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Abstract— Solving the driving scene perception problem for
driver-assistance systems and autonomous vehicles requires
accurate and robust performance in both regularly-occurring
driving scenarios (termed “common cases”) and rare outlier
driving scenarios (termed “edge cases”). We propose an au-
tomated method for clustering common cases and detecting
edge cases based on the visual characteristics of the external
scene. We apply this approach to develop a large-scale real-
world video driving scene dataset of edge cases and common
cases. This dataset consists of 1,156,592 10-second video clips,
including 450 clusters of common cases, and 5,601 edge cases.
We assign human-interpretable metadata labels (e.g., weather,
lighting conditions) to the clusters through manual annotation.
We further propose two automated methods for large-scale
evaluation of scene segmentation models on naturalistic driving
datasets that can capture potential system failures without
human inspection. Video illustrations of select clusters will be
made available to help with future research.

Index Terms— clustering and outlier detection, naturalist
driving, scene perception evaluation, large-scale dataset.

I. INTRODUCTION

Large-scale naturalistic driving data collection is an im-
portant part of developing autonomous navigation and per-
ception systems for both validating systems and improving
them through machine learning and deep learning pipelines.
However, such data is not always uniformly useful. The wide
diversity of external scenes native to the driving task requires
large-scale data collection to capture various environmental
conditions, including different road types, weather, seasons,
illuminance, visual appearance of scenes and objects, etc.

Existing approaches that go beyond random sampling take
advantage of manually-designed filters to obtain reasonable
data distributions based on metadata from date, time, IMU,
CAN, and GPS. While such filters may succeed in utilizing
high-level information in addition to the driving scene that
improves the variability of the dataset, what they do not take
into account is the actual visual appearance of the scene,
which is most likely to affect the performance of perception
systems. For example, bridges and overpasses may cause
more varying illuminance conditions at the same location in
similar weathers, comparing to normal highways. Moreover,
in some cases, the visual sensor may fail to maintain ex-
pected performance when being partially occluded or blurred
by the presence of obscuring materials such as snow, ice,
rain, fog, dirt, etc.
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In order to overcome those challenges, an automated
processing and sampling step for large-scale naturalistic
driving data collection is necessary in order to obtain ade-
quate samples of different visual appearances of the external
driving scenes. In this work, we propose a vision-based
approach that determines two kinds of driving scenes in
the data based on their frequency and visual characteristics:
1) representative common cases and 2) uncommon edge
cases. The former is important for understanding what kind
of visual scene appears frequently in naturalistic driving,
ensuring the perception system performing reliably well in
the majority of cases. The latter aims at improving the
robustness of the system to outliers that exist in the long
tail of rarely-occurred driving scenarios.

First, we extract 10-second video clips from the MIT-AVT
large-scale naturalistic driving dataset [1]. We use a pre-
trained deep convolutional neural network (ResNet-50 [2]) to
obtain visual feature embeddings on a small set of uniformly
sampled images from each clip. These embeddings are
further processed and combined to represent each clip, and
then modeled for clustering using the Mini-Batch K-means
algorithm [3]. The resulting clusters are labeled for basic,
high-level scene characteristics and metadata through manual
and automatic annotations. We use the Local Outlier Factor
algorithm [4] to further detect and validate the edge cases.
The algorithms are optimized in order to save processing
time, cost and local memory use for large-scale efficient
processing. The resulting dataset, named MIT-AVT Clustered
Driving Scene Dataset, consists of 1,156,592 10-second
video clips of the front driving scene, including 450 clusters
of common cases, and 5,601 edge cases.

For evaluation of scene perception systems, existing meth-
ods require pixel-level ground truth annotation, which is
too costly and time-consuming for large-scale datasets. We
propose two methods for automated evaluation of scene
perception on large-scale naturalist driving datasets (e.g.,
the proposed dataset). Experiments show that existing deep
learning segmentation models fail on some edge cases. Those
system failures are automatically captured by the proposed
methods without human inspection.

The proposed MIT-AVT Clustered Driving Scene Dataset
has been used for multiple ongoing research on driving scene
perception and naturalistic driving study. Video illustrations
of select clusters will be released to help with future research.

In summary, the main contributions of this work are:
• A vision-based clustering approach that determines rep-

resentative common cases and uncommon edge cases in
driving scenes.



Fig. 1: Visualization via t-SNE 3D embedding of 500 clips (each clip is a point in the plot) from 6 sample clusters in the
MIT-AVT Clustered Driving Scene Dataset. Each cluster is associated with a human-assigned semantic label, in this case
related to road type, weather, and other categories.

• MIT-AVT Clustered Driving Scene Dataset: a large-scale
naturalistic driving dataset of 1,156,592 video clips for
common cases and edge cases, with manually annotated
semantic labels for each cluster.

• Two automated methods for the evaluation of scene
perception on naturalist driving datasets.

II. RELATED WORK

A. Image Feature Embedding and Clustering

Using pre-trained deep ConvNets as image feature extrac-
tors has become an essential component in many computer
vision applications [5], [6], [7], [8]. By training on large-
scale image datasets (e.g., ImageNet [9]) for recognition
tasks, deep ConvNets learn to extract general-purpose visual
characteristics that can be directly used for various computer
vision tasks [10].

Taking high-dimensional image feature as input for dimen-
sionality reduction, clustering, and density estimation have
been widely studied in machine learning [11] and regularly
used in computer vision applications [12]. A recent example
is [13] that uses deep convnets feature as embeddings for
face recognition and clustering. Our work extends on this
to explore effective and efficient methods to cluster driving
scene video clips at large scale.

B. Clustering-based Anomaly Detection

Anomaly (outlier) detection is broadly studied in data
mining [14], aiming to identify rare items, events or ob-
servations which raise suspicions by differing significantly
from the majority of the data. One popular technique is
clustering-based anomaly detection [15], [16], [4], which
detects outliers based on local data distributions with dis-
tance measurements. The outliers provide insights about the
global data distribution, which is essential to large-scale data
collection and sampling.

C. Driving Scene Datasets

A number of driving-related datasets [17], [18], [19],
[20], [21], [22] have been developed and made publicly
available in recent years. Some of those also provide pixel-
level semantic annotation of front scenes. However, most of
the datasets are still at small scale relative to the variability of
naturalistic driving, and sampled either randomly or based on
simple characteristics (the largest one [17] has 100,000 video
clips sampled for a variety of weather, time conditions).

On the other hand, the MIT-AVT Clustered Driving Scene
Dataset utilizes clustering methods to separate common
cases and edge cases at a larger scale than prior work.



Fig. 2: Visualization of all the GPS locations of clips in MIT-AVT Clustered Driving Scene Dataset. Each point represents
one clip. All clips from the same cluster are associated with the same color.

III. VISUAL EMBEDDINGS AND CLUSTERING

A. Naturalistic Driving Dataset

The MIT-AVT study [1] as a whole seeks to gather a
large variety of driver, scene, telemetry, and vehicle state
data from different vehicles equipped with varying types of
advanced vehicle technologies. Subjects were enrolled for
either medium-term (1 month) or long-term (over a year)
study (see [1] for detail). Recorded data includes 720p 30fps
videos of: 1) the forward roadway; 2) the driver’s face; and
3) the instrument cluster. Telemetry data gathered includes
IMU and GPS. The state of certain vehicle subsystems may
be obtained from CAN data.

B. Candidate Clip Selection

To reach the goal of creating a representative and edge
case sample of the MIT-AVT dataset, a method for reducing
the trip recordings into unique video segments was imple-
mented using kinematic data. This reduction is necessary for
minimizing the computational cost of processing the entire
subset of MIT-AVT dataset leveraged for this effort, which
has over 20,000 hours of video data. A clip length of 10
seconds was chosen in order to provide enough context in
a video segment. Clips were sampled from all daylight trips
with the first and last 3 minutes removed to reduce footage
of static parking scenes and origin / destination information.
Each 10-second clip was separated by 0.1 mile, which further
reduces the total considered data and contributes to scene
diversity. The final number of clips after the above sampling
process is 1,156,861.

C. Visual Embeddings
For each 10-second clip, 5 evenly spaced frames from

the entire clip were selected. We used the Resnet-50 [2]
pre-trained on ImageNet [9] to obtain feature embeddings
of 2,048 dimensions for each selected frame and saved to
disk, totaling about 107GB. Principal Component Analysis
(PCA) was run on disk-mapped memory arrays of the ResNet
output, reducing dimensions from 2,048 to 100 in order to
minimize the computational cost of further processing. Em-
beddings for each clip were then combined in chronological
order to form final clip feature vectors of 500 dimensions.
The final set of clip embeddings occupied a disk size of
about 4.5GB.

D. Visual Clusters and Outliers
Mini Batch K-Means clustering [3] was run on all the clip

embeddings to obtain 500 clusters. Mini batches were fa-
vored over normal K-Means or similar clustering approaches
in order to reduce the cost of processing the entire dataset.
Local Outlier Factor [4] was then run on the resulting dataset
to find outliers in approximately 1% of the data.

E. Automated Metadata Annotation
For each clip, various metadata is extracted from the

driving data based on the mean latitude, longitude, speed,
and time of day. This metadata can then be combined on a
per-cluster basis to find the ranges of speeds, geographical
regions and times that are represented by that cluster. Fig. 2
visualizes all the GPS locations of clips associated with
each cluster. Major highways have more consistent color,
suggesting that most of the clips on a highway are of similar
visual appearances and thus grouped into one cluster.
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Fig. 3: Snapshots from clusters that are strongly associated with a particular condition (road type, weather, illuminance).

F. Manual Metadata Annotation

In order to validate that the final set of clusters represent
a variety of conditions, manual single-pass annotations were
performed on 10 randomly selected clips from each cluster.
The annotation includes the following categories:
• Seasons: summer, fall, winter, varied
• Weather: clear, overcast, raining, varied
• Lanes: two-lane, varied
• Simplified Road Type: highway, other, urban, varied
• Illuminance: sunny, overcast, direct, dappled, shad-

owed, varied
• Other: tunnels, bridges, underpasses, garages, trucks,

mountains, various other elements of the scene shared
across clips of this cluster

• Unique: 1 if this cluster represents an uncommon qual-
ity (enumerated in ’Other’), 0 otherwise

G. MIT-AVT Clustered Driving Scene Dataset

The final dataset contains 1,156,592 10-second clips,
among which 5,601 are outliers (as defined in §III-D). The
total size of the dataset is approximately 4TB, with an
average clip size of 3.5 Mb. The average number of clips
per cluster is about 2,313 with a standard deviation of 1,414.
Table I shows counts associated with clusters for which more
than 90% randomly sampled clips conformed to a particular
manually annotated class.

Label 
Category

Label
Number of 

Clusters

Seasons

Summer 93

Winter 15

Fall 11

Lighting

Sunny 37

Overcast 37

Shadowed 23

Dappled 19

Direct 6

Road Type

Highway 158

Rural 28

Urban 7

Weather

Clear 62

Overcast 11

Raining 8

Other

Wooded 6

Tunnels 5

Trucks 4

Overpasses 2

Bridges 2

Garages 1

TABLE I: Number of clusters associated with a particular
human-assigned label.
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Fig. 4: Snapshots from clusters that are strongly associated with a particular rarely-occurred condition (edge cases).

Fig. 5: Snapshots from outlier clips that have unique visual appearances.

IV. AUTOMATED EVALUATION OF DRIVING SCENE
PERCEPTION

Multiple mathematical metrics (e.g., IoU [23]) can be used
to evaluate deep learning models on the task of semantic
scene segmentation when the pixel-level ground truth an-
notation is available. However, such requirement is hard to
fulfill regarding evaluation on large-scale datasets, such as
the proposed MIT-AVT Clustered Driving Scene Dataset.

Considering the fact that manual full-scene annotation
becomes too costly and time-consuming at large-scale, we
propose two automated methods for evaluation of scene
perception on naturalist driving datasets. The automated
methods evaluate certain aspects of the scene perception
performance, which are essential to the safety of real-world
applications towards both common cases and edge cases.

A. Disagreement between Deep Learning Models

Recent work [24] introduces the Arguing Machine frame-
work showing that the disagreement between different deep
learning models can be viewed as a strong signal that is
able to capture potential system failures. In addition to the
scene perception model that predicts pixel-level semantic
labels, we introduce another object detection model that can
detect and predict the bounding box over certain objects,
including vehicle and person. Theoretically, a pixel being

predicted as vehicle by segmentation model should also be
within the bounding boxes of the same class predicted by
detection model. Based on this assumption, we can evaluate
the performance of the segmentation model automatically
by calculating the agreement of two models (termed as
Acc.(Agreement)) as:

Acc.(Agreement)(C) =
∑ pixeli, j ∈ {boxes(C)}

∑ pixeli, j
∀pixeli, j ∈C

(1)
where C is a joint class label for both models, such as vehicle
and pedestrian, and boxes(C) refers to all the bounding boxes
predicted as class C.

B. Drivable Area Projection From Vehicle Trajectory

Naturalistic driving data contains sequential information of
visual scene and vehicle motion. Since steering commands
result in future vehicle motion, we can use the sequential
vehicle control data to infer the drivable area, by projecting
future vehicle trajectory onto the current front scene. The
inferred drivable area is of high precision such that it only
consists of road and on-road fast-moving objects (vehicles),
because it is actually the to-be-driven area according to the
future information.

To obtain the drivable area, we first warp the front scene
into the bird’s eye view with calibrated visual perspective



Fig. 6: Examples of inferred drivable area overlaid on the driving scene. The vehicle trajectory is shown on the bottom
bird’s eye view image, and the drivable area is inferred by perspective transformation. Different levels of the green color
represent 1 second, 2 seconds, and 3 seconds of future vehicle trajectory.

transformation. We then calculate the future vehicle trajec-
tory with the steering, speed, and other vehicle specifications,
using the following formula:

r =
dtrack

2
· 1

sin(
asteer

rsteer
)

(2)

where dtrack is the vehicle track width, asteer is the steering
wheel angle, and rsteer is the ratio of steering angle to road
angle. r is the radius of a curve that shows the future vehicle
trajectory. Note that when asteer is close to zero, r will be
close to infinite, which simply represents a straight line. We
draw the vehicle trajectory on the bird’s eye view of front
scene, and project the single-lane area back onto the front
scene image. Fig. 6 shows the examples of inferred drivable
area overlaid on the front camera image.

The inferred drivable area can be used for automated eval-
uation of segmentation models. We calculate the accuracy of
pixels within the 2 seconds of the future drivable area being
classified as either road or vehicle, as:

Acc.(Drivable) =
∑ pixeli, j ∈ {road,vehicle}

∑ pixeli, j
∀pixeli, j ∈ drivable area

(3)

The Acc.(Drivable) serves as a strong indicator to evaluate
the segmentation prediction in edge cases where the seg-
mentation model predicts the drivable area as other classes,
suggesting that it is very likely to observe system failure.
When further being used with a vehicle detector that can
detect and remove vehicles in the current driving path, this
method can yield near-perfect precision on road or drivable
area detection.

C. Experiments

To further illustrate how the proposed Acc.(Agreement)

and Acc.(Drivable) can be used to automatically evaluate a
scene perception model with naturalistic driving datasets, we
hereby show experiments to evaluate a state-of-the-art scene
segmentation model using the MIT-AVT Clustered Driving
Scene Dataset. We choose DeeplabV3 [25] pre-trained on
the Cityscapes [23] dataset in this experiment. The object

detector for Acc.(Agreement) calculation is YOLOv3 [26]. For
Acc.(Drivable), we sample a single vehicle from the entire
dataset and calibrate the parameters for drivable area pro-
jection.

Fig. 7 shows illustrative examples of the evaluation. As we
see, first, the model performs reasonably well on common
cases, but totally fails on some edge cases. The failures can
be well captured by the proposed automated evaluation meth-
ods by setting thresholds on Acc.(Agreement) and Acc.(Drivable).
For further illustration, we generate the pseudo “ground
truth” (bottom row) relabeled from segmentation predici-
tions that have perfect Acc.(Agreement) and Acc.(Drivable). Such
ground truth shows what kind of prediction may fulfill both
automated metrics at the same time. By comparing this
“ground truth” (bottom row) with the prediction (second
row), it shows that obvious failures (e.g., predicting most
of the scene as vehicle) can be automatically captured by
the proposed metrics.

V. CONCLUSION AND FUTURE WORK

In this work, we aim at evaluating driving scene perception
systems for both representative common cases and uncom-
mon edge cases in real-world naturalistic driving scenarios.
We present the MIT-AVT Clustered Driving Scene Dataset,
a large-scale naturalistic driving dataset of 1,156,592 10-
second video clips. The dataset is organized using a vision-
based clustering approach that determines common cases and
edge cases in driving scenes, and manually annotated with
environmental characteristics for each cluster. We further
develop two methods for automated evaluation of scene
perception systems on naturalist driving datasets.

The proposed dataset has been used for ongoing research
on driving scene perception and naturalistic driving study.
Video illustrations of select clusters will be released to help
with future research.
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Fig. 7: Examples evaluating DeeplabV3 model [25] on the MIT-AVT Clustered Driving Scene Dataset. From left to right:
common case (highway, clear), less common case (urban, overcast), edge case (overpasses). From top to bottom: front
scene input, scene segmentation prediction, detection and drivable area results for Acc.(Agreement) and Acc.(Drivable), relabeled
segmentation “ground truth” for perfect Acc.(Agreement) and Acc.(Drivable).
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