Bruno DelilleUniversity of Liège | ulg · Chemical Oceanography Unit
Bruno Delille
PhD
About
364
Publications
46,218
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,829
Citations
Introduction
I'm interested in sea ice and polar oceans biogeochemistry with an emphasis on climate gases (CO2, CH4, N2O, DMS) dynamics.
Additional affiliations
May 2016 - present
Microspir
Position
- Consultant
Description
- Microspir develops and markets domestic superfood incubator. We want to allow the largest number of people to take control of their diet and the impact of it on the environment.
October 2009 - present
September 1997 - February 2021
Education
September 1997 - July 2006
October 1993 - June 1995
Publications
Publications (364)
We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large over-saturation, relative to the atmosphere, to a marked under-saturation while the underlying oceanic water...
Given rapid sea ice changes in the Arctic Ocean in the context of climate warming, better constraints on the role of sea ice in CO2 cycling are needed to assess the capacity of polar oceans to buffer the rise of atmospheric CO2 concentration. Air-ice CO2 fluxes were measured continuously using automated chambers from the initial freezing of a sea i...
The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production.
This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission
of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on th...
Winter to summer CO2 dynamics within landfast sea ice in McMurdo Sound (Antarctica) were investigated using bulk ice pCO2 measurements, air‐snow‐ice CO2 fluxes, dissolved inorganic carbon (DIC), total alkalinity (TA), and ikaite saturation state. Our results suggest depth‐dependent biotic and abiotic controls that led us to discriminate the ice col...
Sea ice in part controls surface water properties and the ocean‐atmosphere exchange of greenhouse gases at high latitudes. In sea ice, gas exists dissolved in brine and as air bubbles contained in liquid brine inclusions or as bubbles trapped directly within the ice matrix. Current research on gas dynamics within the ocean‐sea ice‐atmosphere interf...
Previous studies have reported an accumulation of nitrous oxide (N2O) on shallow continental shelves of the western Arctic Ocean. In this study, we sampled seawater profiles for N2O measurements in the eastern Arctic shelves, in the North Kara Sea, in the context of the Arctic Century Expedition. Despite some variability in the vertical distributio...
The TANGO2 expedition ventured to accumulate new information and samples to delineate responses of marine ecosystems to shifts in ice regimes in the West Antarctic Peninsula (WAP), taking full advantage of a nimble sampling platform, the R/V Australis, a steel hulled, fully rigged motor sailor. TANGO2 took place between February and March 2024, sam...
Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the conte...
The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean feat...
The TANGO1 expedition ventured to accumulate new data on the responses of marine ecosystems to shifts in ice regimes in the West Antarctic Peninsula (WAP), taking full advantage of a nimble sampling platform, the R/V Australis, a steel hulled, fully rigged motor sailor. TANGO1 took place between February and March 2023, sampling two main locations...
Leads play an important role in the exchange of heat, gases, vapour, and particles between seawater and the atmosphere in ice-covered polar oceans. In summer, these processes can be modified significantly by the formation of a meltwater layer at the surface, yet we know little about the dynamics of meltwater layer formation and persistence. During...
Sea ice is an active component of the Earth’s climate system, interacting with both the atmosphere and the ocean. Arctic sea ice is commonly covered by melt ponds during late spring and summer, strongly affecting sea ice physical and optical properties. How melt pond formation affects sea ice gas dynamics and exchanges between sea ice and the atmos...
Melting sea ice is a seasonal source of iron (Fe) to the Southern Ocean (SO), where Fe levels in surface waters are otherwise
generally too low to support phytoplankton growth. However, the effectiveness of sea-ice Fe fertilization in stimulating
SO primary production is unknown since no data exist on Fe uptake by microorganisms in the sea-ice en...
Melting sea ice is a seasonal source of iron (Fe) to the Southern Ocean (SO), where Fe levels in surface waters are otherwise generally too low to support phytoplankton growth. However, the effectiveness of sea-ice Fe fertilization in stimulating SO primary production is unknown since no data exist on Fe uptake by microorganisms in the sea-ice envi...
The intensity and spectrum of light under Arctic sea ice, key to the energy budget and primary productivity of the Arctic Ocean, are tedious to observe. Earth System Models (ESMs) are instrumental in understanding the large‐scale properties and impacts of under‐ice light. To date, however, ESM parameterizations of radiative transfer have been evalu...
We report on diurnal, tidal, and seasonal variations of dissolved inorganic carbon (DIC), water partial pressure of CO2 (pCO2), and associated water–air CO2 fluxes in a tidal creek of a temperate coastal lagoon with 70% of intertidal flats, during eight tidal/diurnal cycles and two consecutive years covering all seasons. Surface waters of the lagoo...
We examine an Arctic winter storm event, which led to ice break–up, the formation of open leads, and the subsequent freezing of these leads. The methane (CH4) concentration in under–ice surface water before and during the storm event was 8–12 nmol L⁻¹, which resulted in a potential sea–to–air CH4 flux ranging from +0.2 to +2.1 mg CH4 m⁻² d⁻¹ in ope...
Antarctic sea ice is a seasonal source of iron (Fe) to the Southern Ocean (SO), where surface waters Fe levels are otherwise generally low. The effectiveness of Fe released from melting sea ice does not only depends on the magnitude of the supply, but also on the biological Fe demand. Here, we hypothesize that Fe uptake rates by sea-ice algae and u...
Although studies of biogeochemical processes in polar sea ice have been increasing, similar research on relatively warm low-salinity sea ice remains sparse. In this study, we investigated biogeochemical properties of the landfast sea ice cover in the brackish Bothnian Bay (Northern Baltic Sea) and the possible role of this sea ice in mediating the...
We report on methane (CH4) stable isotope (δ13C and δ2H) measurements from landfast sea ice collected near Barrow (Utqiagvik, Alaska) and Cape Evans (Antarctica) over the winter-to-spring transition. These measurements provide novel insights into pathways of CH4 production and consumption in sea ice. We found substantial differences between the two...
A paradox is commonly observed in productive sea ice in which an accumulation in the macro-nutrients nitrate and phosphate coincides with an accumulation of autotrophic biomass. This paradox requires a new conceptual understanding of the biogeochemical processes operating in sea ice. In this study, we investigate this paradox using three time serie...
The deep chlorophyll maximum (DCM) is a well-known feature of the global ocean. However, its description and the study of its formation are a challenge, especially in the peculiar environment that is the Black Sea. The retrieval of chlorophyll a (chl a) from fluorescence (Fluo) profiles recorded by Biogeochemical Argo (BGC-Argo) floats is not trivi...
The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production. This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on th...
The Deep Chlorophyll Maximum (DCM) is a well known feature of the global ocean. However, its description and the study of its formation are a challenge, especially in the peculiar Black Sea environment. The retrieval of Chlorophyll a (Chla) from fluorescence (Fluo) profiles recorded by Biogeochemical-Argo (BGC-Argo) floats is not trivial in the Bla...
This work presents the results of physical and biological investigations at 27 biogeochemical stations of early winter sea ice in the Ross Sea during the 2017 PIPERS cruise. Only two similar cruises occurred in the past, in 1995 and 1998. The year 2017 was a specific year, in that ice growth in the Central Ross Sea was considerably delayed, compare...
The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIP...
Environmental contextDimethylsulfoniopropionate and dimethylsulfoxide could have a climatic influence especially in the polar areas. We investigate the effect of sea ice salinity and temperature on the production of these two sulfur metabolites by a polar microalga, and suggest their potential roles of osmoregulator and cryoprotectant. These result...
The cryosphere, which comprises a large portion of Earth’s surface, is rapidly changing as a consequence of global climate change. Ice, snow, and frozen ground in the polar and alpine regions of the planet are known to directly impact atmospheric composition, which for example is observed in the large influence of ice and snow on polar boundary lay...
There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operati...
Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a “knowledge gap” that increases uncert...
Historical sea ice core chlorophyll-a (Chla) data are used to describe the seasonal, regional, and
vertical distribution of ice algal biomass in Antarctic landfast sea ice. The analyses are based on the Antarctic
Fast Ice Algae Chlorophyll-a data set, a compilation of currently available sea ice Chla data from landfast sea
ice cores collected at ci...
Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow...
Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow...
Coastal polynyas are areas of anomalous open water and thin ice in regions that are otherwise covered by sea ice. They frequently occur around the Antarctic continent in response to strong offshore katabatic wind stresses. The loss of heat from the open ocean to the cold atmosphere can enormously enhance rates of ice production. In polynya areas, t...
Viruses are recognized as important actors in ocean ecology and biogeochemical cycles, but many details are not yet understood. We participated in a winter expedition to the Weddell Sea, Antarctica, to isolate viruses and to measure virus-like particle abundance (flow cytometry) in sea ice. We isolated 59 bacterial strains and the first four Antarc...
In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2), the air–sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled in both time and space and of surface pCO2 exhibiting much higher te...
Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and bioge...
Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l(-1)) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadeca...
Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro-nutrient data (hereafter termed nutrients) in Antarctic pack ice (306 ice-cores collected from 19 research cruises). Dissolved inorganic nitrogen and...
Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro-nutrient data (hereafter termed nutrients) in Antarctic pack ice (306 ice-cores collected from 19 research cruises). Dissolved inorganic nitrogen and...
In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2), the air-sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled both in time and space, and of surface pCO2 exhibiting much higher t...
The multiphase dynamics of gases in sea ice is controlled by the physics of the system (initial incorporation, concentration/dilution, transport), internal biogeochemical reactions (biological activity, CaCO3-brine equilibrium in the case of carbon dioxide), and exchange with the atmosphere and the underlying ocean. The thermodynamic equilibrium be...
Temporal changes in the concentration profiles of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), and dimethylsulfoxide (DMSO) were measured in pack ice from the Bellingshausen Sea (Antarctica) during the winter-spring transition of 2007. Two sites with contrasting snow and ice thicknesses were sampled, with high concentrations of DMS, DM...
This study reports concentrations of iron (Fe) and organic matter in young Antarctic pack ice and during its initial growth stages in situ. Although the importance of sea ice as an Fe reservoir for oceanic waters of the Southern Ocean has been clearly established, the processes leading to the enrichment of Fe in sea ice have yet to be investigated...
The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs). Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC) and total alkalinity (TA). Here we investigate wh...
Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m−...
Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a ne...
Although the presence of a gas phase in sea ice creates the potential for
gas exchange with the atmosphere, the distribution of gas bubbles and
transport of gases within the sea ice are still poorly understood. Currently
no straightforward technique exists to measure the vertical distribution of
air volume fraction in sea ice. Here, we present a ne...
Ikaite precipitation within sea ice could act as a significant sink for atmospheric CO2. However, the fate of these ikaite crystals is still poorly understood. We quantify temporal inorganic carbon dynamics from initial sea ice formation from open water to its melt during a month-long experiment in a sea ice-seawater mesocosm pool. Within sea ice,...
The objective of this study was to assess the O2 budget in the water under sea ice combining observations and modelling. Modelling was used to discriminate between physical processes, gas-specific transport (i.e., ice-atmosphere gas fluxes and gas bubble buoyancy) and bacterial respiration (BR) and to constrain bacterial growth efficiency (BGE). A...
Sea ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within sea ice using a one-dimensional halo-thermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and tota...
We present the CH4 concentration [CH4], the partial pressure of
CO2 (pCO2) and the total gas content in bulk sea ice from subarctic,
land-fast sea ice in the Kapisillit fjord, Greenland. Fjord systems are
characterized by freshwater runoff and riverine input and based on δ18O data, we show that > 30% of the surface water
originated from periodic ri...
Temporal evolution of pCO 2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows physical and thermodynamic processes controls the CO 2 sys-tem in the ice. During the survey, cyclical warming and cool-ing strongly influenced the physical, chemical, and thermo-dynamic properties of the ice cover. Two sampling sites with c...