About
43
Publications
30,297
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,204
Citations
Introduction
Additional affiliations
April 2020 - present
AlmaScience
Position
- Senior Researcher
January 2011 - July 2015
January 2011 - July 2015
Publications
Publications (43)
The success of personalized medicine depends on the discovery of biomarkers that allow oncologists to identify patients that will benefit from a particular targeted drug. Molecular tests are mostly performed using tumor samples, which may not be representative of the tumor’s temporal and spatial heterogeneity. Liquid biopsies, and particularly the...
We introduce a digital microfluidics (DMF) platform specifically designed to perform a loop-mediated isothermal amplification (LAMP) of DNA and applied it to a real-time amplification to monitor a cancer biomarker, c-Myc (associated to 40% of all human tumors), using fluorescence microscopy. We demonstrate the full manipulation of the sample and re...
Nucleic acid amplification technologies (NAATs) have become fundamental tools in molecular diagnostics, due to their ability to detect small amounts of target molecules. Since its development, Polymerase Chain Reaction (PCR) has been the most exploited method, being stablished as the “gold standard” technique for DNA amplification. However, the req...
Contaminated water resources remain a major global concern regarding public health. The majority of water safety protocols include indicators of microbial contamination to evaluate the potential risk to public health and are key elements of quality guidelines. Among these, markers for total coliforms and fecal coliforms are strong indicators of co-...
Microfluidic (MF) advancements have been leveraged toward the development of state-of-the-art platforms for molecular diagnostics, where isothermal amplification schemes allow for further simplification of DNA detection and quantification protocols. The MF integration with loop-mediated isothermal amplification (LAMP) is today the focus of a new ge...
Throughout the last decade, the expansion of food testing has been gradually moving towards ordinary high throughput screening methods performed on-site. The demand for point-of-care testing, able to distinguish molecular signatures with high accuracy, sensitivity and specificity has been significantly increasing. This new requirement relies on the...
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation and one of the main causes of chronic disability worldwide with high prevalence in the ageing population. RA is characterized by autoantibody production, synovial inflammation and bone destruction, whose most accepted biomarker is rheumatoid facto...
Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detect...
Due to their relevance as disease biomarkers and for diagnostics, screening of single nucleotide polymorphism (SNPs) requires simple and straightforward strategies capable to provide results in medium throughput settings. Suitable approaches relying on isothermal amplification techniques have been evolving to substitute the cumbersome and highly sp...
Digital Microfluidics (DMF) has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex a...
Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may...
Nanoparticle based systems, in particular gold nanoparticles (AuNPs), provide for simple colorimetric detection of molecular biomarkers, such as DNA, RNA. These systems rely on the functionalization of AuNPs with ssDNA oligonucleotides requiring strenuous laboratory centrifugation steps not compatible with industrial scale up. Here, we demonstrate...
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development in exploring biomolecular interactions with AuNPs-containing systems, pursuing biomedical applications in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of DNA/RNA detection and characterization systems for...
In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FET...
The use of microfluidics platforms combined with the optimal optical properties of gold nanoparticles has found plenty of application in molecular biosensing. This paper describes a bio-microfluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of...
Nanotechnology based diagnostics has provided improved tools for pathogen detection and sensitive and specific characterization of antibiotic resistance signatures. Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis Complex (MTBC) and, according to the World Health Organization, is one of the most serious infectious diseases i...
The increasing levels of drug resistance are one of biggest threats to overcome microbial infection. The ability to rapidly and accurately detect a given pathogen and its drug resistance profile is essential for the appropriate treatment of patients and for preventing further spread of drug-resistant strains. The predictive and informative value of...
There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our result...
Tuberculosis accounted for 8.7 million new cases in 2011 and continues to be one of the leading human infectious diseases. Burdensome is the increasing rate of multi-drug resistant tuberculosis (MDRTB) and the difficulties created for treatment and public health control programs, especially in developing countries. Resistance to rifampicin (RIF), a...
Field-effect-based devices are becoming a basic structural element in a new generation of microbiosensors. Reliable molecular characterization of DNA and/or RNA is of paramount importance for disease diagnostics and to follow up alterations in gene expression profiles. The use of such devices for point-of-need diagnostics has been hindered by the n...
Tuberculosis (TB), still one of the leading human infectious diseases, reported 8.7 million new cases in 2011 alone. Also, the increasing rate of multidrug-resistant tuberculosis (MDRTB) and its treatment difficulties pose a serious public health problem especially in developing countries. Resistance to isoniazid and rifampicin, first line antibiot...
In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties...
Tuberculosis (TB) remains one of the most serious infectious diseases in the world and the rate of new cases continues to increase. The development of cheap and simple methodologies capable of identifying TB causing agents belonging to the Mycobacterium tuberculosis Complex (MTBC), at point-of-need, in particular in resource-poor countries where th...
Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targe...
We present a new approach for real-time monitoring of PCR amplification of a specific sequence from the human c-MYC proto-oncogene using a Ta(2)O(5) electrolyte-insulator-semiconductor (EIS) sensor. The response of the fabricated EIS sensor to cycle DNA amplification was evaluated and compared to standard SYBR-green fluorescence incorporation, show...
Tuberculosis (TB) is one of the leading causes of infection in humans, causing high morbility and mortality all over the world. The rate of new cases of multidrug resistant tuberculosis (MDRTB) continues to increase, and since these infections are very difficult to manage, they constitute a serious health problem. In most cases, drug resistance in...
In this paper we report on the fabrication and performance of a portable and low cost optoelectronic platform integrating a double color tuned light emitting diode as light source, an amorphous/nanocrystalline silicon photodetector with a flat spectral response in the wavelength range from 520 nm to 630 nm and integrated electronic for signal acqui...