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Abstract

Age structure is a fundamental aspect of animal population biology. Age is strongly

related to individual physiological condition, reproductive potential and mortality

rate. Currently, there are no robust molecular methods for age estimation in birds.

Instead, individuals must be ringed as chicks to establish known‐age populations,

which is a labour‐intensive and expensive process. The estimation of chronological

age using DNA methylation (DNAm) is emerging as a robust approach in mammals

including humans, mice and some non‐model species. Here, we quantified DNAm in

whole blood samples from a total of 71 known‐age Short‐tailed shearwaters

(Ardenna tenuirostris) using digital restriction enzyme analysis of methylation

(DREAM). The DREAM method measures DNAm levels at thousands of CpG dinu-

cleotides throughout the genome. We identified seven CpG sites with DNAm levels

that correlated with age. A model based on these relationships estimated age with a

mean difference of 2.8 years to known age, based on validation estimates from

models created by repeated sampling of training and validation data subsets. Longi-

tudinal observation of individuals re‐sampled over 1 or 2 years generally showed an

increase in estimated age (6/7 cases). For the first time, we have shown that epige-

netic changes with age can be detected in a wild bird. This approach should be of

broad interest to researchers studying age biomarkers in non‐model species and will

allow identification of markers that can be assessed using targeted techniques for

accurate age estimation in large population studies.
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1 | INTRODUCTION

Understanding the age structure of populations is a key aspect of

animal ecology and conservation. Age estimate information can help

to determine animal mortality, susceptibility to parasites, reproduc-

tive life history and the impact of anthropogenic activities (Froy,

Phillips, Wood, Nussey, & Lewis, 2013; Gianuca, Phillips, Townley, &

Votier, 2017; Musick, 1999; Scott, 1988). However, measuring the

chronological age of many wild animals is a difficult task due to the

lack of external changes that reflect age. Some animals have quan-

tifiable physical changes as they increase in age, for example, tooth

length in deer (Pérez‐Barbería, Duff, Brewer, & Guinness, 2014) and

growth rings in fish otoliths (Buckmeier, Irwin, Betsill, & Prentice,

2002; Campana, 2001; Gunn et al., 2008). However, few of these

can be measured without capturing or even killing the animal. The

impact and ethics of these interventions on animals is often the sub-

ject of debate (Festa‐Bianchet, Blanchard, Gaillard, & Hewison, 2002;
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Nelson, 2002). Other animals can show general changes with life

stage, for example, plumage variation in some seabirds (Weimer-

skirch, Lequette, & Jouventin, 1989), or larval stage of arthropods

and molluscs (Cobb & Wahle, 1994; Ernande, Clobert, McCombie, &

Boudry, 2003), but these often only provide age information for

immature individuals. This lack of accessible chronological age infor-

mation limits our understanding of many wild animal species, and it

is only through long‐term, expensive tracking or marking studies that

age data can be collected and used effectively.

Molecular biomarkers of age have recently been the focus of an

increasing number of studies (Ito, Udono, Hirata, & Inoue‐Murayama,

2018; Maegawa et al., 2017; Wright et al., 2018). Neither telomere

length nor DNA damage markers have been successfully used for

chronological age estimation in a wild animal population, so there is

interest in developing alternative molecular age biomarkers (Dunshea

et al., 2011; Jarman et al., 2015). One promising avenue is measuring

epigenetic modification controlling changes in gene expression that

occur during animal ageing. Epigenetic regulation of gene expression

can occur at several different levels and can include histone modifi-

cation, non‐coding RNA (ncRNA) and DNA methylation (DNAm).

DNAm, the addition of a methyl group to a cytosine followed by a

guanine (CpG site), has been examined in the most detail, and recent

evidence supports the use of this epigenetic modification for individ-

ual age determination (Hannum et al., 2013; Horvath, 2013; Vidal‐
Bralo, Lopez‐Golan, & Gonzalez, 2016).

Here, we refer to two types of changes in DNAm with age that

could be used to estimate age in wild animals. “Epigenetic drift” gen-

erally refers to broad DNAm signals at sites distributed across the

genome, which in mammals, birds and fish has been reported to

decline with age (Gryzinska, Blaszczak, Strachecka, & Jezewska‐Wit-

kowska, 2013; Jakubczak, Listos, Dudko, Abramowicz, & Jeżewska‐
Witkowska, 2016; Shimoda et al., 2014). Drift signals can also be

enriched in CpG islands and enhancers (Slieker et al., 2016). “Clock‐
type” markers are specific CpG sites that show a strong correlation

with known chronological age. Correlations observed in this category

can be tissue‐specific and can involve an increase (hypermethylation)

or decrease (hypomethylation) with age (Horvath, 2013; Slieker, Rel-

ton, Gaunt, Slagboom, & Heijmans, 2018). Clock‐type CpG age mark-

ers have recently been referred to as “age‐related DNA methylation

positions” (aDMPs) (Lowe et al., 2018; Slieker et al., 2018). aDMPs

are generally located within the promoter or first exon of a gene

(Bekaert, Kamalandua, Zapico, Voorde, & Decorte, 2015; Grönniger

et al., 2010; Horvath, 2013; Sziráki, Tyshkovskiy, & Gladyshev, 2018;

Zbieć‐Piekarska et al., 2015). Epigenetic drift is thought to occur due

to a decline or imperfect replication of DNAm by an epigenetic

maintenance system with increasing age (Horvath, 2013; Horvath &

Raj, 2018). However, the mechanisms for specific “clock‐type” aDMP

change have not yet been characterized.

Very little is known about DNAm in most non‐model species,

especially birds. Available studies have mostly focused on model spe-

cies such as the Red junglefowl (Gallus gallus) (Gryzinska et al., 2013;

Hu et al., 2013; Li et al., 2011) and Japanese quail (Coturnix japonica)

(Andraszek, Gryzińska, Wójcik, Knaga, & Smalec, 2014). These

studies show a distribution of DNAm in the genome similar to that

observed in mammals. Epigenetic drift is the only age‐related DNAm

change that has been reported in birds. Gryzinska et al. (2013)

observed DNAm changes between chickens aged between 1 day

and 32 weeks using a colorimetric immunoenzymatic‐based protocol.

We have previously reported that the DNAm status of several mam-

malian clock‐type age‐related genes was not conserved in homolo-

gous regions of a seabird (De Paoli‐Iseppi et al., 2017).
Here, we used known‐age individuals from a long‐term study of

Short‐tailed shearwater (Ardenna tenuirostris) to investigate age‐re-
lated changes. The shearwater has high breeding site and partner

fidelity and is long‐lived, making it an ideal species in which to study

population status and chronological ageing in a seabird population.

Fisher Island (Tasmania, Australia) is the site of a long‐term banding

study of this species and as such can be used to collect known‐age
blood and feather samples for the investigation of DNAm and

chronological age (Bradley, Skira, & Wooller, 1991). Epigenetic age

estimates of seabirds would be particularly valuable for use in popu-

lation viability analyses and could further our understanding of envi-

ronmental effects on animal performance or foraging (Velarde &

Ezcurra, 2018). For the first time, we have used digital restriction

enzyme analysis of methylation (DREAM) to assess DNAm in a non‐
model vertebrate. We identified seven aDMPs in DNA extracted

from 71 whole blood samples. A model relating methylation at these

aDMPs to age was made and the precision evaluated using the mean

absolute difference (MAD) between the estimated and known

chronological ages. Our study is the first to identify DNAm changes

with chronological age in a wild seabird and will provide a

foundation for further study of age‐related DNAm in non‐mammalian

vertebrates.

2 | METHODS

2.1 | Samples and DNA extraction

In sampling trips between 2015 and 2018, blood samples were col-

lected from adult (November–December) and chick (March) A. tenuir-

ostris from Fisher Island (40°13′00.7″S 148°14′20.7″E), Tasmania,

under Department of Primary Industries, Parks, Water and Environ-

ment (DPIPWE) permit: FA15230 and University of Tasmania Animal

Ethics Committee permits: A14277 and A0016107. Blood was col-

lected onto Whatman FTA® Micro (WB120210) cards and stored as

previously described (De Paoli‐Iseppi et al., 2017). DNA was

extracted from a 3 mm punch of immobilized blood using an Epicen-

tre MasterPure™ (MCD85201) DNA Purification Kit according to the

manufacturer's instructions. We examined blood DNA in two high‐
throughput sequencing runs of a total of N = 71 known‐age individ-

uals. Age was determined by recording the band number of birds

first marked as chicks and was rounded to whole years as all sam-

pling occurred in a short time window each year. Run 1 consisted of

35 known‐age animals (5–21 years old, mean = 12.14 years). Two

individuals aged 8 and 14 years old were replicated within this run.

Run 2 consisted of DNA from 36 additional known‐age samples
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(6–21 years old, mean = 14.18 years). Run 2 contained three techni-

cal replicates from Run 1 (6, 12 and 21 years old), and three within‐
run replicates aged 8, 14 and 21 years old. Several birds were recap-

tured in sampling trips in different years allowing us to perform

some limited longitudinal observations (Run 2: N = 3 × 2 samples

and N = 4 × 2 samples at 1‐ and 2‐year resights, respectively). In

total, N = 63 known‐age shearwater were used to calibrate the

model following removal of replicates. Bird sex was determined by

CHD‐1 gene amplification in blood DNA using a previously described

method (Faux, McInnes, & Jarman, 2014). Sample details for each

age group and known‐age distribution are shown in Table 1 and

Supporting Information Figure S1, respectively.

2.2 | Analysis of genome‐wide “CCCGGG”
methylation

We examined DNAm at CpG sites throughout the genome using

DREAM of 71 Short‐tailed shearwater whole blood DNA samples

(Jelinek & Madzo, 2016). Briefly, genomic DNA (1 μg) extracted

from shearwater blood FTA samples was sequentially cut with two

enzymes that recognize the “CCCGGG” sequence motif in DNA

(Figure 1). Methyl‐sensitive SmaI first cuts only unmethylated sites

leaving blunt 5’‐GGG ends. Then, XmaI cleaves the remaining

methylated sites leaving 5′‐CCGGG ends. Thus, unique sequences

are made for methylated or unmethylated CpG sites. Following this

sequential digest, DNA was used to create sequencing libraries

using NEBNext Multiplex Oligos for Illumina Index Primer Sets 1–3
and standard Illumina protocols. Blunt‐end ligation is done using

NEBNext Adaptor (10 μm) and T4 DNA ligase with hairpin loop

cleavage with USER enzyme. Dual size selection for 250–450 bp

fragments was done using AMPure XP beads. Unique barcodes

were then added to DNA from individual samples with 12× rounds

of PCR using AmpliTaq Gold DNA Polymerase (see Supporting

Information Table S1). Individual barcoded samples were analysed

for correct library size distribution (250–450 bp) using high sensitiv-

ity DNA 1000 kits on the Bioanalyzer 2100. Two microlitres of

each sample was also quantified using a Qubit 2.0 to ensure equal

volumes were pooled in the final library. Libraries were run at 2–
4 ng/µl on the Illumina NextSeq 500 platform with a 15%–25%
PhiX control at the Ramaciotti Centre for Genomics (UNSW, Syd-

ney, Australia).

2.3 | Statistical analysis and construction of an age
prediction model

2.3.1 | Sequencing data analysis pipeline

Raw DNA sequence reads were run through an in‐house data analy-

sis pipeline in the following steps.

1. Quality filtering Demultiplexed Fastq sequences were filtered with

a maximum expected error (maxee) rate of 0.5 and converted to

Fasta format (Edgar & Flyvbjerg, 2015).

2. Dereplication A database of unique reads from all samples was

generated (dereplication) using trimmed sequences and the

USEARCH10 command “fastx_uniques” (Edgar, 2010), with a

min_unique size = 150.

3. Methylated and non‐methylated motif databases These derepli-

cated sequences were duplicated to contain the unique sequence

with either the 5′‐GGG or 5′‐CCGGG motif, in separate data-

bases (GG or CC databases).

4. Motif database hits Each sample was then compared to each

database using the “usearch‐global” command with 97% identity

and required an exact match to the first 2 bp of the relevant

motif (id_prefix = 2). Hits for each sequence against both methy-

lation databases were recorded.

5. DNAm level calculation The methylation level for each sample was

then calculated as the count of the methylated signature divided

by the total number of hits for a specific CpG marker, and the value

was recorded between 0 and 1. A value of 0 is unmethylated (i.e.,

all sequences from that site match the GG sequence generated by

methyl‐sensitive SmaI) and 1 is methylated (i.e., all sequences from

that site match the CC sequence generated by XmaI).

Methylation scores were retained for read depths between 20

and 2,000 reads. Scores that were calculated outside of this range

were converted to a “NA.” To retain potentially informative markers

in the final analysis, markers with less than seven NA values across

all samples were imputed using the mean of the remaining non‐NA

values for the marker. This method ensured that potential age‐re-
lated markers would not be omitted based on missing scores and

that imputed values would have a relatively small effect on any cor-

relations observed. Since variation is required to find correlations

TABLE 1 Short‐tailed shearwater (Ardenna tenuirostris) sample details

Group Age range (years) Samples Longitudinal data Male Female Replicates

Chicks 0.15 2 — 1 1 —

Young breeders 5–9 19 — 8 9 WR: N = 2, BR: N = 1

Middle age 10–18 42 6 24 18 WR: N = 2, BR: N = 1

Old 19+ 9 1 3 6 WR: N = 1, BR: N = 1

Total 0.15, 5–21 71 7 pairsb 36a 34 WR: N = 5, BR: N = 3

Notes. BR: between run; WR: within run.
a1 sample failed sexing assay (depleted DNA). bRefers to 14 samples.
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with age, we removed markers that had a DNAm standard deviation

of less than 5% across all samples. A small run effect was observed,

so the mean DNAm difference between run 1 and 2 replicates was

used to adjust the score of each marker in run 2.

2.3.2 | Predictor selection and age estimation
model

Markers that passed filtering were then used to fit penalized lasso

regularization paths to each predictor using the R package “GLMNET”

(Friedman, Hastie, & Tibshirani, 2010). The penalty value used to

select coefficients, lambda 1 standard error (λ1se), was calculated

after repeated runs (100×) of the default k‐fold cross‐validation func-

tion of glmnet (cv.glmnet, 10‐fold) with an alpha = 1 (lasso). This

method randomly subsets the data each cycle and assesses the linear

relationship between age and DNAm. Following repeated runs of

this function, a mean λ1se value was generated. The λ1se value gen-

erally selects CpG sites for the simplest model with an error similar

to the best model (λ minimum), given the cross‐validation uncer-

tainty.

Individual markers that passed the λ1se cut‐off were inspected

visually using simple linear regression, and markers that had an

R2 < 0.2 or showed small changes in DNAm range (<15%) were

removed from further analysis. Remaining age‐related CpG sites

were then incorporated into a multiple linear regression model. To

test the selected markers, the original data set was randomly split

into 75/25% training (N = 47) and test (N = 16) data sets, respec-

tively. Training set DNAm values for each aDMP were used to cre-

ate a multiple linear regression model. The model was then tested

with remaining samples in the test set. This random sub‐sampling

method was run for 100 iterations. By substituting the calculated

methylation values for each of the individual shearwaters used in

the training and test sets into the equation, we obtained the pre-

dicted epigenetic age. MAD, the uncertainty of age estimates

expressed in years, between the known and estimated age was then

calculated. The 77 bp sequence following the CG motif was analysed

by BLASTn searches of bird genomes available on the NCBI data-

base to identify any regions conserved between species (Altschul,

Gish, Miller, Myers, & Lipman, 1990).
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F IGURE 1 Digital restriction enzyme
analysis of methylation (DREAM). A
schematic showing an example of
sequential digestion and sequencing of a
single “CCCGGG” site for one sample. In
digest 1, a methylation‐sensitive enzyme
(SmaI) is used to generate unmethylated
signatures (GGG). SmaI does not cut
methylated cytosines (methylated cytosines
are indicated by red text and a floating,
red “M” box). Following this, XmaI is added
to the sample in digest 2 and generates
methylated signatures (CCGGG). All
samples are then run on a next‐generation
sequencing platform (e.g., Illumina
NextSeq), and read counts of each
signature are counted. In this example, for
ten reads of a unique CpG marker, six
contain the methylation signature giving a
DNAm score of 0.6
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2.4 | Global DNA methylation analyses

2.4.1 | Global analysis of 2,338 CpG sites using
DREAM

The mean DNAm of 2,338 CpG sites identified using DREAM was

analysed by age group in years as follows: Chicks: 0.12–0.15 (N = 2),

Young breeder: 5–9 (N = 16), Middle: 10–18 (N = 39) and Old: 19+

(N = 6). CpGs were analysed using a one‐way ANOVA followed by

post‐test for multiple comparisons (Tukey's HSD). Mean DNAm dif-

ferences were calculated in both the chick and young breeder con-

text and analysed as above. Significance was set at p < 0.05.

2.4.2 | Colorimetric DNA methylation analysis

We also measured epigenetic drift in global DNAm using a commercially

available methylated DNA quantification assay for relative 5‐mC content

(Abcam, Colorimetric, ab117128). Briefly, 42 shearwater blood DNA sam-

ples (chicks, 5–21 years old, mean = 10.9 years) were analysed in dupli-

cate, alongside the supplied positive (5 ng) and negative controls.

Methylated DNA was captured and detected using diluted (1:1,000,

1:2,000) 5‐mC antibodies. Following the addition of a developing solution,

colour change was monitored and quantified at 450 nm (Tecan Spark).

Using the mean absorbance values of the duplicates, relative 5‐mC for

each sample was calculated as follows: (((Sample OD − Negative control

OD)/DNA input (ng))/(((Positive control OD − Negative control OD) × 2)/

Positive control input (5 ng))) * 100. Analysis of duplicate colorimetric

data was done using a one‐way ANOVA with Šidák correction for multi-

ple comparisons for each age group in years as above.

3 | RESULTS

3.1 | Sequencing metrics

Quality analysis of DREAM libraries showed bands in the expected post‐
clean‐up range (range = 194–974 bp, mean = 451 bp; Bioanalyzer gel

and electropherogram traces are shown in Supporting Information Fig-

ure S2a–d). A total of 125 million sequences (mean of 1,761,622 per sam-

ple) passed initial bioinformatic QC (maxee = 0.5 and matched restriction

site motif; Supporting Information Table S2). The sum of reads from

sequences with a mean high read depth (>2,000×) represented approxi-

mately 6% (mean = 84,518 reads) of the total mean sequences per sam-

ple. Following filtering and dereplication, we identified 93,884 unique

sequences that were used to create a database of reference sequences

(i.e., markers for specific CpG sites) for sample matching (Supporting

Information Figure S3). Following the pipeline filtering described, a total

of 2,338 unique CpGs were used for lasso analysis (GLMNET).

3.2 | Development and testing of an age prediction
model in the short‐tailed shearwater

DNAm data from seven CpG sites obtained using DREAM were included

in the age prediction model based on our selection criteria (Figure 2a–g).

Information on removed CpG sites with weaker age correlations is pro-

vided in Supporting Information Table S3 (e.g., just below our mean λ1se

cut‐off of 1.2; see Supporting Information Figure S4). To investigate

potential sex‐related DNAm effects in the seven aDMPs used in the age

prediction model, separate linear regressions were done for each sex

(Supporting Information Figure S5a‐g). Sex had a significant effect on

DNAm age correlation in a single aDMP in isolation (M1801, p = 0.0031,

Bonferroni corrected), with males driving the association (Supporting

Information Figure S5c). However, there was no sex‐specific effect when

the methylation scores for all seven aDMPs were then used to create the

age estimation model (Figure 3, sex regression slopes and diagnostics are

shown in Supporting Information Figures S5h and S6, respectively). Read

depth had a mean of 51× for these CpG sites (Supporting Information

Figure S7). The MAD between the known and estimated age reports the

uncertainty in age estimates expressed in years. Following repeated

cross‐validation, the seven aDMP age assay provided epigenetic age esti-

mates in training subsamples with a MAD of 2.34 ± 1.73 (SD) years (mean

R2 = 0.605, range: 0.46–0.72) (Supporting Information Figure S8a). In the

validation test subsamples, the age estimates had an increased error;

across all age estimates, MAD = 2.81 ± 2.08 years (mean R2 = 0.404,

range: 0.03–0.80) (Supporting Information Figure S8b). The significant y‐
intercept of 5.13 indicated that the predicted ages were overestimated

for chicks and young birds and underestimated for older individuals, and

may indicate a non‐linear relationship. The training set MAD ranged from

1.17 to 6.25 years, whilst in the test set, MAD ranged from 1.58 to

7.86 years. The MADs for each year and grouped age, as described in the

methods, are shown in Figure 4. Between‐run replicates for seven age‐re-
lated CpG sites showed a mean DNAm score difference of 11.29%

(range: 3.79%–12.80%) and 6.83% (range: 4.21%–11.04%) pre‐ and post‐
run adjustment, respectively (Supporting Information Table S4). Within‐
run replicates showed a MAD in DNAm of 8.65% (range: 5.18%–11.91%)

for the age‐related markers.

3.3 | Biomarker sequence and gene conservation

The seven aDMPs we identified were used to search for conserved

regions in available bird genomes and scaffolds using BLASTn. Of these

seven markers, four had low E values and >50% query cover indicating a

reasonable match with a known sequence in the available avian data-

bases (Table 2). Marker 1,071 matched with the G3BP1 region in the

Zebra finch (Taeniopygia guttata) genome; however, the query cover was

only slightly above 50%. Marker 1934 had a 100% query cover match

with an uncharacterized locus in the Mallard (Anas platyrhynchos) gen-

ome. Marker 2083 matched against scaffold 4,695 in the North Island

brown kiwi (Apteryx australis mantelli) genome. Finally, marker 3,169 had

a 100% query cover match to the DHH gene in several species with the

top hit to the Eurasian blue tit (Cyanistes caeruleus) genome.

3.4 | Longitudinal observations of DNA methylation
in resighted individuals

We observed that 6/7 (85%) age estimates for resighted individuals

sampled 1 or 2 years apart showed the expected positive increase in

DE PAOLI‐ISEPPI ET AL. | 5



F IGURE 2 (a–g) DNA methylation of selected CpG sites showing a relationship with chronological age. Linear regression of DNAm and
chronological age for each CpG selected using lasso penalization from a total of N = 63 Short‐tailed shearwater blood samples. Sequence
details for each CpG are shown in Table 2
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predicted age relative to their known age from leg bands (Figure 5).

At many individual aDMPs, the longitudinal samples did not follow

the expected DNAm trend (Supporting Information Figure S9a‐b).
However, when combined into the model, only one individual

showed a negative change in estimated age from two samples taken

at 15 and 17 years of age. The MAD between estimated and known

age for 2‐year resights was 0.74 years (N = 8) and 0.87 years (N = 6)

for 1‐year resights.

3.5 | DNA methylation of 2,338 CpGs using
DREAM assay

We show that a large proportion of the 2,338 CpG sites that passed

the filtering cut‐off are highly methylated, with 50.2% of CpGs

showing DNAm levels greater than 80% across all ages (Figure 6a).

We also observed a small, but non‐significant linear change in DNAm

from young animals to old. The mean DNAm was 0.712, 0.724,

0.725 and 0.729, for chicks, young breeders, middle and old birds,

respectively (Figure 6b). The difference in mean DNAm, relative to

chick levels, for each individual CpG site is shown in Figure 6c. This

shows that relative to older birds, chicks are less methylated at low

DNAm levels (approximately <10%) and more methylated at high

DNAm levels (approximately >90%).

3.6 | Global 5‐mC using colorimetric assay

Relative 5‐mC was quantified against the supplied 5 ng positive con-

trol. Global blood DNAm levels of the Short‐tailed shearwater were

combined into age groups as described in the methods. Chicks and

young breeders showed similar relative 5‐mC levels (mean = 0.725,

N = 4 and mean = 0.727, N = 15, respectively). Both of these groups

had slightly higher relative 5‐mC than that observed in middle‐aged
birds (mean = 0.614, N = 17) and old birds (mean = 0.498, N = 5).

Following adjustment for multiple comparisons, no significant differ-

ences were observed between the age groups (Figure 7).

4 | DISCUSSION

Seabirds exhibit little or no external physical changes with age, and

there are currently no reliable biomarkers of chronological age in most

long‐lived seabirds beyond fledging. The identification of an accurate

age biomarker would be a substantial advance in our ability to under-

stand seabird age‐related demographics. Seabird age estimation using

molecular methods is currently not possible. DNAm changes with age

have been reported for both wild and model mammalian species in

several tissues, indicating that DNAm age biomarkers may be useful in

birds. In this study, we quantified the DNAm profile of known‐age

F IGURE 3 Full multiple linear regression model. Multiple linear regressions for predicted ages of N = 63 Short‐tailed shearwater from
quantification of DNA methylation at seven CpG sites. 95% confidence limits of the placement of the regression line are shown. Females are
shown in blue (N = 30), males are shown in green (N = 32), and a single unknown sex (N = 1, 9 years old) is shown in pink
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Short‐tailed shearwaters using DREAM. We present evidence for

DNAm changes with chronological age in seven CpG sites.

4.1 | Age‐related biomarkers in birds

Previous bird ageing research has focused primarily on telomere

length assays and pentosidine accumulation in collagen. Studies of

terminal telomere restriction fragments (TRFs) have shown that

telomere length can shorten with increasing age and that the rate of

change corresponds to lifespan in several species (Bize, Criscuolo,

Metcalfe, Nasir, & Monaghan, 2009; Juola, Haussmann, Dearborn, &

Vleck, 2006; Tricola et al., 2018). However, this trend is not consis-

tent amongst all birds, with some species showing increases in TRF

with age, as in the Leach's storm‐petrel (Oceanodroma leucorhoa)

(Haussmann et al., 2003), and no decline in length, or both as

reported for the Magellanic penguin (Spheniscus magellanicus) (Cer-

chiara et al., 2017). For individuals in some avian species, change in

telomere length can be tracked longitudinally and correlate with

reproductive timing; however, the use of TRF for cross‐sectional
analysis of age has yet to be demonstrated (Bauer et al., 2018).

Pentosidine is a less frequently studied age biomarker for birds.

It forms cross‐links between amino acid residues in collagen and

accumulates with age in birds (Fallon, Cochrane, Dorr, & Klandorf,

2006; Iqbal, Probert, Alhumadi, & Klandorf, 1999). Pentosidine has

been shown to accumulate in a linear fashion in terrestrial birds and

some seabirds including California gulls (Larus californicus) (Chaney,

Blemings, Bonner, & Klandorf, 2003) and Double‐crested cormorants

(Phalocrocorax auritus) (Fallon et al., 2006). This technique has

yielded age estimates with a precision of 2–4 years in wild birds

(Chaney et al., 2003; Fallon et al., 2006; Rattiste et al., 2015). How-

ever, in a study of another long‐lived seabird, the Bridled tern (Ony-

choprion anaethetus), no correlation between pentosidine levels and

age was found (Labbé, 2017). It is not known how pentosidine levels

may respond to the effects of changing biological age or environ-

mental stressors. As a result of the limited success in age estimation

by these methods, our research aimed to build upon recent suc-

cesses in mammals by assessing DNAm estimates of age in the

Short‐tailed shearwater.

We previously established that specific aDMPs from mammals

were not conserved in the shearwater (De Paoli‐Iseppi et al., 2017).

We therefore sought to identify bird‐specific aDMPs or a global

DNAm signature associated with age using DREAM of whole blood

samples. This is the first epigenetic age assay developed for use in a

seabird, and one of the few used in a wild species. Using the DREAM

method, we identified seven novel aDMPs in shearwaters. Following

repeated cross‐validation of our known‐age samples to train and test

the age estimation model, we reported a test set MAD for all ages of

2.81 ± 2.08 years. The linear relationship with age in these CpG sites

(a)

(b)

F IGURE 4 Yearly and age‐class
grouped mean absolute deviation (MAD).
Determined by the absolute difference
between the estimated and known age,
the MADs are shown (a) for each year of
age for known‐age animals included in the
model and (b) for each of the described
age groups
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is not as strong as those reported for whales (Polanowski, Robbins,

Chandler, & Jarman, 2014) or dogs (Thompson, vonHoldt, Horvath, &

Pellegrini, 2017), but was similar to that reported for a bat species

(Wright et al., 2018). We also observed variation in MAD for differ-

ent age classes, with birds aged 5–9 years and 19+ providing less

accurate age estimates compared to other groups (Figure 4a). Addi-

tionally, the significant y‐intercept in our model (Figure 3) causes an

overestimation of age in younger individuals. A single marker

(M1801) showed evidence for male‐driven DNAm age correlation.

Due to the reduced sample size when comparing by sex only, more

known‐age samples would be required to confirm the lack of associa-

tion in females and ideally, whole genome information could deter-

mine if this marker is located on a sex chromosome.

However, the biggest limitation in developing our model was the

low number of young non‐breeding bird samples that we could cap-

ture in the field, which hinders our understanding of the rate of

DNAm change between chicks and early breeders (5–9 years), and

with more samples, this may be correctable in future. The shearwa-

ters studied here typically do not return to their island of birth until

their first year of breeding at age five (Bradley et al., 1991; Bradley,

Wooller, Skira, & Serventy, 1989). However, for unknown reasons

we did not recover many individuals in the 5–9 early breeder age

range. The larger DNAm variability in these young animals could be

due to the stressful effects of the first year of breeding. Shearwaters

lay one of the largest eggs relative to body mass of all seabirds, and

individuals face challenges including incubatory fasting and intermit-

tent foraging (Wooller, Bradley, Skira, & Serventy, 1990). Addition-

ally, both migration and parenthood can reduce body condition, and

evidence suggests that these birds may undergo intermittent breed-

ing if an individual determines its body condition is too low (Bradley,

Wooller, & Skira, 2000).

Despite some uncertainty in ages estimated with our model, this

approach could discriminate between relevant age classes (e.g.,

young and old adults). These epigenetic age estimates, in combina-

tion with other parameters including sex and weight, could be used

to examine the effect of climate change on population viability (Lee,

2017). Recent studies also highlight other areas in which estimated

age data could be informative, including post‐pest eradication moni-

toring of island‐breeding seabird populations (Brooke et al., 2018),

parasite load in the Blue tit (Aguilar et al., 2016) and modelling the

impacts of longline fisheries on effective population size (Cortés,

García‐Barcelona, & González‐Solís, 2018; Mills & Ryan, 2005).

Obtaining a broad age range of samples from long‐lived, known‐
age birds is difficult as extensive banding studies are rare. Whilst the

Fisher Island shearwater population has been followed for several

decades, the youngest and oldest adult individuals we recovered

were 5 and 21 years old, respectively. The oldest individual, at

21 years old, represents a little over half of the maximum reported

lifespan for this species of 39 years. However, research on age‐de-
pendent survival on Fisher Island birds shows few animals living

beyond 25 years post‐first breeding, which would place our oldest

individual at closer to 70% of the expected lifespan of approximately

30 years (Baylis, Sunnucks, & Clarke, 2018; Bradley et al., 1989). TheT
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relationship we have observed with age should be investigated fur-

ther for older individuals; however, previous studies in mammals

have primarily shown linear correlations with age (Maegawa et al.,

2010; Polanowski et al., 2014; Spiers et al., 2016). Although no

recaptures were made within the 1‐ to 4‐year age range, as these

non‐breeding birds are not at the nesting sites, the relationship of

adults to the DNAm level of the chicks suggests birds at these ages

will have a similar trend to the rest of the calibration range.

We quantified “epigenetic drift” in DNAm levels observed across

all 2,338 CpG sites included in our analysis. We did not identify a sig-

nificant trend with chronological age. However, we did observe some

interesting differences between young and old age groups at the

lower and upper limits of DNAm. In contrast to mammalian and the

only other bird study, we found no clear trend of DNA hypomethyla-

tion in older animals compared to that in younger individuals (Gaudet

et al., 2003; Gryzinska et al., 2016; Portela & Esteller, 2010). The lack

of statistical significance could be due to the analysis of this relatively

small subset of total CpGs in the bird genome.

Immunoenzymatic analyses of chicken 5‐mC levels have shown

decreased global methylation with age (Gryzinska et al., 2013).

Using the same method, we found no relationship between relative

5‐mC levels and age in 42 known‐age shearwater whole blood

samples. However, we observed a non‐significant trend towards

decreasing methylation across age groups. Our study of age‐related
global DNAm in shearwaters is only the second of this phe-

nomenon in birds, and further work will be required to determine

whether this approach could be suitable for age estimation in other

bird species.

4.2 | Measuring methylation in non‐model
organisms

Despite the identification of several thousand unique CpG sites

using the DREAM method, the 20× read depth requirement for

DNAm calculation resulted in the exclusion of many sites from fur-

ther analysis. A small percentage of the total reads was also lost to

repetitive elements. There is little doubt that as technologies

improve sequencing depths will increase, and direct analysis of CpG

DNAm will be possible (Rand et al., 2017; Slatko, Gardner, & Ausu-

bel, 2018). Improvements in bioinformatics will also help to validate

DNAm markers and predict age in large data sets (Vidaki, Ballard,

Aliferi, Miller, & Barron, 2017). The DREAM technique has been

used previously to identify DNAm changes following compound

exposure in zebrafish embryos (Bouwmeester et al., 2016) and calo-

ric restriction in mice (Maegawa et al., 2017). A similar method,

EpiRADSeq, also uses a methylation‐sensitive restriction enzyme

(HpaII) and NGS to quantify DNAm in CpG sites (Schield et al.,

2016). This technique differs from DREAM in that only a single

methylation‐sensitive enzyme is used in combination with a frequent

cutter (PstI). HpaII recognizes a “CCGG” motif, which is likely to lead

to higher genomic coverage of CpG sites due to increased cut fre-

quency. However, DNAm scores generated using this method are

relative to the count of unmethylated EpiRADSeq reads only. This is

avoided when using a dual methylation‐sensitive digest as in

DREAM, as reads are generated for both methylated and unmethy-

lated CpGs (Jelinek & Madzo, 2016). Reduced representation bisul-

phite sequencing can also be used to quantify CpG DNAm, but does

require a higher quantity of initial genomic DNA (Meissner et al.,

2005). The output of these various techniques depends upon several

molecular, platform and bioinformatic factors and choices, which is

discussed in detail elsewhere (O'Leary, Puritz, Willis, Hollenbeck, &

Portnoy, 2018). Our results now show that the DREAM method can

also be used to quantify global DNAm and screen for aDMPs in

non‐model animals. The primary limitation in applying this method is

the high read depth required per CpG site, particularly in organisms

with relatively high quantities of repetitive DNA. This makes it cost‐
prohibitive as a method for applying to population‐wide samples, but

certainly effective as a screening method for identifying aDMPs.

52,196

52,196

52,152

52,152

52,095

52,095

38,856

38,856

39,179

39,179

39,254

39,254

39,348

39,348

F IGURE 5 Longitudinal DNAm data for
1‐ and 2‐year resights. The estimated
epigenetic age vs. known age (from leg
bands) for each individual bird with
longitudinal resights (1‐year N = 3; 2‐year
N = 4)
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(b) (c)

(a)

F IGURE 6 DNA methylation in chicks, young, middle and old shearwater. (a) Heatmap of 2,338 CpGs analysed using DREAM in
shearwater. Age groups are defined by column header colours, chicks are shown in orange, young breeders (5–9 years) in blue, middle (10–
18 years) in grey and old (19+ years) in purple. A colour key indicates the DNAm value ranging from 0 (unmethylated, green) to 1 (methylated,
red). (b) The mean DNA methylation (DNAm) level of each of 2,338 CpG sites (N = 63 birds) for each age group: chicks (N = 2), young
breeders (5–9 years, N = 16), middle‐aged (10–18 years, N = 39) and old (19+ years, N = 6). A post‐ANOVA test for linear trend did not
indicate that the small increase in DNAm was significant. (c) The difference in mean DNAm for each CpG in a chick context (high to low) vs.
older age groups, that is a positive value indicates higher DNAm in chicks and vice versa. Age‐related CpGs used in the model are circled in
red and are labelled as shown in Figure 2
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Once aDMPs are identified by DREAM, targeted DNAm scoring

assays could be developed to reduce costs for high‐throughput appli-
cations.

An additional limitation to the simple analysis of shearwater

DREAM and indeed most non‐model NGS data is the limited geno-

mic resources available for further analyses. Multiplex restriction site

PCR (mRS‐PCR) could be used to obtain both up‐ and downstream

sequence around an aDMP of interest (Sarkar, Turner, & Bolander,

1993; Weber, Bolander, & Sarkab, 1998). This method can generate

larger reference sequences for use in targeted bisulphite assays such

as EpiTYPER, pyrosequencing or other NGS‐based techniques (Ehrich

et al., 2005). More sequence information may also result in more

accurate comparative genomic analyses against bird genomes that

are currently undergoing scaffold alignment. The genes DHH and

G3BP1 were identified as conserved age‐related sequences from our

data, and these could be used in future as part of a targeted gene

assay in shearwater (Table 2; M1071 and M3169). Whilst we cannot

comment on any potential functional effects of DNAm, DHH and

G3BP1 encode for signalling molecules in cell morphogenesis and a

DNA‐unwinding enzyme, respectively. Two other markers also

showed high conservation with other bird species; however, these

hits were either unassigned (M2083) or uncharacterized (M1934).

These factors limit our ability to identify biomarkers that have the

potential to be used in closely related species, and design a cost‐ef-
fective, targeted age assay.

5 | CONCLUSIONS

This study demonstrates that seabird age estimates can be gener-

ated from a DNAm age assay. This minimally invasive method could

be used to produce age estimates for Short‐tailed shearwaters from

chicks to 21 years old. This is the first time an epigenetic assay has

been applied to a wild seabird and could be used in future to

estimate population age structure. Further refinement of this method

could result in the identification, validation and use of target genes,

similar to that in mammals, for related seabird species and see wider

use for monitoring and conservation.
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