Bruno Ribeiro

Bruno Ribeiro
  • University of Brasília

About

49
Publications
3,476
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
500
Citations
Current institution
University of Brasília

Publications

Publications (49)
Article
Full-text available
Existing causal models for link prediction assume an underlying set of inherent node factors—an innate characteristic defined at the node’s birth—that governs the causal evolution of links in the graph. In some causal tasks, however, link formation is path-dependent: the outcome of link interventions depends on existing links. Unfortunately, these...
Preprint
Full-text available
The task of inductive link prediction in (discrete) attributed multigraphs infers missing attributed links (relations) between nodes in new test multigraphs. Traditional relational learning methods face the challenge of limited generalization to OOD test multigraphs containing both novel nodes and novel relation types not seen in training. Recently...
Article
Full-text available
In this work we show that deep learning classifiers tend to become overconfident in their answers under adversarial attacks, even when the classifier is optimized to survive such attacks. Our work draws upon stochastic geometry and graph algorithms to propose a general framework to replace the last fully connected layer and softmax output. This fra...
Preprint
Full-text available
Current state-of-the-art causal models for link prediction assume an underlying set of inherent node factors -- an innate characteristic defined at the node's birth -- that governs the causal evolution of links in the graph. In some causal tasks, however, link formation is path-dependent, i.e., the outcome of link interventions depends on existing...
Preprint
Full-text available
This work provides a formalization of Knowledge Graphs (KGs) as a new class of graphs that we denote doubly exchangeable attributed graphs, where node and pairwise (joint 2-node) representations must be equivariant to permutations of both node ids and edge (& node) attributes (relations & node features). Double-permutation equivariant KG representa...
Conference Paper
Roll-to-roll printing has significantly shortened the time from design to production of sensors and IoT devices, while being cost-effective for mass production. But due to less manufacturing tolerance controls available, properties such as sensor thickness, composition, roughness, etc., cannot be precisely controlled. Since these properties likely...
Preprint
Full-text available
Deep learning models tend not to be out-of-distribution robust primarily due to their reliance on spurious features to solve the task. Counterfactual data augmentations provide a general way of (approximately) achieving representations that are counterfactual-invariant to spurious features, a requirement for out-of-distribution (OOD) robustness. In...
Preprint
Full-text available
In this paper, we seek to answer what-if questions - i.e., given recorded data of an existing deployed networked system, what would be the performance impact if we changed the design of the system (a task also known as causal inference). We make three contributions. First, we expose the complexity of causal inference in the context of adaptive bit...
Article
The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same clust...
Preprint
Full-text available
This work provides the first theoretical study on the ability of graph Message Passing Neural Networks (gMPNNs) -- such as Graph Neural Networks (GNNs) -- to perform inductive out-of-distribution (OOD) link prediction tasks, where deployment (test) graph sizes are larger than training graphs. We first prove non-asymptotic bounds showing that link p...
Article
Full-text available
This work considers the general task of estimating the sum of a bounded function over the edges of a graph, given neighborhood query access and where access to the entire network is prohibitively expensive. To estimate this sum, prior work proposes Markov chain Monte Carlo (MCMC) methods that use random walks started at some seed vertex and whose e...
Preprint
Full-text available
Node classification is a central task in relational learning, with the current state-of-the-art hinging on two key principles: (i) predictions are permutation-invariant to the ordering of a node's neighbors, and (ii) predictions are a function of the node's $r$-hop neighborhood topology and attributes, $r \geq 2$. Both graph neural networks and col...
Article
The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same clust...
Preprint
Full-text available
This work proposes an unsupervised learning framework for trajectory (sequence) outlier detection that combines ranking tests with user sequence models. The overall framework identifies sequence outliers at a desired false positive rate (FPR), in an otherwise parameter-free manner. We evaluate our methodology on a collection of real and simulated d...
Preprint
Full-text available
Graph neural networks (GNNs) have limited expressive power, failing to represent many graph classes correctly. While more expressive graph representation learning (GRL) alternatives can distinguish some of these classes, they are significantly harder to implement, may not scale well, and have not been shown to outperform well-tuned GNNs in real-wor...
Preprint
Full-text available
Despite -- or maybe because of -- their astonishing capacity to fit data, neural networks are believed to have difficulties extrapolating beyond training data distribution. This work shows that, for extrapolations based on finite transformation groups, a model's inability to extrapolate is unrelated to its capacity. Rather, the shortcoming is inher...
Preprint
Full-text available
In this work we formalize the (pure observational) task of predicting node attribute evolution in temporal graphs. We show that node representations of temporal graphs can be cast into two distinct frameworks: (a) The de-facto standard approach, which we denote {\em time-and-graph}, where equivariant graph (e.g., GNN) and sequence (e.g., RNN) repre...
Preprint
Full-text available
In general, graph representation learning methods assume that the test and train data come from the same distribution. In this work we consider an underexplored area of an otherwise rapidly developing field of graph representation learning: The task of out-of-distribution (OOD) graph classification, where train and test data have different distribu...
Preprint
Full-text available
This work considers the general task of estimating the sum of a bounded function over the edges of a graph that is unknown a priori, where graph vertices and edges are built on-the-fly by an algorithm and the resulting graph is too large to be kept in memory or disk. Prior work proposes Markov Chain Monte Carlo (MCMC) methods that simultaneously sa...
Article
Full-text available
Abstract Complex systems, represented as dynamic networks, comprise of components that influence each other via direct and/or indirect interactions. Recent research has shown the importance of using Higher-Order Networks (HONs) for modeling and analyzing such complex systems, as the typical Markovian assumption in developing the First Order Network...
Preprint
Full-text available
Existing Graph Neural Network (GNN) methods that learn inductive unsupervised graph representations focus on learning node and edge representations by predicting observed edges in the graph. Although such approaches have shown advances in downstream node classification tasks, they are ineffective in jointly representing larger $k$-node sets, $k{>}2...
Preprint
Full-text available
Over-sharing poorly-worded thoughts and personal information is prevalent on online social platforms. In many of these cases, users regret posting such content. To retrospectively rectify these errors in users' sharing decisions, most platforms offer (deletion) mechanisms to withdraw the content, and social media users often utilize them. Ironicall...
Article
Full-text available
We consider the task of learning a parametric Continuous Time Markov Chain (CTMC) sequence model without examples of sequences, where the training data consists entirely of aggregate steady-state statistics. Making the problem harder, we assume that the states we wish to predict are unobserved in the training data. Specifically, given a parametric...
Preprint
Full-text available
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-super...
Preprint
Full-text available
We consider the task of learning a parametric Continuous Time Markov Chain (CTMC) sequence model without examples of sequences, where the training data consists entirely of aggregate steady-state statistics. Making the problem harder, we assume that the states we wish to predict are unobserved in the training data. Specifically, given a parametric...
Preprint
Full-text available
This work provides the first unifying theoretical framework for node embeddings and structural graph representations, bridging methods like matrix factorization and graph neural networks. Using invariant theory, we show that the relationship between structural representations and node embeddings is analogous to that of a distribution and its sample...
Preprint
Full-text available
The goal of lifetime clustering is to develop an inductive model that maps subjects into $K$ clusters according to their underlying (unobserved) lifetime distribution. We introduce a neural-network based lifetime clustering model that can find cluster assignments by directly maximizing the divergence between the empirical lifetime distributions of...
Conference Paper
Full-text available
In many complex domains, the input data are often not suited for the typical vector representations used in deep learning models. For example, in relational learning and computer vision tasks, the data are often better represented as sets (e.g., the neighborhood of a node, a cloud of points). In these cases, a key challenge is to learn an embedding...
Preprint
Full-text available
Graph Neural Networks (GNNs) have proven to be successful in many classification tasks, outperforming previous state-of-the-art methods in terms of accuracy. However, accuracy alone is not enough for high-stakes decision making. Decision makers want to know the likelihood that a specific GNN prediction is correct. For this purpose, obtaining calibr...
Preprint
Full-text available
This work generalizes graph neural networks (GNNs) beyond those based on the Weisfeiler-Lehman (WL) algorithm, graph Laplacians, and graph diffusion kernels. Our approach, denoted Relational Pooling (RP), draws from the theory of finite partial exchangeability to provide a framework with maximal representation power for graphs. RP can work with exi...
Article
We propose a caching policy that uses a feedforward neural network (FNN) to predict content popularity. Our scheme outperforms popular eviction policies like LRU or ARC, but also a new policy relying on the more complex recurrent neural networks. At the same time, replacing the FNN predictor with a naive linear estimator does not degrade caching pe...
Preprint
Full-text available
We consider a simple and overarching representation for permutation-invariant functions of sequences (or set functions). Our approach, which we call Janossy pooling, expresses a permutation-invariant function as the average of a permutation-sensitive function applied to all reorderings of the input sequence. This allows us to leverage the rich and...
Preprint
Full-text available
We propose a caching policy that uses a feedforward neural network (FNN) to predict content popularity. Our scheme outperforms popular eviction policies like LRU or ARC, but also a new policy relying on the more complex recurrent neural networks. At the same time, replacing the FNN predictor with a naive linear estimator does not degrade caching pe...
Preprint
Full-text available
In this work we propose R-GPM, a parallel computing framework for graph pattern mining (GPM) through a user-defined subgraph relation. More specifically, we enable the computation of statistics of patterns through their subgraph classes, generalizing traditional GPM methods. R-GPM provides efficient estimators for these statistics by employing a MC...
Conference Paper
Full-text available
Most content providers are interested in providing good video delivery QoE for all users, not just on average. State-of-the-art ABR algorithms like BOLA and MPC rely on parameters that are sensitive to network conditions, so may perform poorly for some users and/or videos. In this paper, we propose a technique called Oboe to auto-tune these paramet...
Article
Full-text available
In this work we generalize traditional node/link prediction tasks in dynamic heterogeneous networks, to consider joint prediction over larger k-node induced subgraphs. Our key insight is to incorporate the unavoidable dependencies in the training observations of induced subgraphs into both the input features and the model architecture itself via hi...
Article
Full-text available
A major branch of anomaly detection methods rely on dynamic networks: raw sequential data is first converted to a series of networks, then critical change points are identified in the evolving network structure. However, existing approaches use the first-order network (FON) to represent the underlying raw data, which may lose important higher-order...
Article
Full-text available
We propose a Las Vegas transformation of Markov Chain Monte Carlo (MCMC) estimators of Restricted Boltzmann Machines (RBMs). We denote our approach Markov Chain Las Vegas (MCLV). MCLV gives statistical guarantees in exchange for random running times. MCLV uses a stopping set built from the training data and has maximum number of Markov chain steps...
Preprint
We propose a Las Vegas transformation of Markov Chain Monte Carlo (MCMC) estimators of Restricted Boltzmann Machines (RBMs). We denote our approach Markov Chain Las Vegas (MCLV). MCLV gives statistical guarantees in exchange for random running times. MCLV uses a stopping set built from the training data and has maximum number of Markov chain steps...
Article
Full-text available
Research in statistical relational learning has produced a number of methods for learning relational models from large-scale network data. While these methods have been successfully applied in various domains, they have been developed under the unrealistic assumption of full data access. In practice, however, the data are often collected by crawlin...
Article
Research in social network analysis and statistical relational learning has produced a number of methods for learning relational models from large-scale network data. Unfortunately, these methods have been developed under the unrealistic assumption of full data access. In practice, however, the data are often collected by crawling the network, due...
Article
Full-text available
The goal of cluster analysis in survival data is to identify clusters that are decidedly associated with the survival outcome. Previous research has explored this problem primarily in the medical domain with relatively small datasets, but the need for such a clustering methodology could arise in other domains with large datasets, such as social net...

Network

Cited By