About
186
Publications
16,151
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,108
Citations
Publications
Publications (186)
Foundation models have revolutionized artificial intelligence, setting new benchmarks in performance and enabling transformative capabilities across a wide range of vision and language tasks. However, despite the prevalence of spatio-temporal data in critical domains such as transportation, public health, and environmental monitoring, spatio-tempor...
Multimodal recommendation systems can learn users' preferences from existing user-item interactions as well as the semantics of multimodal data associated with items. Many existing methods model this through a multimodal user-item graph, approaching multimodal recommendation as a graph learning task. Graph Neural Networks (GNNs) have shown promisin...
Phishing is a critical cyber threat, exploiting deceptive tactics to compromise victims and cause significant financial losses. While reference-based phishing detectors (RBPDs) achieve high precision by analyzing brand-domain consistency, their real-world deployment is hindered by challenges such as high latency and inefficiency in URL analysis. To...
Question answering is a fundamental capability of large language models (LLMs). However, when people encounter completely new knowledge texts, they often ask questions that the text cannot answer due to a lack of understanding of the knowledge. Recent research shows that large language models identify the unanswerability of questions, but they lack...
Despite inheriting security measures from underlying language models, Vision-Language Models (VLMs) may still be vulnerable to safety alignment issues. Through empirical analysis, we uncover two critical findings: scenario-matched images can significantly amplify harmful outputs, and contrary to common assumptions in gradient-based attacks, minimal...
Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data. In many real-world scenarios, anomalies vary in severity, from minor anomalies with little risk to severe abnormalities requiring immediate attention. However, existing models primarily operate in a binary setting, and the ano...
Label imbalance and homophily-heterophily mixture are the fundamental problems encountered when applying Graph Neural Networks (GNNs) to Graph Fraud Detection (GFD) tasks. Existing GNN-based GFD models are designed to augment graph structure to accommodate the inductive bias of GNNs towards homophily, by excluding heterophilic neighbors during mess...
Given a heterogeneous multilayer network with various connections in pharmacology, how can we detect components with intensive interactions and strong dependencies? Can we accurately capture suspicious groups in a multi-lot transaction network under camouflage? These challenges related to dense subgraph detection have been extensively studied in si...
Cross-lingual summarization (CLS) aims to generate a summary for the source text in a different target language. Currently, instruction-tuned large language models (LLMs) excel at various English tasks. However, unlike languages such as English, Chinese or Spanish, for those relatively low-resource languages with limited usage or data, recent studi...
Text classification involves categorizing a given text, such as determining its sentiment or identifying harmful content. With the advancement of large language models (LLMs), these models have become highly effective at performing text classification tasks. However, they still show vulnerabilities to variations in text formatting. Recent research...
Recent works integrating Knowledge Graphs (KGs) have led to promising improvements in enhancing reasoning accuracy of Large Language Models (LLMs). However, current benchmarks mainly focus on closed tasks, leaving a gap in the assessment of more complex, real-world scenarios. This gap has also obscured the evaluation of KGs' potential to mitigate t...
This paper proposes a simple yet effective jailbreak attack named FlipAttack against black-box LLMs. First, from the autoregressive nature, we reveal that LLMs tend to understand the text from left to right and find that they struggle to comprehend the text when noise is added to the left side. Motivated by these insights, we propose to disguise th...
Synthetic face recognition (SFR) aims to generate synthetic face datasets that mimic the distribution of real face data, which allows for training face recognition models in a privacy-preserving manner. Despite the remarkable potential of diffusion models in image generation, current diffusion-based SFR models struggle with generalization to real-w...
The training data in large language models is key to their success, but it also presents privacy and security risks, as it may contain sensitive information. Detecting pre-training data is crucial for mitigating these concerns. Existing methods typically analyze target text in isolation or solely with non-member contexts, overlooking potential insi...
Large language models (LLMs) face significant challenges in handling long-context tasks because of their limited effective context window size during pretraining, which restricts their ability to generalize over extended sequences. Meanwhile, extending the context window in LLMs through post-pretraining is highly resource-intensive. To address this...
Contrastive Language-Image Pre-training (CLIP) achieves remarkable performance in various downstream tasks through the alignment of image and text input embeddings and holds great promise for anomaly detection. However, our empirical experiments show that the embeddings of text inputs unexpectedly tightly cluster together, far away from image embed...
Graph pre-training has been concentrated on graph-level on small graphs (e.g., molecular graphs) or learning node representations on a fixed graph. Extending graph pre-trained models to web-scale graphs with billions of nodes in industrial scenarios, while avoiding negative transfer across graphs or tasks, remains a challenge. We aim to develop a g...
Transformer-based models have emerged as powerful tools for multivariate time series forecasting (MTSF). However, existing Transformer models often fall short of capturing both intricate dependencies across variate and temporal dimensions in MTS data. Some recent models are proposed to separately capture variate and temporal dependencies through ei...
While large language models (LLMs) have achieved significant success in various applications, they often struggle with hallucinations, especially in scenarios that require deep and responsible reasoning. These issues could be partially mitigate by integrating external knowledge graphs (KG) in LLM reasoning. However, the method of their incorporatio...
Controllable text generation is a challenging and meaningful field in natural language generation (NLG). Especially, poetry generation is a typical one with well-defined and strict conditions for text generation which is an ideal playground for the assessment of current methodologies. While prior works succeeded in controlling either semantic or me...
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios. Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data, underpinning various tasks including node classification and link prediction. However, these methods often suffer from data imbalance, a common...
Sparsity is an established problem for the next Point-of-Interest (POI) recommendation task, where it hinders effective learning of user preferences from the User-POI matrix. However, learning multiple hierarchically related spatial tasks, and visiting relations between users and POIs, can help to alleviate this sparsity problem. In this paper, we...
Recent efforts in fake news detection have witnessed a surge of interest in using graph neural networks (GNNs) to exploit rich social context. Existing studies generally leverage fixed graph structures, assuming that the graphs accurately represent the related social engagements. However, edge noise remains a critical challenge in real-world graphs...
The task of empowering large language models (LLMs) to accurately express their confidence, referred to as confidence elicitation, is essential in ensuring reliable and trustworthy decision-making processes. Previous methods, which primarily rely on model logits, have become less suitable for LLMs and even infeasible with the rise of closed-source...
Traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning in capturing non-linear patterns of traffic data. However, the promising results achieved on current public datasets may not be applicable to practical scenarios due to limitations within these datase...
Confidence calibration is central to providing accurate and interpretable uncertainty estimates, especially under safety-critical scenarios. However, we find that existing calibration algorithms often overlook the issue of proximity bias, a phenomenon where models tend to be more overconfident in low proximity data (i.e., lying in the sparse region...
Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Most graph neural network (GNN) pipelines handle these text attributes by transforming them into shallow or hand-crafted featur...
Label errors have been found to be prevalent in popular text, vision, and audio datasets, which heavily influence the safe development and evaluation of machine learning algorithms. Despite increasing efforts towards improving the quality of generic data types, such as images and texts, the problem of mislabel detection in graph data remains undere...
Entity names play an effective role in relation extraction (RE) and often influence model performance. As a result, the entity names in the benchmarks' test sets significantly influence the evaluation of RE models. In this work, we find that the standard RE benchmarks' datasets have a large portion of incorrect entity annotations, low entity name d...
Proposing an effective and flexible matrix to represent a graph is a fundamental challenge that has been explored from multiple perspectives, e.g., filtering in Graph Fourier Transforms. In this work, we develop a novel and general framework which unifies many existing GNN models from the view of parameterized decomposition and filtering, and show...
Reliable application of machine learning is of primary importance to the practical deployment of deep learning methods. A fundamental challenge is that models are often unreliable due to overconfidence. In this paper, we estimate a model's reliability by measuring \emph{the agreement between its latent space, and the latent space of a foundation mo...
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to rema...
Road safety is a major global public health concern. Effective traffic crash prediction can play a critical role in reducing road traffic accidents. However, Existing machine learning approaches tend to focus on predicting traffic accidents in isolation, without considering the potential relationships between different accident locations within roa...
How can we detect anomalies: that is, samples that significantly differ from a given set of high-dimensional data, such as images or sensor data? This is a practical problem with numerous applications and is also relevant to the goal of making learning algorithms more robust to unexpected inputs. Autoencoders are a popular approach, partly due to t...
Node classification on graphs is an important task in many practical domains. It usually requires labels for training, which can be difficult or expensive to obtain in practice. Given a budget for labelling, active learning aims to improve performance by carefully choosing which nodes to label. Previous graph active learning methods learn represent...
Graph neural networks (GNNs) fuel diverse machine learning tasks involving graph-structured data, ranging from predicting protein structures to serving personalized recommendations. Real-world graph data must often be stored distributed across many machines not just because of capacity constraints, but because of compliance with data residency or p...
Trustworthy machine learning is of primary importance to the practical deployment of deep learning models. While state-of-the-art models achieve astonishingly good performance in terms of accuracy, recent literature reveals that their predictive confidence scores unfortunately cannot be trusted: e.g., they are often overconfident when wrong predict...
Given a cardiac-arrest patient being monitored in the ICU (intensive care unit) for brain activity, how can we predict their health outcomes as early as possible? Early decision-making is critical in many applications, e.g. monitoring patients may assist in early intervention and improved care. On the other hand, early prediction on EEG data poses...
Spatio-temporal graph neural networks (STGNN) have become the most popular solution to traffic forecasting. While successful, they rely on the message passing scheme of GNNs to establish spatial dependencies between nodes, and thus inevitably inherit GNNs' notorious inefficiency. Given these facts, in this paper, we propose an embarrassingly simple...
Real-time fraud detection is a challenge for most financial and electronic commercial platforms. To identify fraudulent communities, Grab, one of the largest technology companies in Southeast Asia, forms a graph from a set of transactions and detects dense subgraphs arising from abnormally large numbers of connections among fraudsters. Existing den...
How do we know when the predictions made by a classifier can be trusted? This is a fundamental problem that also has immense practical applicability, especially in safety-critical areas such as medicine and autonomous driving. The de facto approach of using the classifier's softmax outputs as a proxy for trustworthiness suffers from the over-confid...
The power of Deep Neural Networks (DNNs) depends heavily on the training data quantity, quality and diversity. However, in many real scenarios, it is costly and time-consuming to collect and annotate large-scale data. This has severely hindered the application of DNNs. To address this challenge, we explore a new task of dataset expansion, which see...
In this article, a modified mutual information maximization (InfoMax) framework, named channel capacity maximization (CapMax), is proposed and applied to learn informative representations for dynamic networks with time-varying topology and/or time-evolving node attributes. The CapMax is based on the network information theory for multiuser communic...
Real-time fraud detection is a challenge for most financial and electronic commercial platforms. To identify fraudulent communities, Grab, one of the largest technology companies in Southeast Asia, forms a graph from a set of transactions and detects dense subgraphs arising from abnormally large numbers of connections among fraudsters. Existing den...
Trustworthy machine learning is of primary importance to the practical deployment of deep learning models. While state-of-the-art models achieve astonishingly good performance in terms of accuracy, recent literature reveals that their predictive confidence scores unfortunately cannot be trusted: e.g., they are often overconfident when wrong predict...
Detecting anomalous edges and/or nodes is a challenging problem for dynamic networks, due to the spatio-temporal (ST) patterns and randomness underneath the time-varying topology and node attributes. Existing methods commonly ignore randomness, and the anomaly detectors would be sensitive, especially in highly variable dynamic networks. In this pap...
In Reinforcement Learning (RL), Laplacian Representation (LapRep) is a task-agnostic state representation that encodes the geometry of the environment. A desirable property of LapRep stated in prior works is that the Euclidean distance in the LapRep space roughly reflects the reachability between states, which motivates the usage of this distance f...
Recently, implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs. In this paper, we introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscal...
Sparsity of the User-POI matrix is a well established problem for next POI recommendation, which hinders effective learning of user preferences. Focusing on a more granular extension of the problem, we propose a Joint Triplet Loss Learning (JTLL) module for the Next New ($N^2$) POI recommendation task, which is more challenging. Our JTLL module fir...
Link prediction (LP) has been recognized as an important task in graph learning with its board practical applications. A typical application of LP is to retrieve the top scoring neighbors for a given source node, such as the friend recommendation. These services desire the high inference scalability to find the top scoring neighbors from many candi...
Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? Existing approaches aim to detect individually surprising edges.
In this work, we propose Midas , which focuses on detecting microcluster anomalies , or sud...
Of particular interest is to discover useful representations solely from observations in an unsupervised generative manner. However, the question of whether existing normalizing flows provide effective representations for downstream tasks remains mostly unanswered despite their strong ability for sample generation and density estimation. This paper...
Of particular interest is to discover useful representations solely from observations in an unsupervised generative manner. However, the question of whether existing normalizing flows provide effective representations for downstream tasks remains mostly unanswered despite their strong ability for sample generation and density estimation. This paper...
The detection of anomalous samples in large, high-dimensional datasets is a challenging task with numerous practical applications. Recently, state-of-the-art performance is achieved with deep learning methods: for example, using the reconstruction error from an autoencoder as anomaly scores. However, the scores are uncalibrated: that is, they follo...
Many well-established anomaly detection methods use the distance of a sample to those in its local neighbourhood: so-called `local outlier methods', such as LOF and DBSCAN. They are popular for their simple principles and strong performance on unstructured, feature-based data that is commonplace in many practical applications. However, they cannot...
How can we detect anomalies: that is, samples that significantly differ from a given set of high-dimensional data, such as images or sensor data? This is a practical problem with numerous applications and is also relevant to the goal of making learning algorithms more robust to unexpected inputs. Autoencoders are a popular approach, partly due to t...
The pervasiveness of graphs today has raised the demand for algorithms to answer various questions: Which products would a user like to purchase given her order list? Which users are buying fake followers? Myriads of new graph algorithms are proposed every year to answer such questions—each with a distinct problem formulation, computational time, a...
Entity types and textual context are essential properties for sentence-level relation extraction (RE). Existing work only encodes these properties within individual instances, which limits the performance of RE given the insufficient features in a single sentence. In contrast, we model these properties from the whole dataset and use the dataset-lev...