability to
enforce even fine-grain correctness checks. For example, if
applied to Certificate Transparency, each signer could verify
the newly proposed batch of certificates to ensure that they
are valid and also endorsed by authorized entities.

5

Regardless of the contributory mode the signers use for
CoSi, each signer only contributes its signature share if the
resulting top hash is valid with respect to a specific require-
ments of each mode.

4. AVAILABILITY AND DYNAMICS
This section addresses the challenge of handling both tem-

porary server failures and long-term changes in a cothority’s
roster. We first explore two alternative approaches to han-
dling signer failures, which may be used either separately or
in combination; we then address leader failures and roster
evolution.

4.1 Signing Exceptions
In the first approach, we assume that failures of CoSi sign-

ers are rare and brief, such that at most a few nodes, e.g.,
O(logN), are expected to be offline at any given time. This
stability might be satisfied by administrative fiat, for exam-
ple: e.g., the existing members of a CoSi community might
admit new members only after the candidate has demon-
strated adequate provisioning and high availability. Individ-
ual participants might ensure this high availability, for ex-
ample, through conventional state machine replication such
as Paxos [40, 60] or BFT [16] across a small number of
centrally-managed physical machines. Such replication would
operate below and be invisible to the CoSi protocol, so we
do not delve into the details here.

If server failures are rare but do occasionally happen, we
can account for a few failures in any given round by relax-
ing the demand that each collective log entry be signed with
the combination of all nodes’ public keys. Instead, if in any
phase of the basic protocol some node i discovers that one of
its immediate children j ∈ Ci is temporarily offline or un-
responsive, i leaves j and any descendants of j out of phase
4 of the CoSi protocol. The aggregate response that node i
passes upward to its parent will therefore be a valid signature
not for i’s “ideal” aggregate public key X̂i =

∏
j∈Di

Xj , but
rather for a modified aggregate public key X̂ ′i = X̂iX̂

−1
j .

Therefore, when a failure occurs, signer i indicates the
j’s missing share of the collective response by including a
list of exceptions in the message it passes upward, one for
each node j whose contribution is missing from i’s aggregate
response r̂i due to the failure of node j. Each such exception
indicates the aggregate public key K̂j of the missing node j,
the total number of descendants of j whose contributions
are missing, j’s aggregate contribution V̂j to the collective
commitment V̂0, and any Merkle path information required
to verify this information in the cothority’s tree roster.

For example, suppose the spanning tree on which the CoSi
protocol operates is defined during setup or incremental group
evolution via a Merkle tree roster listing the public key Xi,
aggregate subtree key X̂i, and number of descendants |Di|
of each node i. Then if a child j of node i fails in a given
round, node i produces an exception record for j that in-

cludes the appropriate records in the Merkle tree roster from
the root node down through node j, enabling anyone to ver-
ify the validity of the partial key under which the signature
was issued with respect to a well-known, top-level group
configuration.

To ensure that a collective signature containing exceptions
remains unforgeable, the hash used to compute the challenge
in phase 3 above must depend on not just the “complete” ag-
gregate commit V̂0, but also all the individual commits Vi

for nodes i whose commits might need to be removed from
the aggregate. For this reason, we now compute the collec-
tive challenge as c = H(T ||M), where T is the root of a
Merkle tree whose structure exactly mirrors that of the static
tree roster, and records the individual and aggregate com-
mits (Vi, V̂i) for each node i in this round. To verify a col-
lective signature containing exceptions, the verifier removes
both the public key contributions Ki and the corresponding
commit contributions Vi for each missing node i, by multi-
plying the aggregate public key with K−1i and multiplying
the aggregate commit with V −1i for each missing i.

In addition to validating any exception records to verify
that the modified commitment and modified aggregate pub-
lic key indeed reflects a correct subset of signers, the config-
uration policy of a specific cothority must define a quorum,
or lower bound on the number of signers whose public keys
must be included in (or maximum number of nodes that may
be missing from) the modified aggregate key, against which
the collective signature will be verified.

4.2 Life Insurance Policies
While signing exceptions work, they make collective sig-

natures larger and no longer constant-size, and verifying those
signatures is slightly more complex for clients.

An alternative approach ensures that if a given node j
fails, then some set of other nodes can collectively take over
for j’s role in the collective signature generation process that
requires j’s private ephemeral signing key xj . This approach
relies on verifiable secret sharing (VSS) [30].

Each signer j splits its private signing key into k verifiable
shares using a degree t polynomial, so any t-of-k share hold-
ers can reconstruct the secret but fewer than t receivers learn
nothing about it. The k other signers holding shares of j’s
signing key serve as insurers for j. The number of insurers k
need not be large: for example, k = O(logN) suffices pro-
vided these k are chosen randomly from the N total servers
and a constant fraction of the N servers are honest.

Upon receiving their shares of j’s private key, the insurers
issue a confirmation of this fact, which collectively serve as
a publicly-verfiable proof-of-insurance for j. During a CoSi
round, if a quorum of j’s insurers agrees that j has failed,
they use largely standard VSS techniques to reproduce j’s
missing component of the collective signature.

If j fails after phase 2 (commitment) but before phase
4 (response), j’s insurers must be able to reconstruct not
only j’s private signing key xj but also j’s ephemeral secret

6

vj . To address this challenge, in phase 2 signer j generates
shares of its ephemeral secret vj and encrypts them for the
same nodes holding shares of its signing key, so that the in-
surers can reconstruct vj if needed. A malicious signer j
could produce incorrect shares of vj in phase 2, but we treat
this readily detectable condition as a more serious “hard fail-
ure” demanding administrative action. We can revert to the
exception mechanism above to preserve liveness in the face
of such, hopefully rare, hard failures.

One important issue is how each signer j chooses its insur-
ers to hold shares of its private signing key xj . On one hand,
it might be reasonable for each node j itself to have sole
choice of its insurers, since it is ultimately j’s secret they
are supposed to protect. This freedom could create a DoS
attack vector, however, in which a set of malicious nodes de-
liberately choose colluding insurers that will all go offline
together at a time of the attacker’s choosing, ensuring that
these nodes’ secrets cannot be reconstructed.

An alternative is for j’s choice of insurers to be random
but verifiable by others, so that j cannot control the choice
of its insurers but nevertheless receives a strong probabilistic
guarantee that no colluding group limited to a given size can
reconstruct j’s secret signing key unless the insurers agree
that j has failed. A potential solution is to choose the in-
surers through a lottery, where each signer receives a deter-
ministic lottery ticket created using a hash function applied
to some public previous-round output and the singer’s iden-
tity. Choosing these insurers in a truly bias-resistant fashion
is another important challenge that we largely leave to future
work, but discuss briefly later in Section 7.

4.3 Leader Failures and View Changes
So far we have treated the leader as a distinguished role,

and have addressed only signer failures: if the leader fails
the collective will cease operation. In some applications this
may be appropriate, e.g., if by design messages to be signed
originate only from one source and are to be merely wit-
nessed and validated by the signers. In other environments,
however, we would prefer the members of a cothority to play
symmetric roles, such that all servers can contribute to the
messages being signed and a failed leader can be replaced.

We address leader features using a view change protocol,
a standard technique used in Byzantine agreement proto-
cols [16]. For a given cothority membership roster, we use a
well-known, deterministic algorithm to define a schedule of
views, each numbered view selecting one server in the roster
as the view’s leader. Given this choice of leader, the rest of
the communication tree for that view is similarly defined by
a well-known, deterministic function of the cothority roster
and the view number.

In each view, all signers expect that view’s leader to initi-
ate and complete collective signing rounds at an established
rate. Any server who decides that the protocol is not mak-
ing adequate progress can broadcast a view change message
proposing a larger view number. As soon as a configured

threshold of servers have broadcast view changes for a new
view v, the new leader considers v to be active and com-
mences initiation of CoSi rounds with itself as the root.

To guarantee the agreement property, that no two views
can make progress simultaneously even in the presence of up
to f Byzantine nodes, the view change threshold needs to be
2f +1 out of 3f +1 total nodes. However, not all cothorities
may require this agreement property, and the protocol can
function without it. For example, if a major network-split
divides a timestamp cothority into two or more isolated sub-
sets, it may be preferable for each subset to be able to survive
and continue making progress, each under a different leader
and producing a temporarily separate timeline, until the split
is healed. Whether the agreement property is essential or not
depends on the semantics of the cothority.

In our current protocol, a view change message is indi-
vidually signed by the server sending it, so verifying all rel-
evant view change messages can unfortunately take O(N)
time and network bandwidth per node. This is not a criti-
cal issue provided view changes needed relatively seldom,
as we expect, but this could represent a DoS attack vulner-
ability in the worst case. We expect that collective sign-
ing could be extended to cover the initiation of a new view
as well as rounds within it, so a new leader can produce
and exhibit a collective signature as a more compact and
efficiently-checkable proof of its leadership, but we leave
this enhancement to future work.

4.4 Cothority Evolution
So far we have assumed that a cothority’s tree roster –

the Merkle tree containing the public keys of all servers and
the aggregate public keys of their respective sets of descen-
dants – is static and unchanging. In practice this roster will
of course need to change, although we expect it to change
much less frequently than signing operations, e.g., on ad-
ministrative time-scales.

To address this challenge, a cothority can authorize and
collectively sign changes to its own roster. When current
members wish to add or remove a cothority member, we
assume they first administratively discuss and agree on the
change using out-of-band communication mechanisms: e.g.,
meetings, online discussion on E-mail lists, etc. Once a
change has been administratively agreed, by adding and/or
removing members, the cothority’s current leader proposes
the new roster, and a policy-defined threshold of current mem-
bers must collectively sign it. Once validated and collec-
tively signed in this way, the “old cothority” represented
by the old roster essentially ceases to function, and a “new
cothority” represented by the new roster commences opera-
tion. This same mechanism similarly enables existing mem-
bers to refresh or upgrade their signing keys periodically.

One issue is how clients and other third-parties track and
validate cothority roster changes. For example, a client ap-
plication may have a cothority roster hard-wired into its soft-
ware, just as web browsers currently contain hard-wired list

7

of root CAs, but the cothority’s roster may evolve faster than
client software gets updated.

To enable old clients to learn about and validate new cothor-
ity rosters, the client can follow a chain of collectively-signed
roster-change records forward from the last version it knows
about to the current version. For example, if the client has
version V0 and the current roster version is V2, the client first
obtains the change-record from V0 to V1 and validates its sig-
nature against the V0 roster, then obtains the change-record
from V1 to V2 and validates its signature against the V1 ros-
ter. So that clients need not pick through a cothority’s entire
log to catch up on the latest roster, a cothority can maintain
a separate log containing only roster-change events.

A related issue is how long these forward roster valida-
tion chains might become, but we do not expect this to be a
major problem in practice if roster updates are administra-
tively limited to a reasonable rate, e.g., by batching all roster
changes together at most once per month.

5. PROTOTYPE IMPLEMENTATION
We have built and evaluated a working prototype of a

cothority server supporting not only the basic CoSi proto-
col for collective signing, but also demonstrating cothority
application functionality for tamper-evident logging, times-
tamping, public randomness, and voting/agreement functions.

The cothority server prototype is written in Go [36]; its
primary implementation consists of 7600 lines of server code
as measured by CLOC [22]. The server also depends on a
custom 21,000-line Go library of advanced crypto primitives
such as pluggable elliptic curves, zero-knowledge proofs,
and verifiable secret sharing; our cothority prototype relies
heavily on this library but does not use all its facilities. Both
the CoSi prototype and the crypto library are open source
and available at https://github.com/DeDiS.

The cothority prototype currently implements tree-based
collective signing as described above, the signing excep-
tion protocol for handling server failures, the view change
mechanism to handle leader failures, and a voting and vote-
tallying mechanism that can be used to validate roster changes
as well as for general collective-voting purposes. The al-
ternate, life insurance approach to handling signer failures
(Section 4.2) is partly implemented but not yet fully inte-
grated into the prototype.

We evaluated the cothority implementation with Schnorr
signatures implemented on the NIST P-256 elliptic curve [4],
although the implementation also works and has been tested
with other NIST curves as well as the Ed25519 curve [9].

The cothority server is structured in three main layers: the
Host layer handling networking, the Signer layer implement-
ing the collective signing protocol, and the Stamper layer
implementing Merkle tree logging and timestamping.

The Host layer implements a TCP-based overlay network.
Hosts connect to each other forming a communication tree,
whose structure is currently defined statically by the roster.

The Host layer handles networking functions, detects host
failures to determine when to trigger signing exceptions, and
attempts to reconnect when TCP connections fail.

The Signer layer builds on the host abstraction to coor-
dinate with other signers and implement collective signing.
This layer can also incorporates application-specific mes-
sages such as vote records into its processing. When a new
node joins, the Signer layer is responsible for dynamically
establishing key-pairs with the other node. The Signer layer
drives the Announce, Commit, Challenge, Challenge Re-
sponse phases as described above, as well as a simple voting
protocol to support roster evolution.

5.1 Signing Modes and Applications
We implemented three modes of execution for the sign-

ing nodes: simple collective signatures as described in Sec-
tion 3.4, collective signature based on Merkle trees as re-
quired for exception-handling as described in Section 4.1,
and simple collective signatures paired with individual-host
signatures currently required for voting and roster changes.

In the simple key mode, the root simply announces a mes-
sage and the signers collectively generate a signature.

The Merkle key mode is used by the timestamper applica-
tion, to consolidate into a single Merkle tree all timestamps
that clients submit to each signer for timestamping since the
last round. Client may connect to any server and send a
StampRequest; after the round completes the client receives
in response a collectively signed timestamp log entry and a
Merkle path proving to any third party that the client’s hash
was included.

Finally, to test voting and group evolution we extended
signing nodes as to be able to vote on any matter by signing
individual votes in addition to collectively signing all votes.
The combination of signatures allowed a node to verify all
other votes and the correctness of the tally. While this ver-
ification process currently incurs O(N) costs, we expect it
could be reduced with improved, verifiable tallying methods
in the future.

6. EVALUATION
The primary questions we wish to evaluate are whether

the cothority architecture is practical and scalable to large
numbers, e.g., thousands of participating servers, in realis-
tic scenarios. Important secondary questions are what the
important costs are such as collective signing latency and
computation costs.

While this paper’s primary focus is on the basic CoSi pro-
tocol and not on particular applications or types of cothor-
ities, we evaluated the CoSi prototype in the context of the
Timestamping application.

6.1 Experimental Setup
We evaluated the prototype on DeterLab [23], using 32

physical machines configured in a star-shaped virtual topol-

8

https://github.com/DeDiS

0	

1	

2	

3	

4	

5	

6	

7	

2	
 4	
 6	
 8	
 10	
 12	
 14	

Pe
r-­‐
Ro

un
d	

Si
gn
in
g	

La
te
nc
y(
s)
	

Communica8on	
 Tree	
 Depth	

Latency	
 vs.	
 Depth	

min	

max	

avg	

Figure 2: Collective signing latency versus branching
factor

ogy. To simulate larger numbers of CoSi participants than
available testbed machines, we run up to 128 separate CoSi
server processes on each machine. A corresponding set of
CoSi client processes on each machine generate load on each
server by issuing regular Timestamp requests to the server
processes.

To mimic a realistic wide-area environment in which the
cothority’s servers might be distributed around the world, the
virtual network topology imposes a round-trip latency of 100
milliseconds between any two machines. The TimeStampers
aggregate messages from their clients and every 10 seconds
request the batch of messages to be signed collectively as
part of a single aggregate Merkle tree per round.

6.2 Computation Costs
The first experiment focuses on the protocol’s per-node

computation costs. We expect total signing latency to de-
pend on both network communication latencies and compu-
tation time within each node.

In our test framework, on each machine, we run multiple
TimeStamper processes, each with an embedded Signer, and
an associated client. The timestampers respond to requests
and collectively sign timestamps, as described above. One
client located on the same physical machine sends one re-
quest about every 35 miliseconds to keep the corresponding
server loaded; we empirically found this load to be close to
the maximum request rate the timestamp servers could keep
up with in this environment.

Figure 2 shows how measured System and User time on
the most heavily-loaded signing node (typically the root)
varies depending on the depth of the configured communica-
tion tree. We observed that CPU utilization was higher when
the depth was lower, which makes sense as lower depth im-
plies higher branching factor (degree) and hence more com-
putation per node at each level. The number of responses
to be processed per Commit and Response round is linear in
the number of children a signing node has, and thus linear in
the branching factor.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

2	
 4	
 6	
 8	
 10	
 12	
 14	

Sy
st
em

	
 a
nd

	
 U
se
r	
 T

im
e	

(s
)	

Communica5on	
 Tree	
 Depth	

System	
 and	
 User	
 5me	
 vs.	
 Depth	

sys*me	

user*me	

Figure 3: Collective signing latency versus branching
factor

0	

1	

2	

3	

4	

5	

6	

7	

2	
 4	
 8	
 16	
 32	
 64	
 128	

Pe
r	
 S

ig
ni
ng
	
 R
ou

nd
	
 L
at
en

cy
	
 (s
)	

Communica7on	
 Tree	
 Branching	
 Factor	

Latency	
 vs.	
 Branching	
 Factor	

min	

max	

avg	

Figure 4: Collective signing latency versus branching
factor

With higher branching factors, a node spends more CPU
time to process all its children commits and responses. At
small depths, we found that reduction in network latency due
to the shallow tree was not enough to counterbalance the
added computation time required by the signers at each level.

6.3 Collective Signing Latency
Figure 3 shows how total per-round collective signing la-

tency varies with communication tree depth. By increasing
depth, we increase the root to leaf round-trip latency, by
about 100 milliseconds per unit of depth added. Increasing
depth, however, implies decreasing the branching factor, de-
creasing the CPU time spent per node. In this environment
we find the best results for depths 4 and 5. For depth 3, com-
putation time dominates, while for depths greater than 5 net-
work latencies dominate. The current CoSi prototype makes
no attempt to parallelize its computations, however, so opti-
mization and parallelization of the computations might make
small depths more attractive.

For comparison, Figure 4 shows the relationship between
per-round latency and branching factor (maximum number
of children per CoSi server), confirming that overall latency
is minimized at intermediate depth and branching factors.

9

0	

0.5	

1	

1.5	

2	

2.5	

3	

64	
 256	
 1024	
 4096	

Pe
r-­‐
Ro

un
d	

Si
gn
in
g	

La
te
nc
y	

(s
)	

Number	
 of	
 Timestamp	
 Servers	

Latency	
 vs.	
 Number	
 of	
 Hosts	

min	

max	

avg	

Figure 5: Collective signing latency versus number of
participating servers

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

64	
 256	
 1024	
 4096	

Sy
st
em

	
 a
nd

	
 U
se
r	
 T

im
e	

(s
)	

Number	
 of	
 Timestamp	
 Servers	

System	
 and	
 User	
 Time	
 vs.	
 Number	
 of	
 Hosts	

sys.me	

user.me	

Figure 6: Per-node, per-round computation cost versus
number of participating servers

6.4 Scalability
The next experiment evaluates the scalability of the CoSi

protocol to large numbers of hosts, varying from 64 to 4096
hosts timestamp servers, while maintaining a constant com-
munication tree depth of 4.

Latency increases with the number of hosts as we would
expect, but total latency scales gradually. Per-round collec-
tive signing latencies average under 1.5 seconds for 4096
participants, and the maximum latency we observed over
hundreds of runs was under 3 seconds. Given that author-
ity protocols are often moderately latency-tolerant, often op-
erating at timescales of minutes or hours, these results sug-
gest that collective signing should not create a serious per-
formance bottleneck for building cothorities.

Figure 6 similarly shows how computation costs scale with
total number of hosts. We find that there is not much varia-
tion between running on 64 up to 4096 hosts with a constant
depth.

6.5 Client Load
As discussed above, for each CoSi server a separate pro-

cess on the same physical machine acted as a client to create

TimeStamp requests at a constant rate. We tested the system
under a variety of client load rates, from one request every 5
seconds to one request every 35ms – the last case amounting
to 30 requests per second on each timestamp server. Client
loads within this range did not significantly affect the col-
lective signing latencies we observed, however, so we omit
these graphs.

At the largest-scale experiments with 4096 timestamp servers
spread across 32 physical testbed machines (128 servers per
machine), each physical machine effectively handled an ag-
gregate client load of about 3,700 timestamp requests per
second, or 120,000 timestamp requests per second across the
4096-server collective. Further, the current CoSi implemen-
tation and timestamp server code is largely unoptimized and
completely unparalllelized within each server and with more
powerful, unshared machines, we expect that each server
could readily handle much larger loads.

6.6 Leader Failures Cost
We have also evaluated the cost of handling leader failures

using view changes as described in Section 4.3. Figure 7
shows the latencies of a series of rounds involving several
view changes, caused by randomly-injected leader failures,
in a tree of 4096 host servers. Figure 8 shows zooms on the
first view change in this trace.

Once a root node fails, another leader is randomly chosen
from the remaining nodes. Our view change implementation
currently does not rebalance the tree after the change, which
results in a heavily unbalanced tree if the chosen node is
located far away from the root in the tree structure. There-
fore, the baseline latency increases significantly after the first
view change because of the increased depth of the tree, but
stays consistent thereafter. We expect that proper tree bal-
ancing will mitigate this latency increase.

Additionally, each view change constitutes an idle round.
Hence, the servers must process all outstanding timestamp
requests during the first successful round after the view change,
which results in an increased latency for that round. The
overall results, however, indicate that leader failures can be
handled efficiently.

7. DISCUSSION AND FUTURE WORK
This paper’s primary technical focus has been on the CoSi

protocol for collective signing, and we make no pretense to
have addressed all the important issues relevant to applying
CoSi in any particular cothority application context. How-
ever, we briefly revisit some of the motivating applications
introduced in Section 2 in light of the above implementation
and evaluation results.

Tamper-Evident Logging and Timestamping.
While the current CoSi prototype is basic, it nevertheless

already implements the essential functionality of a classic
tamper-evident logging and timestamping authority [1, 37].

10

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	

Pe
r	
 S

ig
ni
ng
	
 R
ou

nd
	
 L
at
en

cy
	
 (s
)	

Round	
 Number	

View	
 Changes	
 with	
 Root	
 Failures	

Latency	

Figure 7: Latency of randomly imposed view changes
over number of rounds

1.5	

2	

2.5	

3	

3.5	

4	

0	
 20	
 40	
 60	
 80	
 100	
 120	

Pe
r	
 S

ig
ni
ng
	
 R
ou

nd
	
 L
at
en

cy
	
 (s
)	

Round	
 Number	

View	
 Change	

Latency	

Figure 8: Latency of a single view change

As neither the leader nor any signer can produce a collective
signature without the participation of a quorum of the poten-
tially large collective, such a timestamp cothority can offer
much stronger protection against the equivocation, history-
rewriting, or log-entry back-dating attacks that a centralized
timestamp service can mount if compromised.

Public Randomness Cothorities.
While not our present focus, the current CoSi prototype

also effectively implements a collective public randomness
service that could improve the trustworthiness of public ran-
domness authorities [58, 61]. Notice that in phase 2 of the
signing protocol (Section 3.4) each server i commits to a
fresh random secret vi, contributing to a collective random
secret

∑
i vi that no participant will know unless all sign-

ers are compromised or the discrete-log hardness assumption
fails. The final response produced in phase 4 depends unpre-
dictably and 1-to-1 on this random secret and the collective
challenge c. Thus, we can use the final aggregate response
r̂0 as a per-round public random value that was collectively
committed in phase 2 but will be unpredictable and uncon-
trollable by any participant unless all signers are colluding.

While these random outputs will be unpredictable and un-
controllable, our current prototype cannot fully guarantee
that they are unbiased, due to its reliance on the signing ex-
ception mechanism for availability. In particular, if a mali-
cious leader colludes with f other signers, then the leader
can control whether these colluders appear online or offline
to produce up to 2f different possible final aggregate re-
sponses with different exception-sets, and choose the one
whose response is “most advantageous” to the leader, just
before completing phase 4 of the protocol. The life insurance
policy approach to handling signer failures (Section 4.2),
once implemented, addresses this bias issue by ensuring that
every node’s secret is unconditionally incorporated in the fi-
nal response, unless a catastrophic failure makes some server’s
secret unrecoverable even via secret-sharing.

Certificate Cothorities.
Replacing the current “weakest-link” CA system with a

“strongest-link” cothority may be the most potentially com-
pelling and immediately urgent use-case for CoSi. In a cothor-
ity architecture in which not just one CA but many or all of
them inspect and collectively sign each certificate, stolen CA
keys such as those of DigiNotar [5, 13] and Comodo [12]
would not by themselves be usable to sign certificates that
a standard web browser would accept. Not just CAs but
browser vendors and security companies could incorporate
monitoring servers into the certificate cothority as signers,
to watch for and proactively block the signing of unautho-
rized certificates, such as certificates proposed by a CA that
is not recorded as having contractual authority over a given
domain. Unlike Certificate Transparency [43, 44] and other
logging approaches [6,39,64,73], web clients need not delay
web page loading to check separate logging or monitoring
servers, since CoSi binds these decentralized checks proac-
tively into each certificate’s collective signature.

Deploying a certificate cothority would of course require
addressing many additional issues beyond the basic collec-
tive signing mechanism covered here, not just technical but
also organizational and political. One important technical
challenge is backward compatibility and incremental deploy-
ment. We anticipate that current root CAs might gradually
transition their root signing keys into cothority keys, with
their current sets of delegated CAs (and any other coopera-
tive root CAs) serving as signers. This way, each root CA
could transition independently at its own pace, driven by
pressure from users and browser vendors to increase secu-
rity. Web browsers would of course need to be gradually
upgraded to support Schnorr signatures in addition to the
common RSA and DSA schemes. During their transition
period root CAs could retain traditional root CA keys for
use in older web browsers while embedding a cothority key
instead into suitably upgraded browsers.

11

Other Types of Cothorities.
It should be possible to apply the tree-based scaling tech-

niques explored here not only to collective signing but many
other cryptographic primitives amenable to tree-structured
aggregation of operations. A large-scale cothority might col-
lectively decrypt ElGamal [28] ciphertexts at particular fu-
ture dates or on other checkable conditions, to implement
time-lock vaults [56, 63] or fair-exchange protocols [32] for
example. More generally, the cothority architecture might
present an interesting alternative to the currently-popular Bit-
Coin blockchain mechanism [57] as a foundation on which
to build decentralized ledgers and cryptocurrencies.

8. RELATED WORK
The theoretical foundations for cothorities already exist

in the form of threshold signatures [10, 70], aggregate sig-
natures [11, 47, 48], and multisignatures [8, 54]. Threshold
signatures allow some subset of authorized signers to pro-
duce a signature, however, often making it impossible for
the verifier to find out which signers were actually involved.
In aggregate signatures, a generalization of multisignatures,
signers produce a short signature by combining their signa-
tures on individual messages through an often serial process.
On the other hand, multisignatures closely fit the require-
ments of CoSi for security, efficiency and the simplicity of
generation across many signers. However, to our knowledge
these primitives have been deployed only in small groups
(e.g., ≈ 10 nodes) in practice.

Merkle signatures [14,51,53], which also use Merkle trees
in the signing process, allow a single singer to efficiently
produce a large number of one-time signatures verifiable un-
der the same public key, as opposed to allowing a number of
singers to sign a message under their own public keys.

Timestamping services [1, 37] enable clients to prove the
existence of some data (e.g., contracts, research results, copy-
rightable work) before a certain point in time by including it
in a timestamped log entry. Typically, a trusted third party
acts as a timestamping authority [25, 33, 65] and has a uni-
lateral power to include, exclude or change the log of times-
tamped data.

Even tamper-evident logging services are vulnerable to
equivocation, however, where a malicious log server rewrites
history or presents different “views of history” to different
clients. Solutions include weakening consistency guarantees
as in SUNDR [46], adding trusted hardware as in TrInc [45]
or utilizing a trusted party [67] in some fashion. Certificate
Transparency [43, 44] and NIST Randomness Beacon [58]
are examples or application-specific logging services that
exemplify issues related to a trusted-party design paradigm.

Certificate Transparency [43, 44] requires CAs to insert
newly-signed certificates into public logs, which indepen-
dent auditors and monitors may check for consistency and
invalid certificates. Unfortunately, a single log server still
has an unilateral power to sign off on certificates, and pas-

sive monitoring and auditing can detect misbehavior only
retroactively after it has occurred, placing victims in a race
with the attacker.

NIST Randomness Beacon [58] logs the random values
it produces by signing them using its own private key and
chaining them with the previously produced values. While
a dishonest beacon cannot selectively change individual en-
tries, it can rewrite the entire history from a chosen point
and present different views of the history to different clients.
Additionally, there is no guarantee of freshness of the pub-
lished randomness. While the quality of the output is likely
not affected if the beacon precomputes the randomness, the
beacon gets to see these values beforehand effectively be-
coming vulnerable to insider attacks.

9. CONCLUSION
This paper has demonstrated how using theoretically es-

tablished and well-understood cryptographic techniques, we
can build strongest-link collective authorities whose trust may
be distributed across not just a few but hundreds or thousands
of servers. The encouraging scalability and performance re-
sults we have observed with our CoSi prototype lead us to
believe that large-scale cothorities are practical. If this is the
case, we feel that there may be no technical reason to settle
for the centralized, weakest-link security offered by current
designs for today’s common types of critical authorities. We
can and should demand better security from our authorities.

10. REFERENCES

[1] C. Adams and D. Pinkas. Internet X.509 public key
infrastructure time stamp protocol (TSP). 2001.

[2] L. M. Adleman. Implementing an electronic notary
public. In Advances in Cryptology, 1983.

[3] M. Alicherry and A. D. Keromytis. DoubleCheck:
Multi-path verification against man-in-the-middle
attacks. In 14th IEEE Symposium on Computers and
Communications (ISCC), July 2009.

[4] American National Standards Institute. Elliptic curve
digital signature algorithm (ECDSA), 2005. ANSI
X9.62:2005.

[5] C. Arthur. DigiNotar SSL certificate hack amounts to
cyberwar, says expert. The Guardian, Sept. 2011.

[6] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig,
R. Sasse, and P. Szalachowski. ARPKI: Attack
resilient public-key infrastructure. In ACM
Conference on Computer and Communications
Security (CCS), Nov. 2014.

[7] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, and
K. R. B. Butler. Forced perspectives: Evaluating an
SSL trust enhancement at scale. In Internet
Measurement Conference (IMC), Nov. 2014.

[8] M. Bellare and G. Neven. Multi-signatures in the plain
public-key model and a general forking lemma. In

12

http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar

ACM conference on Computer and communications
security, 2006.

[9] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and
B.-Y. Yang. High-speed high-security signatures.
Journal of Cryptographic Engineering, 2(2):77–89,
2012.

[10] A. Boldyreva. Threshold signatures, multisignatures
and blind signatures based on the
Gap-Diffie-Hellman-Group signature scheme. In
Public key cryptography - PKC 2003. 2002.

[11] D. Boneh, C. Gentry, B. Lynn, H. Shacham, et al. A
survey of two signature aggregation techniques. RSA
cryptobytes, 2003.

[12] P. Bright. How the Comodo certificate fraud calls CA
trust into questions. arstechnica, Mar. 2011.

[13] P. Bright. Another fraudulent certificate raises the
same old questions about certificate authorities.
arstechnica, Aug. 2011.

[14] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya,
and C. Vuillaume. Merkle signatures with virtually
unlimited signature capacity. In Applied Cryptography
and Network Security, 2007.

[15] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream:
high-bandwidth multicast in cooperative
environments. In 19th ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2003.

[16] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Feb.
1999.

[17] S. Checkoway, M. Fredrikson, R. Niederhagen,
A. Everspaugh, M. Green, T. Lange, T. Ristenpart,
D. J. Bernstein, J. Maskiewicz, and H. Shacham. On
the practical exploitability of Dual EC in TLS
implementations. In USENIX Security Symposium,
2014.

[18] S. Chokhani and W. Ford. Internet X.509 public key
infrastructure certificate policy and certification
practices framework. 1999. RFC 2527.

[19] S. A. Crosby and D. S. Wallach. Efficient data
structures for tamper-evident logging. In USENIX
Security Symposium, Aug. 2009.

[20] I. Dacosta, M. Ahamad, and P. Traynor. Trust no one
else: Detecting MITM attacks against SSL/TLS
without third-parties. In 17th European Symposium on
Research in Computer Security (ESORICS), Sept.
2012.

[21] I. Damgård. On Σ-protocols, 2010.
[22] A. Danial. Counting Lines of Code.

http://cloc.sourceforge.net/.
[23] DeterLab network security testbed, September 2012.

http://isi.deterlab.net/.

[24] T. Dierks and E. Rescorla. The transport layer security
(TLS) protocol version 1.2, Aug. 2008. RFC 5246.

[25] DigiStamp - Trusted TimeStamp Authority.
https://www.digistamp.com/.

[26] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
the second-generation onion router. In 12th USENIX
Security Symposium, Aug. 2004.

[27] Electronic Frontier Foundation. The EFF SSL
Observatory, 2011.

[28] T. ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
G. Blakley and D. Chaum, editors, Advances in
Cryptology, Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 1985.

[29] C. Evans and C. Palmer. Certificate pinning extension
for HSTS, Sept. 2011.
draft-wing-v6ops-happy-eyeballs-ipv6-01.

[30] P. Feldman. A practical scheme for non-interactive
verifiable secret sharing. In Foundations of Computer
Science, 1987.

[31] A. Fiat and A. Shamir. How to prove yourself:
practical solutions to identification and signature
problems. In IACR International Cryptology
Conference (CRYPTO), pages 186–194, 1987.

[32] M. K. Franklin and M. K. Reiter. Fair exchange with a
semi-trusted third party. In ACM Conference on
Computer and Communications Security, Apr. 1997.

[33] Free Timestamping Authority.
http://www.freetsa.org/.

[34] A. Freier, P. Karlton, and P. Kocher. The secure
sockets layer (SSL) protocol version 3.0, Aug. 2011.
RFC 6101.

[35] B. Gellman and E. Nakashima. U.S. spy agencies
mounted 231 offensive cyber-operations in 2011,
documents show. The Washington Post, Aug. 2013.

[36] The Go programming language, Jan. 2015.
http://golang.org/.

[37] S. Haber and W. S. Stornetta. How to time-stamp a
digital document. Journal of Cryptology, 1991.

[38] J. Hoffman-Andrews. Verizon injecting perma-cookies
to track mobile customers, bypassing privacy controls,
Nov. 2014.

[39] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and
V. Gligor. Accountable key infrastructure (AKI): A
proposal for a public-key validation infrastructure. In
22nd International Word Wide Web Conference
(WWW), Apr. 2014.

[40] L. Lamport. The part-time parliament. Technical
Report SRC-049, Systems Research Center, Sept.
1989.

[41] A. Langley. Further improving digital certificate
security. Google Online Security Blog, Dec. 2013.

[42] A. Langley. Maintaining digital certificate security .
Google Online Security Blog, Mar. 2015.

13

http://arstechnica.com/security/2011/03/how-the-comodo-certificate-fraud-calls-ca-trust-into-question/
http://arstechnica.com/security/2011/03/how-the-comodo-certificate-fraud-calls-ca-trust-into-question/
http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
http://www.cs.au.dk/~ivan/Sigma.pdf
http://cloc.sourceforge.net/
http://isi.deterlab.net/
https://www.digistamp.com/
https://www.eff.org/observatory
https://www.eff.org/observatory
https://tools.ietf.org/html/draft-evans-palmer-hsts-pinning-00
http://www.freetsa.org/
www.washingtonpost.com/world/national-security/us-spy-agencies-mounted-231-offensive-cyber-operations-in-2011-documents-show/2013/08/30/d090a6ae-119e-11e3-b4cb-fd7ce041d814_story.html
www.washingtonpost.com/world/national-security/us-spy-agencies-mounted-231-offensive-cyber-operations-in-2011-documents-show/2013/08/30/d090a6ae-119e-11e3-b4cb-fd7ce041d814_story.html
www.washingtonpost.com/world/national-security/us-spy-agencies-mounted-231-offensive-cyber-operations-in-2011-documents-show/2013/08/30/d090a6ae-119e-11e3-b4cb-fd7ce041d814_story.html
http://golang.org/
http://googleonlinesecurity.blogspot.com/2013/12/further-improving-digital-certificate.html
http://googleonlinesecurity.blogspot.com/2013/12/further-improving-digital-certificate.html
http://googleonlinesecurity.blogspot.nl/2015/03/maintaining-digital-certificate-security.html?m=1

[43] B. Laurie. Certificate transparency. ACM Queue, 2014.
[44] B. Laurie, A. Langley, and E. Kasper. Certificate

transparency, June 2013. RFC 6962.
[45] D. Levin, J. R. Douceur, J. R. Lorch, and

T. Moscibroda. TrInc: Small trusted hardware for
large distributed systems. In NSDI, 2009.

[46] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In 6th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2004.

[47] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and
B. Waters. Sequential aggregate signatures and
multisignatures without random oracles. In
Conference on Theory and application of
cryptographic techniques (EUROCRYPT). 2006.

[48] D. Ma and G. Tsudik. A new approach to secure
logging. ACM Transactions on Storage, 5(1), Mar.
2009.

[49] M. Marlinspike. SSL and the future of authenticity. In
BlackHat USA, Aug. 2001.

[50] M. Marlinspike and T. Perrin, Ed. Trust assertions for
certificate keys, Jan. 2013. Internet-Draft
draft-perrin-tls-tack-02.txt (Work in Progress).

[51] R. C. Merkle. Secrecy, authentication, and public key
systems. PhD thesis, Stanford University, 1979.

[52] R. C. Merkle. A digital signature based on a
conventional encryption function. In Advances in
Cryptology (CRYPTO), 1988.

[53] R. C. Merkle. A certified digital signature. In
Advances in Cryptology (CRYPTO), 1989.

[54] S. Micali, K. Ohta, and L. Reyzin.
Accountable-subgroup multisignatures. In ACM
conference on Computer and Communications
Security, 2001.

[55] M. Michels and P. Horster. On the risk of disruption in
several multiparty signature schemes. In Advances in
Cryptology (ASIACRYPT), 1996.

[56] M. C. Mont, K. Harrison, and M. Sadler. The HP time
vault service: Exploiting IBE for timed release of
confidential information. In 12th International World
Wide Web Conference (WWW), May 2003.

[57] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, Oct. 2008.

[58] NIST Randomness Beacon. http://www.nist.
gov/itl/csd/ct/nist_beacon.cfm.

[59] K. Ohta and T. Okamoto. Multi-signature schemes
secure against active insider attacks. IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, Jan. 1999.

[60] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In USENIX
Annual Technical Conference (USENIX ATC), June
2014.

[61] Randomness and Integrity Services Ltd.
random.org, 1998.

[62] Reddit: NIST Randomness Beacon. http:
//www.reddit.com/r/crypto/comments/
21apkx/nist_randomness_beacon/.

[63] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock
puzzles and timed-release crypto. Technical report,
Cambridge, MA, USA, Mar. 1996.

[64] M. D. Ryan. Enhanced certificate transparency and
end-to-end encrypted mail. In Network and
Distributed System Security Symposium (NDSS), Feb.
2014.

[65] Safe Creative Timestamping Authority (TSA) server.
http://tsa.safecreative.org/.

[66] B. Schneier. US Offensive Cyberwar Policy. Schneier
on Security, June 2013.

[67] B. Schneier and J. Kelsey. Secure audit logs to support
computer forensics. volume 2, pages 159–176, May
1999.

[68] C.-P. Schnorr. Efficient identification and signatures
for smart cards. In Advances in Cryptology
(CRYPTO), 1990.

[69] J. Sermersheim. Lightweight directory access protocol
(ldap): The protocol. 2006.

[70] V. Shoup. Practical threshold signatures. In
EUROCRYPT, 2000.

[71] C. Soghoian and S. Stamm. Certified lies: detecting
and defeating government interception attacks against
ssl. In Financial Cryptography and Data Security,
Feb. 2011.

[72] How useful is NIST’s Randomness Beacon for
cryptographic use?
http://crypto.stackexchange.com/
questions/15225/how-useful-is-nists-
randomness-beacon-for-cryptographic-
use.

[73] P. Szalachowski, S. Matsumoto, and A. Perrig.
PoliCert: Secure and flexible TLS certificate
management. In ACM Conference on Computer and
Communications Security (CCS), Nov. 2014.

[74] Tor: Anonymity Online.
https://www.torproject.org.

[75] Tor directory protocol, version 3.
https://gitweb.torproject.org/
torspec.git/tree/dir-spec.txt, 2014.

[76] V. Venkataraman, K. Yoshida, and P. Francis.
Chunkyspread: Heterogeneous unstructured
tree-based peer-to-peer multicast. In 14th
International Conference on Network Protocols
(ICNP), Nov. 2006.

[77] D. Wendlandt, D. G. Andersen, and A. Perrig.
Perspectives: Improving SSH-style host authentication
with multi-path probing. In USENIX Annual
Technical Conference (USENIX ATC), June 2008.

14

http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
random.org
http://www.reddit.com/r/crypto/comments/21apkx/nist_randomness_beacon/
http://www.reddit.com/r/crypto/comments/21apkx/nist_randomness_beacon/
http://www.reddit.com/r/crypto/comments/21apkx/nist_randomness_beacon/
http://tsa.safecreative.org/
https://www.schneier.com/blog/archives/2013/06/us_offensive_cy.html
http://crypto.stackexchange.com/questions/15225/how-useful-is-nists-randomness-beacon-for-cryptographic-use
http://crypto.stackexchange.com/questions/15225/how-useful-is-nists-randomness-beacon-for-cryptographic-use
http://crypto.stackexchange.com/questions/15225/how-useful-is-nists-randomness-beacon-for-cryptographic-use
http://crypto.stackexchange.com/questions/15225/how-useful-is-nists-randomness-beacon-for-cryptographic-use
https://www.torproject.org
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt

	1 Introduction
	2 Background and Motivation
	3 Collective Signing
	3.1 Principles of Operation
	3.2 Schnorr (Multi-)Signatures
	3.3 Forming Trees for Collective Signing
	3.4 Tree-based Signing
	3.5 Contributory Signing Protocol

	4 Availability and Dynamics
	4.1 Signing Exceptions
	4.2 Life Insurance Policies
	4.3 Leader Failures and View Changes
	4.4 Cothority Evolution

	5 Prototype Implementation
	5.1 Signing Modes and Applications

	6 Evaluation
	6.1 Experimental Setup
	6.2 Computation Costs
	6.3 Collective Signing Latency
	6.4 Scalability
	6.5 Client Load
	6.6 Leader Failures Cost

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	10 References

