On the Generation of Dual Polar Spaces of Unitary Type over Finite Fields

B. N. Cooperstein

It is demonstrated that the generating rank of the dual polar space of type $U_{2n}(q^2)$ is $\binom{2n}{n}$ when $q > 2$. It is also shown that this is equal to the embedding rank of this geometry.

© 1997 Academic Press Limited

1. Introduction and Basic Concepts

We assume the reader is familiar with the basic definitions relating to graphs and point–line geometries (as a standard reference see [1]) and in particular, the distance function, a geodesic path, and diameter of a graph; the collinearity graph of a point–line geometry $\Gamma = (P, L)$, a subspace of Γ, the subspace $(X)_{\Gamma}$ generated by a subset X of P, and convex subspace of Γ. We define the generating rank, $\text{gr}(\Gamma)$, of Γ to be $\min\{|X| : X \subseteq P, (X)_{\Gamma} = P\}$, that is, the minimal cardinality of a generating set of Γ.

We further assume familiarity with the concept of a projective embedding $e : P \to \mathbb{P}G(V)$ of a point–line geometry $\Gamma = (P, L)$ as well as the notion of a relatively universal embedding. We say that Γ is embedable if some projective embedding of Γ exists. When this is the case we shall define the embedding rank, $\text{er}(\Gamma)$, of Γ to be the maximal dimension of a vector space V for which there exists an embedding into $\mathbb{P}G(V)$. An immediate consequence of these definitions is the following:

Definition. Let $\Gamma = (P, L)$ be an embedable point–line geometry and let $e : P \to \mathbb{P}G(V)$ be an embedding.

1. $\dim(V) \leq \text{gr}(\Gamma)$. Consequently, $\text{er}(\Gamma) \leq \text{gr}(\Gamma)$.
2. If $\dim(V) = \text{gr}(\Gamma)$ then e is relatively universal.

In general, when we have a subset X of V and some collection of subspaces \mathcal{A} then we will set $\mathcal{A}(X) = \{A \in \mathcal{A} | A \subseteq X\}$.

1.1. Polar Spaces and Dual Polar Spaces of Type $U_{2n}(q^2)$. In this paper we will be interested in two related point–line geometries: the polar and dual polar spaces of type $U_{2n}(q^2)$. The polar space of type $U_{k}(q^2)$ can be described as follows: Let V be a vector space of dimension k over \mathbb{F}_q^2 and let $\xi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$ be the automorphism given by $\xi(x) = x^q$. We will usually denote images under this map by the ‘bar’ notation: $\overline{x} = x^q = \xi x$. Now let $f : V \times V \to \mathbb{F}_q$ be a nondegenerate hermitian form, that is, a map which satisfies:

$$f(u + v, w) = f(u, w) + f(v, w); \quad f(av, w) = af(v, w); \quad f(w, v) = \overline{f(v, w)}$$

for $u, v, w \in V, a \in \mathbb{F}_q^2$.

A vector v is isotropic if $f(v, v) = 0$ and a subspace U is isotropic if $f(U, U) = 0$. The maximal dimension of an isotropic subspace is $\lfloor \frac{k}{2} \rfloor$ and all such subspaces are conjugate under the action of

$$G = G(V) = \{T : V \to V \mid f(Tv, Tw) = f(v, w), \forall v, w \in V\}.$$

1 Supported in part by National Security Agency grant MDA904-95-H-1017.
We denote the isotropic subspaces of dimension l, $1 \leq l \leq \lfloor \frac{k}{2} \rfloor$, by $P_k(l, q^2)$. The points of the unitary polar space are the isotropic one spaces $P_k(1, q^2)$ and the lines are the isotropic two subspaces $P_k(2, q^2)$. We will denote by Γ_k this incidence geometry: $(P_k(1, q^2), P_k(2, q^2))$. For convenience throughout this paper we will set $P_k = P_k(1, q^2)$ and $L_k = P_k(2, q^2)$ and when the value of k is understood we will drop this subscript and write simply P and L and do likewise with Γ_k.

We will denote by $U_k(l, q^2)$ the collection of all nondegenerate subspaces of V which have dimension l, $l \leq k$ and identify such a subspace with the isotropic points which it contains, when $l \geq 2$. The hyperbolic lines are the subspaces in $U_k(2, q^2)$ which we will denote by H_k or simply H when the value of k is clear from the context. The geometry (P_k, H_k) will be denoted by N_k or simply N.

Now let $k = 2n$ be even. The second geometry which we will be concerned with is the dual polar space of type $U_{2n}(q^2)$. This geometry has as its points the elements of $P_{2n}(n, q^2)$. We will denote this set by P_n or simply P if the n is clear from the context. The lines are in one-to-one correspondence with the elements of $P_{2n}(n - 1, q^2)$ and for such an isotropic subspace, A, the line corresponding to it is $l(A) = \{M \in P \mid A \subset M\}$. We will denote the set of lines by L_n or simply L. We will use the notation $DU_{2n}(q^2)$ for the isomorphism class of this geometry or simply D.

The main theorem of this paper is the following:

THEOREM A. The generating rank of $DU_{2n}(q^2)$ is $\binom{2n^2}{n}$.

As we shall show the geometry $DU_{2n}(q^2)$ has an embedding e into a projective space $\mathbb{P}G(M^n)$ where $\dim(M^n) = \binom{2n^2}{n}$. Therefore as a consequence of Theorem A we will have the following, which follows immediately from the definitions:

THEOREM B. The embedding into $\mathbb{P}G(M^n)$ is relatively universal. The embedding rank of $DU_{2n}(q^2)$ is $\binom{2n^2}{n}$.

In [3] a basis of an embedable geometry $\Gamma = (P, L)$ is defined to be a subset $X \subset P$ such that $\langle X \rangle_\Gamma = P$ and such that there exists some embedding $e : P \to \mathbb{P}G(V)$ with $e(X)$ an independent set of points. Such sets exist if and only if the embedding rank of Γ is equal to the generating rank. Therefore we have the following

COROLLARY 1.2. For $q > 2$ bases exist in the unitary dual polar space of type $DU_{2n}(q^2)$.

The layout of this paper is as follows. In Section 2 we consider the geometry $N_k(P_k, H_k)$ and prove that it is possible to find a set of points p_1, p_2, \ldots, p_k in P_k such that for every $s \leq k$ the linear space V_s spanned by p_1, p_2, \ldots, p_s is nondegenerate, and the subspace of N_k generated by p_1, p_2, \ldots, p_s is $P_k(V_s)$. In Section 3 we record some necessary properties of the dual polar space $DU_{2n}(q^2)$. In Section 4 we will define a sequence of numbers by recursion and get a closed expression for these numbers. In Section 5 we prove Theorem A.

2. **Properties of the Unitary Space $U_k(q^2)$**

In this section we consider a nondegenerate unitary space V of dimension $k \geq 2$ over the field \mathbb{F}_q. With each isotropic point $x \in P$ let r_x be the group of all transvections with center x and axis x^\perp. These are just the elements τ of $SL(V)$ such that $[\tau, V] \subset x$, $[\tau, x^\perp] = 0$. These are subgroups of $SU(V) = G \cap SL(V)$ and the action of G on $\{r_x \mid x \in P\}$ and P are equivalent. We remark that for $x, y \in P$ either (i) $f(x, y) = 0$ in which case $[r_x, y] = 1$ and $\langle x, y \rangle \cong \mathbb{F}_q \times \mathbb{F}_q$ or (ii) $f(x, y) \neq 0$ and $\langle r_x, r_y \rangle \cong SL(2, q)$. We shall require the following

LEMMA 2.1. Let $X \subset P$. Then the group $\langle r_x \mid x \in X \rangle$ leaves $\langle X \rangle_N$ invariant.
Then clearly
\[x \] is isomorphic to \(y \).

We now prove that we can choose a certain kind of basis for \(V \):

Lemma 2.2. There exists a basis of isotropic vectors \(v_1, v_2, \ldots, v_k \) for \(V \) such that for each \(j < k \), \(V_j = \langle v_1, v_2, \ldots, v_j \rangle \) is nondegenerate and such that for \(j \geq 3 \), \(V_j \cap v_{j+1}^\perp = V_{j-1} \).

Proof. If \(V \) has dimension two we can take \(v_1, v_2 \) to be any distinct pair of isotropic vectors. If \(V \) has dimension three we can take any three noncollinear isotropic vectors. Thus we can assume that the dimension of \(V \) is at least four. We can begin by taking \(v_1, v_2, v_3 \) to be any noncollinear triple of isotropic vectors in a non-degenerate three-dimensional subspace of \(V \). Assume now that \(v_1, v_2, \ldots, v_j \) with \(j \geq 3 \) have been chosen so as to satisfy the requirements of the theorem and assume that \(j < n \). It then follows that the dimension of \(V_{j+1} \) is at least two and therefore contains isotropic vectors which do not belong to \(V_j \). Choose \(v_{j+1} \) to be any such vector. To complete the proof it remains only to show that \(V_j + v_{j+1} \) is non-degenerate. Suppose \(x + av_{j+1}, x \in V_j \) is in the radical of \(V_{j+1} \). Then clearly \(x \in V_{j-1} = V_j \cap V_{j+1} \). However, if \(x \neq 0 \) then there is a vector \(y \in V_{j-1} \) with \((x, y) \neq 0 \) and then \((x+av_{j+1}, y) = (x, y) \neq 0 \). Therefore \(x = 0 \). However, now we must have \((v_j, av_{j+1}) = 0 \) which implies \(a = 0 \).

Now let \(v_1, \ldots, v_k \) be a basis for \(V \) as in Lemma 2.2 and set \(p_i = \langle v_i \rangle \) a set of isotropic points and let \(V_j = \langle p_1, p_2, \ldots, p_j \rangle \). Our final result of this section concerns the subspace of the geometry \(N \) generated by \(p_1, p_2, \ldots, p_j \) for \(j \leq k \).

Lemma 2.3. Assume \(q > 2 \). Then for \(j \leq k \), \(\langle p_1, p_2, \ldots, p_j \rangle = P(V_j) \).

Proof. The case \(j = 1 \) is trivial. So assume that \(j > 1 \). Set \(S = \langle p_i | 1 \leq i \leq j \rangle_N \) and let \(r_i = r_{p_i} \). By [4] \(\langle r_i | 1 \leq i \leq j \rangle = \langle \tau \in SU(V) | \tau(V_j^\perp) = 1 \rangle \cong SU(V_j) \) and is transitive on \(P(V_j) \). \(\langle r_i | 1 \leq i \leq j \rangle \) leaves \(S \) invariant by Lemma 2.1 and therefore \(S = P(V_j) \).

Remark. When \(q = 2 \) and \(j \leq 3 \) the result still holds: \(\langle p_1, \ldots, p_j \rangle = P(V_j) \). However, \(\langle p_1, p_2, p_3, p_4 \rangle_N \) is 18 whereas \(P(V_4) = 45 \). It is true, however, if \(j \geq 4 \) then \(\langle P(V_j), p_{j+1} \rangle = P(V_{j+1}) \) since in this case \(r_{p_{j+1}}, r_x | x \in P(V_j) \rangle = N_G(V_{j+1}) \cap C_G(V_{j+1}) \) is isomorphic to \(SU(V_{j+1}) \).

3. Properties of Unitary Dual Polar Spaces

We continue with the notation of the introduction, but now we assume that the dimension \(k \) of our unitary space is even, \(k = 2n \), and record some properties of the geometry \((P, \mathcal{L}) \) of type \(DU_{2n}(q^2) \) which we require in the sequel. We remark that for points \(x, y \in P \) the distance function defined by the point-collinearity graph of \(DU_{2n}(q^2) \) is given by \(d(x, y) = \dim[x/(x \cap y)] = \dim[y/(x \cap y)] \).

For \(B \in P_{2n}(t, q^2) \), that is a totally isotropic subspace of dimension \(t \), denote by \(U(B) \) those \(p \in P = P_{2n}(n, q^2) \) such that \(B \subset p \). We then have

Property 3.1. For \(B \in P_{2n}(t, q^2) \), \(U(B) \) is a convex subspace of \((P, \mathcal{L}) \). Moreover, \(U(B) \) is the convex closure of any two points in \(U(B) \) whose intersection is \(B \). The diameter of \(U(B) \) is \(n - t \).

Note that for \(B \in P_{2n}(t, q^2) \), \(\tilde{B} = B^\perp/B \) is a non-degenerate unitary space of dimension \(2(n - t) \). Moreover, the map from \(U(B) \) which takes \(p \) to \(p/B \) is a bijection onto the maximal isotropic subspaces in \(\tilde{B} \). Consequently we have
Property 3.2. The geometry of $UDU_{2n}(q^2)$ induced on $U(B)$, $B \in P_{2n}(t, q)$ is $DU_{2n-2}(q^2)$.

Assume now that $p \in P$, $l \in L$. Then l has the form $P(A^\perp)$ for $A \in P_{2n}(n-1, q^2)$, where $P(A^\perp)$ consists of those elements of P which are contained in A^\perp. Note that $p \cap A^\perp \neq p \cap A$. This can be seen, by induction on $\dim A \cap p + n$: Suppose first that $A \cap p = 0$. Since $\dim A^\perp = n + 1A^\perp \cap p \neq 0$ and consequently $A^\perp \cap p \neq A \cap p$. Assume then that $A \cap p \neq 0$. Set $B = A \cap p$ and set $\bar{V} = B^\perp/B$ and denote images by using the bar notation. $A, p \subset B^\perp$ so $\bar{A} = A/B, \bar{p} = p/B$. Now $\bar{A} \cap \bar{p} = 0$. By the previous case $\bar{A}^\perp \cap \bar{p} \neq \bar{A} \cap \bar{p}$. Since also $\bar{A}^\perp = A^\perp/B$ the assertion now follows. Since $A^\perp \cap p \neq A \cap p$ there is a unique element on l which contains $A^\perp \cap p$. This implies

Property 3.3. For any point–line pair p,l there is a unique point on l nearest p.

Therefore (P, L) is a near $2n$-gon in the sense of Shult and Yanushka (see [6]). In a near $2n$-gon we say that **quads exist** if for any two points at distance two the convex closure is a generalized quadrangle (see [5]). By (3.1), (3.2) it follows that quads exist in (P, L). We will refer to the subspace $U(C), C \in P_{2n}(n-2, q^2)$ as quads.

Let $p \in P$ and $Q = U(C)$ be a quad. By arguments similar to those used above it is not difficult to see that the pair p, Q is gated, that is, there is a unique point in Q nearest p and for any point $y \in Q$, $d(p, y) = d(p, x) + d(x, y)$. This implies the well known result that

Property 3.4. (P, L) is a classical near $2n$-gon.

Remark. Cameron [2] characterized the classical near $2n$-gons and proved that they are precisely the dual polar spaces.

We complete this section with three lemmas.

Lemma 3.5. Assume x is an isotropic point of V and $p \in P$ is a maximal isotropic subspace of V and $p \not\subset U(x)$. Then there is a unique point in $U(x)$ at distance one from p.

Proof. Suppose q is such a point. $p \cap q$ is an $(n - 1)$-dimensional isotropic subspace. Since $x \subset p, q \subset p \cap x^\perp$ and, since x is not a subspace of p, $p \cap x^\perp$ is a hyperplane in p. Therefore, $q \cap p = p \cap x^\perp$ and $q = (q \cap p, x) = (p \cap x^\perp, x)$. Thus, q is uniquely determined. This also demonstrates that such a point exists.

Lemma 3.6. Assume B is a subspace of V. Then $\bigcup_{b \in B} U(b)$ is a subspace of $DU_{2n}(q^2)$.

Proof. Set $S = \bigcup_{b \in B} U(b)$. Suppose $p \in U(b), q \in U(c), b, c \in B$ and p and q are collinear. If $b \subset p \cap q$ then $p, q \in U(b)$ then the line $P((p \cap q)^\perp) \subset U(b) \subset S$. We get the same conclusion if $c \subset p \cap q$. We may therefore assume that neither b nor c is contained in $p \cap q$. This implies that $(b, c) \cap (p \cap q) = 0$. Since $b \subset p$ it follows that $b \subset (p \cap q)^\perp$ and similarly $c \cap (p \cap q)^\perp$. It is then the case that $(p \cap q)^\perp = (b, c) \oplus (p \cap q)$. But now, for every $p' \in P((p \cap q)^\perp), p' \cap (b, c) \neq 0$. If $b' = p' \cap (b, c)$ then $p' \in U(b') \subset S$.

Lemma 3.7. Suppose x, y are nonorthogonal isotropic points of V. Let h be the hyperbolic line spanned by x, y. Then

$$(U(x), U(y))_D = \bigcup_{z \in h} U(z).$$

Proof. Let $z \in h, z \neq x, y$ and let $p \in U(z)$. Since $z \subset p$ and $(x, z) = (y, z)$ it follows that $p \cap x^\perp = p \cap y^\perp$. Set $B = p \cap x^\perp = p \cap y^\perp$. Also set $B_x = \langle B, x \rangle \in U(x)$ and $B_y = \langle B, y \rangle \in U(y)$. Then B_x and B_y are collinear and the line they determine is $P(B^\perp)$ which contains p. Thus $U(z) \subset (U(x), U(y))_D$. However, by Lemma 3.6 $\bigcup_{z \in h} U(z)$ is a subspace and therefore $(U(x), U(y))_D = \bigcup_{z \in h} U(z)$ as asserted.
4. A Recursion Formula

In this section we define for each integer \(n \geq 2 \) a finite sequence of natural numbers \(\{f(n, j)\}_{j=0}^{n} \) by a recursion formula. We then obtain a closed expression for \(f(n, j) \) as well as for \(\sum_{j=0}^{n} f(n, j) \).

For \(n = 2 \) we simply define \(f(2, 0) = f(2, 1) = f(2, 2) = 2 \). Assume for some \(n \geq 2 \) we have defined \(f(n, j), 0 \leq j \leq n \). Set \(\lambda(n) = \sum_{j=0}^{n} f(n, j) \). We now define \(f(n+1, 0) = f(n+1, 1) = f(n+1, 2) = \lambda(n) \). For \(3 \leq k \leq n+1 \) we define \(f(n+1, k) = \sum_{j=k-1}^{n} f(n, j) \).

The sequences \(f(n, j) \) for \(2 \leq n \leq 6 \) are as follows.

\[
\begin{array}{cccccc}
2 & 2 & 2 & 6 & 6 & 6 \\
20 & 20 & 20 & 8 & 2 \\
70 & 70 & 70 & 30 & 10 & 2 \\
252 & 252 & 252 & 112 & 42 & 12 & 2 \\
\end{array}
\]

Before proceeding to our main result we first record a necessary lemma.

Lemma 4.1. For natural numbers \(m, k \)

\[
\sum_{i=0}^{k} \binom{m+i}{t} = \binom{m+k+1}{k}.
\]

Proof. This follows immediately by induction on \(k \) from the identity

\[
\binom{l}{s-1} + \binom{l}{s} = \binom{l+1}{s}.
\]

\(\square \)

Lemma 4.2. For \(j = 0, 1, f(n, j) = \binom{2n-2}{n-j} \). For \(2 \leq j \leq n, f(n, j) = 2^{\binom{2n-1-j}{n-j}} \).

Proof. We prove the result by induction on \(n \geq 2 \). By definition, \(f(2, 0) = f(2, 1) = f(2, 2) = 2 \). On the other hand, \(\binom{2}{1} = 2 \binom{1}{0} = 2 \) so that the result holds for \(n = 2 \).

Now assume that we have demonstrated the result for \(n \), that is, for \(j = 0, 1, f(n, j) = \binom{2n-2}{n-j} \) and for \(2 \leq j \leq n, f(n, j) = 2^{\binom{2n-1-j}{n-j}} \). We now compute

\[
\lambda(n) = \sum_{j=0}^{n} f(n, j)
\]

which, by the inductive hypothesis, is equal to

\[
2^{\binom{2n-2}{n-1}} + \sum_{j=2}^{n} 2^{\binom{2n-1-j}{n-j}} = 2 \sum_{j=0}^{n-1} \binom{n-1+j}{j}.
\]

By Lemma 4.1 this is equal to

\[
2^{\binom{2n-1}{n-1}} = \binom{2n}{n}.
\]

We now prove the result for \(n+1 \). By definition \(f(n+1, 0) = f(n+1, 1) = \binom{2n}{n} \). Also, by definition, \(f(n+1, 2) = \binom{2n}{n} = 2 \binom{2n-1}{n-1} \) and so this case holds as well.

Assume now that \(3 \leq j \leq n+1 \). Then

\[
f(n+1, j) = \sum_{i=j-1}^{n} f(n, i)
\]
which, by the inductive hypothesis, is
\[\sum_{i=j-1}^{n} 2 \binom{2n - 1}{n - i} = \sum_{i=0}^{n-j+1} 2 \binom{n - 1 + i}{t}. \]

By Lemma 4.1 this is equal to \(2 \binom{2(n+1)-1-j}{n+1-j} \) as desired. \(\square \)

5. Proof of the Main Theorem

Let \(\gamma(n, q^2) \) be the generating rank of the geometry \(DU_{2n}(q^2) \). In our first result of this section we prove that \(\gamma(n, q^2) \leq \binom{2n}{n} \). This will be an immediate consequence of

PROPOSITION 5.1. The geometry \(DU_{2n}(q^2) \) has an embedding into a projective space of dimension \(\binom{2n}{n} - 1 \) over \(\mathbb{F}_q \).

PROOF. Let \(x_i, y_j, i = 1, 2, \ldots, n \) be a hyperbolic basis for \(V \), a vector space of dimension \(2n \) over \(\mathbb{F}_q \), which is equipped with nondegenerate hermitian form \(f \) so that \(f(x_i, y_j) = \delta_{ij} \).

Also set \(\Omega = \{ x_i, y_j | 1 \leq i \leq n \} \). Order \(\Omega \) in the following way: If \(z_i \in \{ x_i, y_i \}, z_j \in \{ x_j, y_j \} \) with \(i < j \) then \(z_i < z_j \). On the other hand we set \(x_i < y_i \). Now let \(M = \wedge^n(V) \). This space has dimension \(\binom{2n}{n} \) over \(\mathbb{F}_q \) and is an irreducible module for \(SU(V, f) \). Let \(\Omega^n \) be the collection of all subsets of \(\Omega \) of cardinality \(n \). Define a map \(\tau : \Omega^n \rightarrow \Omega^n \) by \(\tau(\Phi) = \{ z \in \Omega | z \in (\Phi)^{-1} \} \). This is a bijection and its fixed points are just those \(\Phi \) with \(\Phi \) a totally isotropic subspace of \(V \), alternatively, those \(\Phi \) such that \(\Phi \cap \{ x_i, y_i \} \) has one element for each \(i \).

For such a subset, \(\Phi = \{ z_1 < z_2 < \cdots < z_n \} \in \Omega^n \) set \(\wedge(\Phi) = z_1 \wedge z_2 \wedge \cdots \wedge z_n \). This is a basis for \(M \). Now let \(\sigma \) be the semilinear map from \(M \) to \(M \) given by
\[\sigma \left(\sum_{\Phi \in \Omega^n} a_\Phi \wedge (\Phi) \right) = \sum_{\Phi \in \Omega^n} a_\Phi \wedge (\tau(\Phi)). \]

The fixed points of \(\sigma \) is a \(\mathbb{F}_q \)-space of dimension \(\binom{2n}{n} \) which we denote by \(M^\sigma \). Now each of the groups \(S_i = \{ g \in SU(V, f) | g((x_i, y_i)) = (x_i, y_i), g((x_i, y_i)^{-1}) = 1 \} \cong SL(2, q) \) fixes \(M^\sigma \).

Likewise, the monomial group of \(SU(V, f) \) with respect to the basis \(x_i, y_i, 1 \leq i \leq n \) leaves \(M^\sigma \) invariant. Since these subgroups generate \(SU(V, f) \) this group leaves \(M^\sigma \) invariant as well. \(SU(V, f) \) is also irreducible on \(M^\sigma \). (If we identify \(SU(V, f) \) with the twisted group \(\mathbb{A}_{2n-1}(q^2) \) then \(M^\sigma \) is the module with highest weight \(\lambda_n \) which is fixed under the graph automorphism and has field of definition \(\mathbb{F}_q \). For details see [7].) We now show that \(\mathbb{P}G(M^\sigma) \) affords an embedding of \(DU_{2n}(q^2) \).

First note that the \(\mathbb{F}_q \)-span of \(x = x_1 \wedge x_2 \wedge \cdots \wedge x_n \) meets \(M^\sigma \) in a one-dimensional \(\mathbb{F}_q \) subspace, namely the \(\mathbb{F}_q \)-span of \(x \). Since \(SU(V, f) \) is transitive on all maximally isotropic subspaces of \(V \) it follows that for any such subspace, i.e. point \(p \in \mathcal{P} \) of the geometry \(DU_{2n}(q^2) \) the one-dimensional \(\mathbb{F}_q \)-space \(\wedge^n(p) \) meets \(M^\sigma \) in a one-dimensional \(\mathbb{F}_q \) subspace. Now consider the line \(l = U(\{ x_1, x_2, \ldots, x_{n-1}, x_n \}) \). Then \(l = \{ (x_1, x_2, \ldots, x_{n-1}, x_n), (x_1, x_2, m, \ldots, x_{n-1}, ax_n + y_n) | a \in \mathbb{F}_q \} \). Set \(y = x_1 \wedge x_2 \wedge \cdots \wedge x_n \wedge y_n \). Then \(M^\sigma \) contains the \(\mathbb{F}_q \)-span of \(x \) and \(y \). However, this span meets each of the one-dimensional \(\mathbb{F}_q \)-spaces spanned by \(x_1 \wedge x_2 \wedge \cdots \wedge x_{n-1} \wedge ax_n + y_n, a \in \mathbb{F}_q \) in one space. Since \(SU(V, f) \) is transitive on the lines of the geometry \(DU_{2n}(q^2) \) this holds for all lines. It therefore follows that \(\mathbb{P}G(M^\sigma) \) affords an embedding for \(DU_{2n}(q^2) \) as asserted. \(\square \)

COROLLARY 5.2. The generating rank of \(DU_{2n}(q^2) \) is at least \(\binom{2n}{n} \).

PROOF. This follows from the definition of an embedding and the generating rank of a geometry. \(\square \)
We can now prove our main result:

THEOREM 5.3. Assume $q > 2$. Then the generating rank, $\gamma(n, q^2)$, of the unitary dual polar space, $DU_{2n}(q^2)$, is $\left(\frac{2n}{n}\right)$.

PROOF. We make use of the notation previously introduced. As in Section 2 let p_1, p_2, \ldots, p_{2n} be isotropic points such that for each $j \geq 2$, $\langle p_1, p_2, \ldots, p_j \rangle = V_j$ is nondegenerate and for $j \geq 4$, $p_j^\perp \cap V_{j-1} = V_{j-2}$. Now set $C = V_{n+1}$. By Lemma 2.3 the subspace $\langle p_1, p_2, \ldots, p_{n+1} \rangle_N = P(C)$. From this and Lemma 3.7 it follows that

$$\langle U(p_1), U(p_2), \ldots, U(p_{n+1}) \rangle_D \supset \bigcup_{z \in P(C)} U(z).$$

By Lemma 3.6 the latter is a subspace of $DU_{2n}(q^2)$ and therefore

$$\langle U(p_1), U(p_2), \ldots, U(p_{n+1}) \rangle_D = \bigcup_{z \in P(C)} U(z).$$

On the other hand, suppose $p \in P$ so that p is an n-dimensional isotropic subspace of V. Since $\dim(V) = 2n$ and $\dim(C) = n + 1$ it follows that $p \cap C \neq 0$. Therefore there is an $x \in P(C)$, $x \subset p$ and then $p \in U(x) \subset \langle U(p_1), U(p_2), \ldots, U(p_{n+1}) \rangle_D$. Consequently, the set of subspaces $U(p_i)$, $1 \leq i \leq n + 1$ generate P. We will make use of the recursion of Section 4 to demonstrate that these subspaces can be generated by $\binom{2n}{n}$ points. Together with Lemma 5.2 this will imply that the generating rank of $DU_{2n}(q^2)$ is exactly $\binom{2n}{n}$.

Suppose $n = 2$. Then each of $U(p_i)$, $i = 1, 2, 3$ is a $DU_2(q^2)$ geometry, that is, a hyperbolic line which requires two points to generate. As a result, by the above argument, we can generate $DU_3(q^2)$ with $2 + 2 + 2 + 6 = 6 \binom{2}{2}$ points.

Suppose now that $n > 2$. For $j = 1$ set $G(n, j) = \{A \subset U(p_1) \mid \langle A \rangle_D = U(p_1)\}$. For $1 < j \leq n + 1$. Let $B_{j-1} = \langle U(p_i) \mid i(j) \rangle_D$ and set $G(n, j) = \{A \subset U(p_j) \mid \langle A, B_{j-1} \cap U(p_j) \rangle_D = U(p_i)\}$.

Finally, set $g(n, j) = \min(|A| \mid A \in G(n, j))$. We claim that $g(n, j) = f(n, j - 1)$ for every applicable pair n, j where $f(n, j)$ are the numbers defined recursively in Section 4. We will prove this inductively on n and j.

Suppose for some $n \geq 2$ that we have demonstrated that $g(n, j) = f(n, j - 1)$ for $j = 1, 2, \ldots, n + 1$. Then by the definition of the numbers $f(n, j)$ it follows that

$$\gamma(n) \leq \sum_{j=0}^{n+1} g(n, j) = \sum_{j=0}^{n} f(n, j) = f(n + 1, 0) = \binom{2n}{n}$$

from Lemma 4.2. However, from Corollary 5.2 $\gamma(n, q^2) \geq \binom{2n}{n}$ and therefore we get equality. Note that the theorem will now be a consequence of the equality of $g(n, j)$ and $f(n, j)$ for all n, j. Notice also that as a result of this if $A_j \in G(n, j)$, $j = 1, 2, \ldots, n + 1$ then $A = \bigcup_{j=1}^{n+1} A_j$ is a generating set for $DU_{2n}(q^2)$. This implies the following:

Assume $j < n + 1$. Set $C(n, j) = \{C \subset P \mid \langle B_{j-1}, C \rangle_D = P\}$ and $c(n, j) = \min(|C| \mid C \in C(n, j))$. Then

$$c(n, j) = \sum_{i=j}^{n+1} g(n, i).$$

We now prove that $g(n + 1, j) = f(n + 1, j - 1)$ for $j = 1, 2, \ldots, n + 2$. Since $U(p_1)$ is isomorphic to $DU_{2n}(q^2)$, $m(n + 1, 1) = \gamma(n) = \binom{2n}{n}$. Also, for $j = 2$ or 3, $m(n + 1, j) = \binom{2n}{n}$ since $B_{j-1} \cap U(p_j) = \emptyset$ as $p_j^\perp \cap V_{j-1}$ is either 0 or a single nonisotropic point in the
respective cases. Assume then that $j \geq 4$. Now $B_{j-1} \cap U(p_j) = B_{j-2}$ and, of course, $U(p_j)$ is a subspace of $DU_{2n+2}(q^2)$ isomorphic to $DU_{2n}(q^2)$. From Lemma 5.3 we have that

$$g(n + 1, j) = c(n, j - 1) = \sum_{i=j-1}^{n+1} g(n, i).$$

By the induction hypothesis

$$\sum_{i=j-1}^{n+1} g(n, i) = \sum_{i=j-2}^{n} f(n, i)$$

which, by Lemma 4.2 is equal to $f(n + 1, j - 1)$ so that $g(n + 1, j) = f(n + 1, j - 1)$ as required.

REFERENCES

2. P. Cameron, Dual polar spaces, Geometriae Dedicata, 12 (1982), 75–85.
7. R. Steinberg, Endomorphisms of Linear Algebraic Groups, American Mathematical Society, Providence, RI, 1968.