Novel Pyrazolo[1,5-a]pyridines as PI3 Kinase Inhibitors: Variation of the Central Linker Group

Jackie D. Kendall,,*,a,b Andrew J. Marshall, ${ }^{\text {a }}$ Anna C. Giddens, ${ }^{\text {a }}$ Kit Yee Tsang, ${ }^{\text {a,d }}$ Maruta Boyd, ${ }^{\text {a }}$ Raphaël Frédérick, ${ }^{\text {a,e }}$ Claire L. Lill, ${ }^{\text {c }}$ Woo-Jeong Lee, ${ }^{\text {c }}$ Sharada Kolekar, ${ }^{\text {c }}$ Mindy Chao, ${ }^{\text {c }}$ Alisha Malik, ${ }^{\text {c }}$ Shuqiao Yu, ${ }^{\text {c }}$ Claire Chaussade, ${ }^{\text {b,c,f }}$ Christina M. Buchanan, ${ }^{\text {b,c }}$ Gordon W. Rewcastle, ${ }^{\text {a,b }}$ Bruce C. Baguley, ${ }^{\text {a,b }}$ Jack U. Flanagan, ${ }^{\text {a,b }}$ William A. Denny, ${ }^{\text {a,b }}$ Peter R. Shepherd. ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Auckland Cancer Society Research Centre, School of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
${ }^{\mathrm{b}}$ Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
${ }^{\text {c }}$ Department of Molecular Medicine and Pathology, School of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
${ }^{\mathrm{d}}$ Present address : Universal Display Corporation, Hong Kong.
${ }^{\text {e }}$ Present address : Namur Medicine \& Drug Innovation Centre (NAMEDIC), Namur
Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
${ }^{\text {f }}$ Present address: Centre Hospitalier Universitaire de Nice, Nice, France.
*To whom correspondence should be addressed. E-mail: j.kendall@auckland.ac.nz.

Contents of Supporting Information

1. Table of BROOD data S2
2. Chemistry S6

Table S1. Isosteres generated by BROOD v1.1.1.

No.	Structure	Etpb ${ }^{\text {a }}$	Etshape ${ }^{\text {b }}$	Etattach ${ }^{\text {c }}$	Etcombo	cLog ${ }^{\text {d }}$
0		BROOD	D query			2.43
1		0.72	0.9	0.89	1.63	2.44
2		0.7	0.86	0.92	1.56	2.30
3		0.69	0.81	0.83	1.49	1.19
4		0.66	0.8	0.92	1.47	3.47
5S		0.57	0.9	0.9	1.47	3.03
5R		0.45	0.83	0.94	1.27	3.03
6		0.52	0.91	0.92	1.43	3.27
75		0.6	0.8	0.84	1.4	3.55
7 R		0.41	0.75	0.92	1.16	3.55
8		0.51	0.89	0.79	1.4	2.54
9		0.62	0.75	0.83	1.37	2.97
10		0.59	0.78	0.84	1.37	0.58
11		0.61	0.73	0.89	1.34	2.93
12	$\mathbb{V N H}^{2}$	0.51	0.82	0.79	1.32	2.49

20

$0.37 \quad 0.75$
$0.92 \quad 1.12$
2.76

$0.35 \quad 0.8$
0.91
1.15
2.87

30

$0.48 \quad 0.67$
0.82
1.15
3.12

31S

$0.34 \quad 0.81$
0.8
1.15
2.38
$31 R$

$0.22 \quad 0.84$
0.81
1.06
2.38
32

$0.38 \quad 0.77$
0.85
1.14
3.33

33

$0.27 \quad 0.87$
0.92
1.14
3.73

34

$0.23 \quad 0.91$
0.93
1.14
2.68

35

$0.38 \quad 0.75$
0.88
1.13
2.76

36

$0.37 \quad 0.76$
0.89
1.13
2.84
37

$0.41 \quad 0.72$
0.8
1.13
4.12

38

$0.41 \quad 0.71$
0.88
1.12
1.35

39

$0.38 \quad 0.73$
0.86
1.1
3.41

40

$0.37 \quad 0.73$
0.86
1.1
2.39

41

$0.35 \quad 0.73$
0.84
1.07
3.53

42

0.59
0.91
0.88
1.51
3.61
43
${ }^{\text {a }}$ Electrostatic Tanimoto similarity between the query and fragment hit based on a PoissonBoltzmann calculation (external dielectric $=80$); ${ }^{\text {b }}$ Shape overlap between the query and the replacement when measuring the Electrostatic Tanimoto; ${ }^{\text {c }}$ Shape overlap between the attachment points of the query and the replacement when measuring the Electrostatic
 (i.e. BROOD query entry 0 is compound $\mathbf{1}$).

Synthesis of Compounds 7-60.

NMR spectra were recorded on a Bruker Avance 400 spectrometer; chemical shifts are reported in δ using SiMe_{4} as the internal standard when measured in CDCl_{3}, the residual DMSO as internal standard when measured in d_{6}-DMSO, and the residual methanol as internal standard when measured in $\mathrm{CD}_{3} \mathrm{OD}$. Low resolution mass spectra were recorded on a Thermo Finnigan MSQ single quadrupole mass spectrometer. High resolution mass spectra were obtained on a Bruker micrOTOF-QII mass spectrometer using either electrospray ionisation (ESI) or atmospheric pressure chemical ionisation (APCI). HPLC was carried out using an Agilent HP1100 equipped with a diode-array detector, with an Altima C18 $5 \mu \mathrm{~m}$ reverse phase column, $150 \times 3.2 \mathrm{~mm}$ (Alltech Associated, Inc., Deerfield, IL) eluting with an acetonitrile:water aqueous ammonium formate buffer gradient. Analyses were carried out in The Campbell Microanalytical Laboratory, University of Otago, Dunedin, New Zealand. Melting points were determined on an Electrothermal 2300 Melting Point Apparatus. Silica gel chromatography was performed using 200-320 mesh silica gel obtained from APS Finechem Ltd. Yields have not been optimised.

Synthesis of 5-bromo-3-(3-(2-methyl-5-nitrophenylsulfonyl)prop-1-enyl)pyrazolo[1,5-a]pyridine (7).

5-Bromo-3-iodopyrazolo[1,5-a]pyridine (4). A solution of 5-bromopyrazolo[1,5a]pyridine ${ }^{1}$ (3) ($282 \mathrm{mg}, 1.43 \mathrm{mmol}$) and NIS ($354 \mathrm{mg}, 1.57 \mathrm{mmol}$) in MeCN (10 mL) was stirred at room temperature for 1 h . The reaction mixture was diluted with EtOAc, washed with saturated aqueous NaHCO_{3}, then brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with hexanes:EtOAc 98:2 to 97:3 to 19:1) gave 4 as a white solid ($410 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.29$ (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (s, $1 \mathrm{H}), 7.66(\mathrm{dd}, J=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 325\left(\mathrm{MH}^{+}\right.$ with $\left.{ }^{81} \mathrm{Br}, 100 \%\right), 323\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 95 \%\right)$.

3-(2-Methyl-5-nitrophenylsulfonyl)propanal (6). A solution of sodium 2-methyl-5nitrobenzenesulfinate (5) ($334 \mathrm{mg}, 1.50 \mathrm{mmol}$) and acrolein ($0.10 \mathrm{~mL}, 1.50 \mathrm{mmol}$) in acetic acid (5 mL) was stirred at room temperature for 18 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed three times with saturated aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed
in vacuo to leave 6 as a white solid ($344 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.75$ (s, 1 H), $8.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.

1-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-3-(2-methyl-5-nitrophenylsulfonyl)propan-1-ol. ${ }^{\mathrm{i}} \mathrm{PrMgCl} . \mathrm{LiCl}(0.25 \mathrm{~mL}$ of a 1.3 M solution in THF) was added to a solution of $\mathbf{4}(70 \mathrm{mg}, 0.22$ mmol) in dry THF (5 mL) at $-40^{\circ} \mathrm{C}$. After 30 mins , a solution of $6(84 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry THF (3 mL) was added. The reaction mixture was slowly warmed to room temperature over 2 h , and then quenched by the addition of 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. This was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvents removed in vacuo. Chromatography (eluting with hexanes: EtOAc 2:1 to 1:1 to 1:2) gave the title compound as a yellow solid ($36 \mathrm{mg}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.86(\mathrm{~d}, \mathrm{~J}=2.4$ Hz, 1H), 8.36 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, $J=7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 (s, 1H), 7.76 (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{td}, J=6.8$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (m, 2H), 2.82 (m, 1H), 2.78 (s, 3H), 2.34 (m, 1H), 2.03 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$. LCMS (APCI $) 456\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$, $454\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 80 \%\right)$.

5-Bromo-3-(3-(2-methyl-5-nitrophenylsulfonyl)prop-1-enyl)pyrazolo[1,5-a]pyridine (7). DBU ($47 \mu \mathrm{~L}, 0.31 \mathrm{mmol}$) was added to a solution of the above alcohol ($36 \mathrm{mg}, 79 \mu \mathrm{~mol}$) and $\mathrm{MsCl}(11 \mathrm{mg}, 96 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$, and stirred at room temperature for 30 mins . The solution was diluted with water and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvents removed in vacuo. Chromatography (eluting with hexanes: EtOAc 3:1 to 2:1) gave 7 as a yellow solid ($17 \mathrm{mg}, 49 \%$). NMR data presented in Table S2. LCMS (APCI^{+}) $438\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right), 436\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 95 \%\right)$. Found: C, 46.85; H, 3.4; N, 9.2. Calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S} .0 .2$ EtOAc: C, 47.1; H, 3.5; N, 9.3\%.

Table S2. NMR assignment for 7 (recorded in CDCl_{3}).

C/H	${ }^{1} \mathrm{H}$ (ppm)	Coupling	NOESY	HMBC	${ }^{13} \mathrm{C}$ (ppm)
2	7.95	s		C3, C3a	141.4
3					108.5
3a					137.8
4	7.65	dd ($\mathrm{J} 2.0,0.7 \mathrm{~Hz}$)	H8	C3a, C4/5, C6	119.1
5					119.1
6	6.87	dd (J 7.3, 2.0 Hz)		C4/5, C7	116.3
7	8.26	dd (J 7.3, 0.7 Hz)		C3a, C4/5, C6	129.7
8	6.52	d (J 15.9 Hz)	H4	C2, C3a, C9, C10	128.9
9	5.92	dt (J 15.9, 7.6 Hz)		C3, C10	111.1
10	4.07	dd (J 7.6, 1.0 Hz)	H17	C8, C9	60.5
11					138.7
12					145.7
13	7.54	d (${ }^{8.4 ~ H z)}$		C11, C15, C17	133.9
14	8.34	dd (J 8.4, 2.4 Hz)		C12, C16	127.9
15					146.4
16	8.85	d (${ }^{\text {2 }} .4 \mathrm{~Hz}$)		C12, C14	126.1
17	2.85	s	H10	C11, C12, C13	20.9

Synthesis of 5-bromo-3-(1-(2-methyl-5-nitrophenylsulfonyl)pyrrolidin-3-yl)pyrazolo[1,5-a]pyridine (16).

Benzyl pyrazolo[1,5-a]pyridin-5-ylcarbamate (9). Benzyl chloroformate ($0.13 \mathrm{~mL}, 0.92$ mmol) was added to a solution of pyrazolo[1,5-a]pyridin-5-amine (8) ${ }^{1}(98 \mathrm{mg}, 0.74 \mathrm{mmol})$ in acetone $(1 \mathrm{~mL})$ and 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.75 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After warming to room temperature, the reaction was stirred for 18 h . The reaction mixture was filtered, washed with THF, and the solvents removed from the filtrate in vacuo. Chromatography (eluting with hexanes: EtOAc 7:3) gave 9 as an off-white solid ($100 \mathrm{mg}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 5 \mathrm{H})$, $6.74(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (dd, $J=7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ (dd, $J=2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H})$. LCMS (APCI ${ }^{+} 268\left(\mathrm{MH}^{+}, 100 \%\right)$.

Benzyl 3-iodopyrazolo[1,5-a]pyridin-5-ylcarbamate (11). NIS (101 mg, 0.45 mmol) was added to a solution of $9(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ and stirred for 1 h . The reaction was diluted with saturated aqueous NaHCO_{3}, and extracted with EtOAc. The organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with hexanes: EtOAc 7:3) gave $\mathbf{1 1}$ as a white powder ($122 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR δ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35$ (m, 5H), 6.90 (s, 1H), 6.81 (dd, $J=7.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (s, 2H). LCMS (APCI $\left.{ }^{+}\right) 394$ ($\mathrm{MH}^{+}, 100 \%$).
tert-Butyl 3-(5-(benzyloxycarbonylamino)pyrazolo[1,5-a]pyridin-3-yl)-2,5-dihydro-1H-pyrrole-1-carboxylate. A mixture of $\mathbf{1 1}(43 \mathrm{mg}, 0.11 \mathrm{mmol})$, tert-butyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,5-dihydro-1H-pyrrole-1-carboxylate ($38 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}(\mathrm{dppf})(9 \mathrm{mg}, 0.01 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ and $\mathrm{EtOH}(2 \mathrm{~mL})$ was purged with N_{2} for 10 mins. Then 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~mL})$ was added and the mixture purged with N_{2} for a further 10 mins before heating to $90^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with saturated aqueous NaHCO_{3} and extracted four times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with hexanes: EtOAc 4:1) gave the title compound as a yellow powder ($19 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$
(d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (s, 1H), 7.44-7.32 (m, 5H), 6.73 (s, 1H), 6.68 (dd, $J=7.5,2.3 \mathrm{~Hz}$, 1 H), 6.39 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.23 (s, 2H), 4.53 (m, 1H), 4.31 (m, 1H), 3.85 (m, 1H), 3.07 (m, 1H), 1.56 (s, 9H).
tert-Butyl 3-(5-aminopyrazolo[1,5-a]pyridin-3-yl)pyrrolidine-1-carboxylate (13). The above compound ($252 \mathrm{mg}, 0.58 \mathrm{mmol}$) was hydrogenated (1 atm .) in DMF (20 mL) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ for 2 h . The reaction mixture was filtered through silica gel, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ and the solvent removed from the filtrate in vacuo. Chromatography (eluting with hexanes: EtOAc $3: 2$ to $1: 1$ to 1:4) gave $\mathbf{1 3}$ ($138 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR δ (400 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) 8.11 (d, $\left.J=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59$ (s, 1H), 6.41 (s, 1H), 6.18 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.20(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$. LCMS (APCI ${ }^{+}$) $303\left(\mathrm{MH}^{+}, 100 \%\right)$.

5-Bromo-3-(1-(2-methyl-5-nitrophenylsulfonyl)pyrrolidin-3-yl)pyrazolo[1,5-a]pyridine (16). A solution of $\mathrm{NaNO}_{2}(48 \mathrm{mg}, 0.70 \mathrm{mmol})$ in water (1 mL) was added to a solution of $13(131 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $47 \% \mathrm{HBr}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 15 mins , a solution of $\mathrm{CuBr}(31$ $\mathrm{mg}, 0.22 \mathrm{mmol})$ in $47 \% \mathrm{HBr}(1 \mathrm{~mL})$ was added, and the stirring continued for a further 15 mins. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 15 mins, then cooled to room temperature and basified to pH 12 with 6 M aqueous NaOH . The solvent was removed in vacuo, then the residue was triturated with EtOAc, the inorganic salts filtered off, and the solvent removed from the filtrate to give the crude product which was taken on immediately to the next step. The crude amine was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{NEt}_{3}(67 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ and 2-methyl-5-nitrobenzenesulfonyl chloride ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$) was added. After 1 h , the solution was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with hexanes: EtOAc 4:1) gave 16 as a brown solid ($10 \mathrm{mg}, 5 \%$). HPLC purity $87 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.75(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.25(\mathrm{~m}, 2 \mathrm{H}), 7.78$ (s, 1H), 7.62 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (dd, $J=7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=9.5,7.5$ Hz, 1H), 3.71-3.54 (m, 3H), 3.37 (dd, $J=9.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (s, 3H), 2.46 (m, 1H), 2.18 (m, 1H). LCMS (APCI^{+}) $465\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 90 \%\right), 467\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. HRMS (FAB^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}$: 465.02321; found (MH^{+}) 465.02240.

Synthesis of 5-bromo-3-(1-(2-methyl-5-nitrophenylsulfonyl)piperidin-3-yl)pyrazolo[1,5a]pyridine (17).

2,2,2-Trifluoro- N -(pyrazolo[1,5-a]pyridin-5-yl)acetamide (10). TFAA ($0.43 \mathrm{~mL}, 3.0$ $\mathrm{mmol})$ was added dropwise to a solution of $\mathbf{8}(270 \mathrm{mg}, 2.03 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.42 \mathrm{~mL}, 3.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ over 5 mins . After 1 h , the reaction mixture was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with hexanes: EtOAc 3:1) gave 10 as a yellow solid ($242 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}$, 1 H), 6.78 (dd, $J=7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (dd, $J=2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 230$ ($\mathrm{MH}^{+}, 100 \%$).

2,2,2-Trifluoro-N-(3-iodopyrazolo[1,5-a]pyridin-5-yl)acetamide (12). Reaction of 10 (97 $\mathrm{mg}, 0.42 \mathrm{mmol}$) by the same method as $\mathbf{1 1}$ gave 12 as a white solid ($125 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 11.59 (s, 1H), 8.75 (dd, $\left.J=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.11$ (s, 1H), 8.02 (dd, $J=2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 356\left(\mathrm{MH}^{+}, 100 \%\right)$.
tert-Butyl 5-(5-aminopyrazolo[1,5-a]pyridin-3-yl)-3,4-dihydropyridine-1(2H)carboxylate. Reaction of $12(567 \mathrm{mg}, 1.60 \mathrm{mmol})$ and tert-butyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydropyridine-1(2H)-carboxylate ($597 \mathrm{mg}, 1.93 \mathrm{mmol}$) by the above Suzuki coupling method, after chromatography (eluting with hexanes: EtOAc 7:3 to 1:1) gave the title compound as a brown oil ($177 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.22 (dd, $J=7.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (m, 2H), 2.45 (m, 2H), 1.97 (m, 2H), 1.53 (s, 9H). LCMS (APCI $\left.{ }^{+}\right) 315\left(\mathrm{MH}^{+}, 100 \%\right)$.

tert-Butyl 3-(5-aminopyrazolo[1,5-a]pyridin-3-yl)piperidine-1-carboxylate (14).

Reaction of the above compound ($177 \mathrm{mg}, 0.56 \mathrm{mmol}$) by the same method as $\mathbf{1 3}$, after chromatography (eluting with hexanes: EtOAc 2:3 to 1:4) gave 14 as a brown powder (57 $\mathrm{mg}, 32 \%) .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.17(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, 6.21 (dd, $J=7.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.10 (m, 2H), 3.87 (m, 2H), 2.79 (m, 1H), 1.80-1.55 (m, 4H), 1.48 (s, 9H). LCMS (APCI $\left.{ }^{+}\right) 317$ (MH $\left.{ }^{+}, 100 \%\right)$.

5-Bromo-3-(1-(2-methyl-5-nitrophenylsulfonyl)piperidin-3-yl)pyrazolo[1,5-a]pyridine
(17). Reaction of $\mathbf{1 4}$ ($57 \mathrm{mg}, 0.18 \mathrm{mmol}$) and 2-methyl-5-nitrobenzenesulfonyl chloride (36 $\mathbf{m g}, 0.15 \mathrm{mmol}$) by the same method as $\mathbf{1 6}$, after chromatography (eluting with hexanes: EtOAc 7:3) gave 17 as a yellow powder ($18 \mathrm{mg}, 21 \%$). HPLC purity 91%. ${ }^{1} \mathrm{H}$ NMR $\delta(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.73 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.26 (dd, $J=7.4,0.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.77 (s, 1H), 7.61 (dd, $J=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=$ $7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{tt}, J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{td}, J=12.0,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.83 (dd, $J=12.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (s, 3H), 2.15 (m, 1H), 1.98-1.65 (m, 3H). LCMS (APCI $) 479\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 90 \%\right), 481\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}$: 479.0383; found (MH^{+}) 479.0408.

Synthesis of 5-bromo-3-(1-(2-methyl-5-nitrophenylsulfonyl)piperidin-4-yl)pyrazolo[1,5a]pyridine (18).

tert-Butyl 4-(5-aminopyrazolo[1,5-a]pyridin-3-yl)-5,6-dihydropyridine-1(2H)carboxylate. Reaction of 12 ($108 \mathrm{mg}, 0.30 \mathrm{mmol}$) and (N-tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridine-4-boronic acid pinacol ester ($131 \mathrm{mg}, 0.43 \mathrm{mmol}$) by the above Suzuki coupling method, after chromatography (eluting with hexanes: EtOAc 7:3) gave tert-butyl 4-(5-aminopyrazolo[1,5-a]pyridin-3-yl)-5,6-dihydropyridine-1(2H)-carboxylate as a white solid ($110 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 6.74$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.23 (dd, $J=7.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.81 (s, 1H), 4.11-3.99 (m, 4H), 3.65 (t, J $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 315\left(\mathrm{MH}^{+}, 100 \%\right)$.
tert-Butyl 4-(5-aminopyrazolo[1,5-a]pyridin-3-yl)piperidine-1-carboxylate (15).
Reaction of the above compound ($137 \mathrm{mg}, 0.44 \mathrm{mmol}$) by the same method as $\mathbf{1 3}$, after chromatography (eluting with hexanes: EtOAc 3:2) gave 15 as a brown oil ($60 \mathrm{mg}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.21$ (dd, $J=$ 7.3, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.21 (m, 2H), 3.80 (br s, 2H), 2.86-2.70 (m, 3H), 1.89 (m, 2H), 1.65 (m, 2H), 1.49 (s, 9H). LCMS (APCI ${ }^{+}$) 317 ($\mathrm{MH}^{+}, 100 \%$).

5-Bromo-3-(1-(2-methyl-5-nitrophenylsulfonyl)piperidin-4-yl)pyrazolo[1,5-a]pyridine
(18). Reaction of $\mathbf{1 5}(254 \mathrm{mg}, 0.80 \mathrm{mmol}$) and 2-methyl-5-nitrobenzenesulfonyl chloride (98 $\mathrm{mg}, 0.42 \mathrm{mmol}$) by the same method as $\mathbf{1 6}$, after chromatography (eluting with hexanes: EtOAc 9:1) gave 18 as a white solid ($75 \mathrm{mg}, 19 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.77$ (d, J $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=7.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, 7.61 (m, 1H), 7.54 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dd, $J=7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (m, 2H), 2.96-2.80
$(\mathrm{m}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H})$. LCMS ($\left.\mathrm{APCI}^{+}\right) 479\left(\mathrm{MH}^{+}\right.$with ${ }^{79} \mathrm{Br}$, $95 \%), 481\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 47.6 ; \mathrm{H}, 4.0$; N, 11.7. Found C, 47.9; H, 4.1; N, 11.4 .

Synthesis of (4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)piperidin-1-yl)(2-methyl-5nitrophenyl)methanone (19).

Reaction of $\mathbf{1 5}$ ($145 \mathrm{mg}, 0.46 \mathrm{mmol}$) and 2-methyl-5-nitrobenzoyl chloride ($57 \mathrm{mg}, 0.29$ mmol) by the same method as 16, after chromatography (eluting with hexanes: EtOAc 3:2) gave 19 as a yellow oil ($81 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.28(\mathrm{dd}, J=7.4,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.17-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.30-2.93(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 3 \mathrm{H})$, 2.20-1.53 (m, 4H). LCMS (APCI $) 443\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 95 \%\right), 445\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}_{3} .0 .15$ hexane: C, 55.0; H, 4.7; N, 12.3. Found C, 55.0; H, 4.6; N, 12.0.

Synthesis of N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)azetidin-3-yl)-2-methyl-5-nitrobenzenesulfonamide (23a).

tert-Butyl 1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)azetidin-3-ylcarbamate (21a). Glacial acetic acid (3 drops) was added to a solution of 3-formylpyrazolo[1,5- a]pyridine-5carbonitrile (20) ${ }^{1}$ ($216 \mathrm{mg}, 1.26 \mathrm{mmol}$) and tert-butyl azetidin-3-ylcarbamate ($260 \mathrm{mg}, 1.51$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The reaction mixture was refluxed for 1 h . Sodium cyanoborohydride ($119 \mathrm{mg}, 1.89 \mathrm{mmol}$) and $\mathrm{EtOH}(5 \mathrm{~mL})$ were added and the mixture stirred at room temperature for 17 h . The solvents were removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99: 1$ to 98:2 to 99.7) gave 21a as a cream-coloured powder ($308 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.47$ (dd, $\left.J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.11$ (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.98(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~m}$, 2H), 2.94 (m, 2H), 1.44 (s, 9H). LCMS (APCI ${ }^{+}$) 328 ($\mathrm{MH}^{+}, 100 \%$).

3-((3-Aminoazetidin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (22a). TFA (1.5 $\mathrm{mL})$ was added to a solution of 21a ($308 \mathrm{mg}, 0.94 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and the mixture stirred at room temperature for 4 h . The solvent was removed in vacuo to leave the trifluoroacetate salt of the amine. This was converted to the free base by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (391 $\mathrm{mg}, 2.82 \mathrm{mmol}$) to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ solution. After 10 mins , water was added, the layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until all amine had been extracted. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent removed in vacuo to give crude 22a as a pale yellow solid (544 mg). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.80 (dd, $J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (s, 1H), 7.12 (dd, $J=7.2$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.45-3.33(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 2 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 228\left(\mathrm{MH}^{+}\right.$, 100\%).

N-(1-((5-Cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)azetidin-3-yl)-2-methyl-5-

 nitrobenzenesulfonamide (23a). A solution of 22a (0.47 mmol), 2-methyl-5nitrobenzenesulfonyl chloride ($111 \mathrm{mg}, 0.47 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.13 \mathrm{~mL}, 0.93 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was stirred at room temperature for 24 h . The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until all of the product had been extracted. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 100: 0$ to $97.5: 2.5$) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes gave 23a as a yellow powder (50 mg , 25% over 2 steps). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.80 (dd, $J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.64 (br s, 1H), 8.50 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.40 (dd, $J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.34 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (s, 1 H), 7.69 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (m, 1H), 3.69 (s, 2H), 3.28 $(\mathrm{m}, 2 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 427\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S} .0 .1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 52.7; H, 4.2; N, 19.3. Found C, 53.0; H, 4.25; N, 19.2.Synthesis of (S)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-yl)-2-methyl-5-nitrobenzenesulfonamide (23b).

(S)-tert-Butyl 1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-ylcarbamate
(21b). Reaction of $20(200 \mathrm{mg}, 1.17 \mathrm{mmol})$ and ((S)-tert-butyl pyrrolidin-3-ylcarbamate (260 $\mathrm{mg}, 1.40 \mathrm{mmol}$) by the same method as 21a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:

MeOH 100:0 to 97.5:2.5) gave 21b as a pale yellow powder ($338 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR δ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 6.87$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}$, $1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right)$ $342\left(\mathrm{MH}^{+}, 100 \%\right)$.
(S)-3-((3-Aminopyrrolidin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile trifluoroacetate (22b). Reaction of 21b ($338 \mathrm{mg}, 0.99 \mathrm{mmol}$) by the same method as 22a without conversion to the free base gave crude trifluoroacetate salt 22b as a yellow gum (675 mg). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) $8.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.25$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.60-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}$, 1H). LCMS (APCI $\left.{ }^{+}\right) 242\left(\mathrm{MH}^{+}, 100 \%\right)$.
(S)-N-(1-((5-Cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-yl)-2-methyl-5nitrobenzenesulfonamide (23b). Reaction of $\mathbf{2 2 b}(0.25 \mathrm{mmol})$ by the same method as 23a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 97.5: 2$.5) gave $\mathbf{2 3 b}$ as a yellow powder ($49 \mathrm{mg}, 45 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) 8.70-8.65 (m, 2H), 8.328.28 (m, 2H), 8.07 (s, 1H), 7.57 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (dd, $J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (br s, $1 \mathrm{H}), 4.08-3.81(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.48(\mathrm{~m}, 7 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$. LCMS (APCI $\left.{ }^{+}\right) 441$ $\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S} .0 .4 \mathrm{CH}_{2} \mathrm{Cl}_{2} .0 .6 \mathrm{MeOH}: \mathrm{C}, 51.1 ; \mathrm{H}, 4.7 ; \mathrm{N}, 17.0$. Found C, 51.2; H, 4.6; N, 16.8.

Synthesis of (R)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-yl)-2-methyl-5-nitrobenzenesulfonamide (23c).

(R)-tert-Butyl 1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-ylcarbamate (21c). Reaction of $20(209 \mathrm{mg}, 1.22 \mathrm{mmol}$) and (R)-tert-butyl pyrrolidin-3-ylcarbamate (250 $\mathrm{mg}, 1.34 \mathrm{mmol}$) by the same method as 21a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH 100:0 to 97:3) gave 21c as a pale yellow powder ($311 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.50(\mathrm{dd}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.11(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.2,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.93$ (s, 2H), 3.03-2.26 (m, 5H), 1.66-1.38 (m, 10H). LCMS (APCI^{+}) 342 ($\mathrm{MH}^{+}, 100 \%$).
(R)-3-((3-Aminopyrrolidin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (22c). Reaction of 21c ($156 \mathrm{mg}, 0.46 \mathrm{mmol}$) by the same method as 22a, gave crude 22c as a pale yellow solid (399 mg). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.84 (dd, $J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.54
(dd, $J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{ABq}, \mathrm{app} . J=$ $20.5,13.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.64(\mathrm{~m}, 1 \mathrm{H}), 2.76$ (td, $J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}$, 1H), 2.13 (m, 1H), 1.65 (m, 1H). LCMS (APCI $) 242\left(\mathrm{MH}^{+}, 100 \%\right)$.
(R)-N-(1-((5-Cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-yl)-2-methyl-5nitrobenzenesulfonamide (23c). Reaction of 22c (0.46 mmol) by the same method as 23a, after chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99.75: 0.25$) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{-}{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{O}$ gave 23c as yellow crystals ($30 \mathrm{mg}, 15 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.79(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=7.2,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.88 (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.93 (br d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{ABq}, \mathrm{app} . J=$ $25.0,13.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.82(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=9.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, $J=$ $9.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H})$. LCMS (APCI $\left.{ }^{+}\right) 441\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S} .0 .1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 53.8; H, 4.5; N, 18.7. Found C, 53.55 ; H, 4.6; N, 18.7.

Synthesis of (S)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-yl)-2-methyl-5-nitrobenzenesulfonamide (23d).

(S)-tert-Butyl 1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-ylcarbamate
(21d). Reaction of $20(183 \mathrm{mg}, 1.07 \mathrm{mmol})$ and (S)-tert-butyl piperidin-3-ylcarbamate (218 $\mathrm{mg}, 1.09 \mathrm{mmol}$) by the same method as 21a, after chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH 100:0 to 99.7:0.3) gave 21d as a pale yellow foam ($216 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.48(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (s, $1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79-3.61(\mathrm{~m}, 3 \mathrm{H}), 2.66-2.18(\mathrm{~m}, 6 \mathrm{H})$, 1.75-1.62 (m, 2H), 1.42 (s, 9H). LCMS (APCI $\left.{ }^{+}\right) 356$ ($\mathrm{MH}^{+}, 100 \%$).
(S)-3-((3-Aminopiperidin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (22d). Reaction of 21d ($209 \mathrm{mg}, 0.59 \mathrm{mmol}$) by the same method as 22a, after chromatography (on alumina, eluting with EtOAc: $\mathrm{MeOH} 95: 5$ to 9:1 to EtOAc: MeOH:c. $\mathrm{NH}_{3} 88: 12: 0.2$) gave 22d as a pale yellow solid ($111 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.82 (dd, $J=$ $7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.70 (ABq, app. $J=23.1,13.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.58(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.55(\mathrm{~m}, 3 \mathrm{H})$, $1.42(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~m}, 1 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 256\left(\mathrm{MH}^{+}, 100 \%\right)$.
(S)-N-(1-((5-Cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-yl)-2-methyl-5nitrobenzenesulfonamide (23d). Reaction of $\mathbf{2 2 d}(56 \mathrm{mg}, 0.22 \mathrm{mmol}$) by the same method as 23a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99: 1$ to $98: 2$ to $97: 3$ to $96: 4$ to 99.5 to 94:6) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{O}$ gave $\mathbf{2 3 d}$ as a yellow powder ($40 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 8.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}$, 1 H), 8.33 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.18 (br s, 1H), 7.62 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22 (dd, $J=$ $7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.39(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.65(\mathrm{~m}, 5 \mathrm{H}), 2.04-1.39(\mathrm{~m}$, 4H). LCMS (APCI ${ }^{+} 455\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S} .0 .6 \mathrm{CH}_{2} \mathrm{Cl}_{2} .0 .4 \mathrm{H}_{2} \mathrm{O}$: C, 50.6; H, 4.7; N, 16.4. Found C, 50.5; H, 4.9; N, 16.7.

Synthesis of (R)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-yl)-2-methyl-5-nitrobenzenesulfonamide (23e).

(R)-tert-Butyl 1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-ylcarbamate (21e). Reaction of 20 ($200 \mathrm{mg}, 1.17 \mathrm{mmol}$) and (R)-tert-butyl piperidin-3-ylcarbamate (280 $\mathrm{mg}, 1.40 \mathrm{mmol}$) by the same method as 21a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH 99.7:0.3 to 99.4:0.6 to 98:2) gave 21e as a pale yellow foam (192 mg, 46\%). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49$ (dd, $\left.J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.07$ (dd, $\left.J=1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.98$ (s, 1H), 6.86 (dd, $J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79-3.62(\mathrm{~m}, 3 \mathrm{H}), 2.67-2.18(\mathrm{~m}, 6 \mathrm{H})$, 1.78-1.62 (m, 2H), 1.43 (s, 9H). LCMS (APCI ${ }^{+} 356\left(\mathrm{MH}^{+}, 100 \%\right)$.
(R)-3-((3-Aminopiperidin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (22e). Reaction of 21e ($192 \mathrm{mg}, 0.54 \mathrm{mmol}$) by the same method as 22a, after chromatography (on alumina, eluting with EtOAc: $\mathrm{MeOH} 95: 5$ to 90:10 to EtOAc: MeOH : c. NH_{3} 88:12:0.2) gave 22e as a pale yellow solid ($91 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.82 (dd, $J=7.2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.47 (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (ABq, app. $J=23.2,13.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.75-2.55 (m, 3H), $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.42$ (m, 1H), $0.90(\mathrm{~m}, 1 \mathrm{H}) . \operatorname{LCMS}\left(\mathrm{APCI}^{+}\right) 256\left(\mathrm{MH}^{+}, 100 \%\right)$.
(R)-N-(1-((5-Cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-yl)-2-methyl-5nitrobenzenesulfonamide (23e). Reaction of $22 \mathrm{e}(45 \mathrm{mg}, 0.18 \mathrm{mmol})$ by the same method as 23a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99: 1$ to $98: 2$) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{O}$ gave $\mathbf{2 3 e}$ as a yellow powder ($43 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR δ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{dd}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ (dd, $J=8.3$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (dd, $J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (s, 1H), 7.45 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (dd, J
$=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.67(\mathrm{ABq}, \mathrm{app} . J=24.4,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H})$, $2.68(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 4 \mathrm{H})$. LCMS (APCI $) 455\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S} .0 .05 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 55.1; H, 4.9; N, 18.3. Found C, 54.95; H, 5.1; N, 18.3.

Synthesis of N-1-(5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl-4-piperidinyl-2-methyl-5nitrobenzenesulfonamide (23f).

tert-Butyl 1-(5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl-4-piperidinylcarbamate (21f). Reaction of 20 ($50 \mathrm{mg}, 0.29 \mathrm{mmol}$) and 4-(N -Boc-amino)piperidine ($70 \mathrm{mg}, 0.35 \mathrm{mmol}$) by the same method as 21a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 100: 0$ to 96:4) gave 21 f as a pale yellow solid ($73 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) 8.68 (dd, $J=$ $7.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~m}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.08$ (dd, $J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (m, 2H), 3.41 (m, 1H), 3.06 (m, 2H), 2.45 (m, 2H), 1.93 (m, 2H), 1.54 (m, 2H), 1.42 (s, 9H). LCMS (APCI ${ }^{+}$) 356 ($\mathrm{MH}^{+}, 100 \%$).

3-(4-Amino-1-piperidinyl)methylpyrazolo[1,5-a]pyridine-5-carbonitrile (22f). Reaction of $21 \mathrm{f}(180 \mathrm{mg}, 0.51 \mathrm{mmol}$) by the same method as 22a, after chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH 100:0 to $90: 10$ to EtOAc: $\mathrm{MeOH} 90: 10$) gave 22 f as a pale yellow solid (114 mg, 88\%). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.81 (dd, $J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.46 (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09 (s, 1H), 7.12 (dd, $J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (s, 2H), 2.74 (m, 2H), 1.95 (dt, $J=11.4,2.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.63-1.66 (m, 3H), 1.16-1.26 (m, 3H). LCMS (APCI^{+}) $256\left(\mathrm{MH}^{+}, 100 \%\right)$.

N-1-(5-Cyanopyrazolo[1,5-a]pyridin-3-yl)methyl-4-piperidinyl-2-methyl-5-

 nitrobenzenesulfonamide (23f). Reaction of $\mathbf{2 2 f}(57 \mathrm{mg}, 0.22 \mathrm{mmol}$) by the same method as 23a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 100: 0$ to $97: 3$) gave $\mathbf{2 3 f}$ as a cream-coloured solid ($67 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.83(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.47 (dd, $J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.29 (dd, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.94 (s, 1H), 7.51 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.66 (s, 2H), 3.28 (m, 1H), 2.77 ($\mathrm{s}, 3 \mathrm{H}$), 2.74 (m, 2H), 2.06 (t, $J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~m}$,2H), 1.49 (m, 2H). LCMS (APCI ${ }^{+} 455\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S} .0 .17$ hexane: C, 56.4; H, 5.2; N, 17.9. Found C, 56.3; H, 5.3; N, 17.7.

Synthesis of 3-((4-(2-methyl-5-nitrophenylsulfonyl)piperazin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (23g).

tert-Butyl 4-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperazine-1-carboxylate (21g). Reaction of $20(30 \mathrm{mg}, 0.18 \mathrm{mmol})$ and tert-butyl piperazine-1-carboxylate (53 mg , 0.28 mmol) by the same method as 21a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ 99:1 to 95:5) gave 21g ($42 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.48$ (dd, $J=7.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, 2 H), 3.43 (m, 4H), 2.39 (m, 4H), 1.46 (s, 9H). LCMS (APCI ${ }^{+} 342\left(\mathrm{MH}^{+}, 100 \%\right)$.

3-(Piperazin-1-ylmethyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (22g). Reaction of 21g ($174 \mathrm{mg}, 0.51 \mathrm{mmol}$) by the same method as 22a, gave crude $\mathbf{2 2 g}$ as a pale yellow solid (62 $\mathrm{mg}, 50 \%) .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.48$ (dd, $J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (dd, $J=1.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (s, 1H), 6.86 (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.71(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{~m}$, 4H). LCMS (APCI $\left.{ }^{+}\right) 242\left(\mathrm{MH}^{+}, 100 \%\right)$.

3-((4-(2-Methyl-5-nitrophenylsulfonyl)piperazin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5carbonitrile ($\mathbf{2 3 g}$). Reaction of $\mathbf{2 2 g}(20 \mathrm{mg}, 0.083 \mathrm{mmol}$) by the same method as 23a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99.5: 0.5$ to 99:1) gave 23g as a yellow solid ($22 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.72$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.48 (dd, $J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.30 (dd, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.03 (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (s, 1 H), 7.52 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.86 (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 4 \mathrm{H}), 2.74$ (s, 3H), $2.55(\mathrm{~m}, 4 \mathrm{H})$. LCMS (APCI $\left.{ }^{+}\right) 156\left(\mathrm{MH}^{+}\right.$- piperazinyl sulfonamide, 100\%), 441 ($\mathrm{MH}^{+}, 60 \%$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}$: C, 54.5; H, 4.6; N, 19.1. Found C, 54.6; H, 4.6; N, 19.2.

Synthesis of 3-((4-(2-methyl-5-nitrophenylsulfonyl)-1,4-diazepan-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (23h).

tert-Butyl 4-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)-1,4-diazepane-1-carboxylate (21h). Reaction of $20(150 \mathrm{mg}, 0.88 \mathrm{mmol})$ and 1-Boc-hexahydro-1,4-diazepine (0.20 mL , 1.05 mmol) by the same method as 21a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ 100:0 to 99:1 to 98:2) gave $\mathbf{2 1 h}$ as a pale yellow solid ($309 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.50(\mathrm{dd}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=7.2,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88$ (s, 2H), 3.59-3.41 (m, 4H), 2.78-2.62 (m, 4H), 1.87 (m, 2H), 1.47 (s, 9H). LCMS (APCI ${ }^{+} 356\left(\mathrm{MH}^{+}, 100 \%\right)$.

3-((1,4-Diazepan-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile trifluoroacetate

 (22h). Reaction of $\mathbf{2 1 h}(210 \mathrm{mg}, 0.59 \mathrm{mmol})$ by the same method as 22a without conversion to the free base, gave crude trifluoroacetate salt $\mathbf{2 2 h}$ as a pale yellow foam (265 mg). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 8.73$ (dd, $J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.43 (dd, $J=1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.24(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.23(\mathrm{~m}, 8 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H})$. LCMS (APCI ${ }^{+}$) $256\left(\mathrm{MH}^{+}, 100 \%\right)$.
3-((4-(2-Methyl-5-nitrophenylsulfonyl)-1,4-diazepan-1-yl)methyl)pyrazolo[1,5-

 a]pyridine-5-carbonitrile (23h). Reaction of $\mathbf{2 2 h}(133 \mathrm{mg})$ by the same method as 23a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH 100:0 to 99.5:0.5 to 99:1) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{O}$ gave $\mathbf{2 3 h}$ as a yellow powder ($52 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR δ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (s, 1H), 7.51 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.87 (dd, J $=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 4 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~m}$, 2H). LCMS (APCI $\left.{ }^{+}\right) 455\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 55.5 ; \mathrm{H}, 4.9$; N, 18.5. Found C, 55.3; H, 5.1; N, 18.5.
Synthesis of N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)azetidin-3-yl)-2-methyl-

 5-nitrobenzamide (24a).

A solution of 22a (0.47 mmol), 2-methyl-5-nitrobenzoyl chloride ($94 \mathrm{mg}, 0.47 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.13 \mathrm{~mL}, 0.93 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was stirred at room temperature for 24 h . The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until all of the product had been extracted. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 100: 0$ to 97:3) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$-hexanes gave $\mathbf{2 4 a}$ as a cream-coloured powder (37 mg , 20% over 2 steps from 21a). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.23 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.18 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.00 (s, 1H), 7.41 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H})$,
3.84 (s, 2H), 3.69 (m, 2H), 3.11 (m, 2H), 2.55 (s, 3H). LCMS (APCI ${ }^{+} 391\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3} .0 .25 \mathrm{H}_{2} \mathrm{O}$: C, 60.8; H, 4.7; N, 21.2. Found C, 60.8; H, 4.6; N, 21.0.

Synthesis of (S)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-yl)-2-methyl-5-nitrobenzamide (24b).

Reaction of 22b (0.25 mmol) by the same method as 24a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH 99:1 to $97.5: 2.5$) gave $\mathbf{2 4 b}$ as a white powder ($32 \mathrm{mg}, 32 \%$ over 2 steps from 21b). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.04$ (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.01 (s, 1H), 7.39 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.86 (dd, $J=7.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.13$ (br d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.65(\mathrm{~m}, 1 \mathrm{H}), 3.85$ (ABq, app. $J=14.4,13.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.93 (td, $J=8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74-2.67 (m, 2H), $2.52(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H})$. LCMS (APCI^{+}) $405\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} .0 .05 \mathrm{CH}_{2} \mathrm{Cl}_{2} .0 .05$ hexanes: C, 62.1; H, 5.1; N, 20.3. Found C, 62.4; H, 5.15; N, 20.0.

Synthesis of (R)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)pyrrolidin-3-yl)-2-methyl-5-nitrobenzamide (24c).

Reaction of 22c (0.23 mmol) by the same method as 24a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99: 1$ to 98:2 to 97:3) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-$ hexanes gave $\mathbf{2 4 c}$ as a yellow powder ($22 \mathrm{mg}, 24 \%$ over 2 steps from 21c). ${ }^{1} \mathrm{H}$ NMR $\delta(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.05$ (dd, $J=1.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{br} \mathrm{d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.66 (m, 1H), 3.85 (ABq, app. $J=15.0,13.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.94(\mathrm{td}, J=8.7,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.75-2.67 (m, 2H), $2.52(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H})$. LCMS (APCI $\left.{ }^{+}\right) 405\left(\mathrm{MH}^{+}\right.$, 100\%). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$: C, 62.4; H, 5.0; N, 20.8. Found C, 62.3; H, 5.3; N, 20.6.

Synthesis of (S)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-yl)-2-methyl-5-nitrobenzamide (24d).

Reaction of 22d ($56 \mathrm{mg}, 0.22 \mathrm{mmol}$) by the same method as 24a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99: 1$ to 98:2) followed by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{-}{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{O}$ gave $\mathbf{2 4 d}$ as a white powder ($46 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49(\mathrm{dd}, J=7.2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.17 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (s, 1H), 7.98 (dd, J $=1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.29(\mathrm{~m}, 1 \mathrm{H}), 3.73$ (ABq, app. $J=37.8,13.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.69-2.28 (m, 7H), 1.83-1.64 (m, 4H). LCMS (APCI $\left.{ }^{+}\right) 419\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3}$: C, 63.15; H, 5.3; N, 20.1. Found C, 63.1; H, 5.3; N, 20.15.

Synthesis of (R)-N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-3-yl)-2-methyl-5-nitrobenzamide (24e).

Reaction of $22 e(45 \mathrm{mg}, 0.18 \mathrm{mmol})$ by the same method as 24a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99: 1$ to $98: 2$) gave $\mathbf{2 4 e}$ as a cream-coloured powder (45 mg , 61%). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.50(\mathrm{dd}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (dd, $J=8.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (s, 1H), 7.98 (m, 1H), $7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{ABq}$, app. $J=38.1,13.8 \mathrm{~Hz}$, 2 H), 2.71-2.52 (m, 3H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 4 \mathrm{H})$. LCMS (APCI') 419 ($\mathrm{MH}^{+}, 100 \%$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3} .0 .05 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 62.65; H, 5.3; N, 19.9. Found C, 62.5; H, 5.3; N, 19.6.

Synthesis of N-(1-((5-cyanopyrazolo[1,5-a]pyridin-3-yl)methyl)piperidin-4-yl)-2-methyl-5-nitrobenzamide (24f).

Reaction of 22 f ($57 \mathrm{mg}, 0.22 \mathrm{mmol}$) by the same method as 24a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 97: 3$), then recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes gave $\mathbf{2 4 f}$ as a yellow solid ($42 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.85 (dd, $J=$ $7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.51(\mathrm{dd}, J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J=8.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.07$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.2$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68-3.75 (m, 3H), $2.84(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.50$ (m, 2H). LCMS (APCI $) 419\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3}: \mathrm{C}, 63.15$; H, 5.3; N, 20.1. Found C, 63.1; H, 5.5; N, 20.0.

Synthesis of 3-((4-(2-methyl-5-nitrobenzoyl)piperazin-1-yl)methyl)pyrazolo[1,5-a]pyridine-5-carbonitrile (24g).

Reaction of $\mathbf{2 2 g}(40 \mathrm{mg}, 0.17 \mathrm{mmol})$ by the same method as 24a, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 99: 1$ to $97: 3$) gave $\mathbf{2 4 g}$ as a yellow solid (43 mg , $64 \%) .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.50(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dd, $J=8.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.10 (dd, $J=1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (s, 1H), 7.40 (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.43$ (s, 3H), $2.39(\mathrm{~m}, 2 \mathrm{H})$. LCMS ($\left.\mathrm{APCI}^{+}\right) 156\left(\mathrm{MH}^{+}\right.$- piperazinyl amide, $\left.100 \%\right), 405\left(\mathrm{MH}^{+}\right.$, 30%). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$: C, 62.4; H, 5.0; N, 20.8. Found C, 62.3; H, 4.9; N, 20.5.

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-(2-methyl-5-nitrophenyl)thiazole (37).

2-Methyl-5-nitrobenzamide. A suspension of 2-methyl-5-nitrobenzoic acid (25) (295 mg, 1.63 mmol) in $\mathrm{SOCl}_{2}(5 \mathrm{~mL})$ was refluxed for 15 mins . The resulting solution was concentrated in vacuo, the cream coloured semi-solid was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ and then conc. aqueous $\mathrm{NH}_{3}(4 \mathrm{~mL})$ was added. The reaction was stirred for 5 mins, then the white precipitate was collected by filtration, washed with water and ice cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried to give the title compound as a white solid ($293 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR δ ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) 8.18 (dd, $J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.16 (s, 1H), 7.99 (br s, 1H), 7.63 (br s, $1 \mathrm{H}), 7.55$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$. LCMS ($\left.\mathrm{APCI}^{+}\right) 181\left(\mathrm{MH}^{+}, 100 \%\right)$.

2-Methyl-5-nitrobenzothioamide (29). A solution of the above amide ($150 \mathrm{mg}, 0.83 \mathrm{mmol}$) and Lawesson's reagent ($673 \mathrm{mg}, 1.66 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was refluxed overnight. The solvent was removed in vacuo, then chromatography (eluting with EtOAc: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $15: 85$) gave 29 as pale green solid ($69 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 10.25 (br s, 1H), 9.72 (br s, 1H), 8.10 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$. LCMS (APCI $\left.{ }^{+}\right) 197\left(\mathrm{MH}^{+}, 100 \%\right)$.

2-Bromo-1-(5-bromopyrazolo[1,5-a]pyridin-3-yl)ethanone hydrobromide (36). A solution of $\mathrm{Br}_{2}(805 \mathrm{mg}, 5.04 \mathrm{mmol})$ in $\mathrm{AcOH}(5 \mathrm{~mL})$ was added to a suspension of 1-(5-bromopyrazolo[1,5-a]pyridin-3-yl)ethanone ${ }^{1}$ (35) (1.21g, 5.04 mmol) in $30 \% \mathrm{HBr} / \mathrm{AcOH}$ (15 mL). The orange solution was stirred at room temperature overnight and then diluted with cold $\mathrm{Et}_{2} \mathrm{O}$. The resulting precipitate was filtered off, washed with ice cold EtOH then $\mathrm{Et}_{2} \mathrm{O}$ to give 36 as a cream coloured solid ($1.52 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.60(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.40 (m, 2H), 7.16 (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (s, 2H). LCMS (APCI $\left.{ }^{+}\right) 317$ (MH^{+}with ${ }^{79} \mathrm{Br}_{2}, 80 \%$), 319 (MH^{+}with ${ }^{79} \mathrm{Br}^{81} \mathrm{Br}, 100 \%$), 321 (MH^{+}with ${ }^{81} \mathrm{Br}_{2}, 60 \%$).

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-2-(2-methyl-5-nitrophenyl)thiazole (37). A solution of 36 ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $29(32 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ was heated at $40^{\circ} \mathrm{C}$ for 18 hrs. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and then the precipitate filtered off and dried to leave 37 as a white solid ($25 \mathrm{mg}, 40 \%$). HPLC purity 99.5%. Mp 239-242 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 8.74 (dd, $\left.J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.67(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.65(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.5,2.5,1 \mathrm{H}), 8.24(\mathrm{~s}$, 1 H), 7.75 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (dd, $J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(100$

MHz, d_{6}-DMSO) 164.1 (C), 148.2 (C), 146.1 (C), 143.8 (C), 141.6 (CH), 136.9 (C), 133.3 (CH), 133.2 (C), 130.5 (CH), 123.8 (CH), 123.7 (CH), $120.4(\mathrm{CH}), 118.4$ (C), $116.9(\mathrm{CH})$, $113.9(\mathrm{CH}), 106.8(\mathrm{C}), 21.7\left(\mathrm{CH}_{3}\right)$. LCMS $\left(\mathrm{APCI}^{+}\right) 415\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 417\left(\mathrm{MH}^{+}\right.$ with ${ }^{81} \mathrm{Br}, 90 \%$). HRMS (ESI $)$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}$: 414.9859; found (MH^{+}) 414.9858.

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-(2-methyl-5-nitrobenzyl)thiazole

 (38).

2-(2-Methyl-5-nitrophenyl)acetonitrile. KCN (136 mg, 2.09 mmol) and 2-(chloromethyl)-1-methyl-4-nitrobenzene ${ }^{2}$ (26) ($128 \mathrm{mg}, 0.7 \mathrm{mmol}$) were stirred overnight in DMSO (5 mL) at room temperature. The reaction was then poured into ice-water (100 mL), the resulting precipitate collected by filtration, washed with water and dried to give the title compound as a white solid ($110 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) $8.26(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (dd, $J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (d, $J=8.3,1 \mathrm{H}$), 4.19 ($\mathrm{s}, 2 \mathrm{H}$), 2.44 (s, 3H). LCMS (APCI) 175 ($\mathrm{M}-\mathrm{H}^{+}, 100 \%$).

2-(2-Methyl-5-nitrophenyl)ethanethioamide (30). $\mathrm{P}_{2} \mathrm{~S}_{5}$ ($252 \mathrm{mg}, 1.14 \mathrm{mmol}$) was stirred in EtOH (10 mL) for 1 h until it had dissolved, and then the above nitrile ($77 \mathrm{mg}, 0.437 \mathrm{mmol}$) was added and the reaction mixture refluxed for 6 h . The reaction was allowed to cool and subsequently purged with nitrogen for 15 mins and the solvent removed in vacuo.
Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 30 as a pale tan oil ($54 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR δ ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) 8.14 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.02 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (d, $J=$ 8.4, 1H), 7.53 (br s, 1H), 7.00 (br s, 1H), 3.98 (s, 2H), 2.41 (s, 3H). LCMS (APCI) 209 (M$\left.\mathrm{H}^{+}, 100 \%\right)$.

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-2-(2-methyl-5-nitrobenzyl)thiazole (38). A solution of $36(60 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $30(31.5 \mathrm{mg}, 0.15 \mathrm{mmol})$ in EtOH (10 mL) was heated at $40^{\circ} \mathrm{C}$ for 18 hrs . The reaction mixture was poured onto ice, extracted three times with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc $85: 15$) followed by a second chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc 95:5) gave 38 as a yellow solid ($10 \mathrm{mg}, 16 \%$). HPLC purity 92.3%. ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.33-8.28(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.2(\mathrm{C}), 147.8(\mathrm{C}), 146.2(\mathrm{C})$, 144.4 (C), 140.4 (CH), 137.3 (C), 130.9 (CH), 130.8 (C), 128.7 (CH), 124.4 (CH), 122.1 $(\mathrm{CH}), 121.1(\mathrm{CH}), 117.8(\mathrm{C}), 115.6(\mathrm{CH}), 110.0(\mathrm{CH}), 107.0(\mathrm{C}), 36.8\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right)$.

LCMS (APCI $\left.{ }^{+}\right) 429\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 431\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 80 \%\right)$. HRMS (APCI^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}$: 429.0015; found (MH^{+}) 429.0002.

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-((2-methyl-5-nitrobenzyl)thio)thiazole (39).

2-(Bromomethyl)-1-methyl-4-nitrobenzene. Chloride 26 ($50 \mathrm{mg}, 0.27 \mathrm{mmol}$) and LiBr ($467 \mathrm{mg}, 5.39 \mathrm{mmol}$) were refluxed in THF (75 mL) for 24 h . The solvent was removed in vacuo, and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The phases were separated and the organic layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ to give the title compound as a white solid (59 $\mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.19(\mathrm{~d}, J=2.4,1 \mathrm{H}), 8.07$ (dd, $J=8.4,2.4 \mathrm{~Hz}$, 1 H), 7.36 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.53 ($\mathrm{s}, 2 \mathrm{H}$), 2.52 ($\mathrm{s}, 3 \mathrm{H}$).

2-Methyl-5-nitrobenzyl carbamodithioate (31). A solution of the above bromide (200 mg , 0.87 mmol) and ammonium dithiocarbamate ($475 \mathrm{mg}, 4.3 \mathrm{mmol}$) in EtOH (20 mL) was refluxed overnight. The reaction was cooled to room temperature then poured onto ice. The resulting solid was filtered, then purified twice by chromatography (on alumina, firstly eluting with EtOAc to EtOAc: AcOH 98:2, and secondly eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOH} 9: 1$) gave 31 as yellow needles ($189 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 9.70 (br, 1H), 9.37 (br, 1H), 8.24 (s, 1H), 8.03 (m, 1H), 7.47 (m, 1H), 4.55 (s, 2H), 2.58 (s, 3H). LCMS (APCI^{+}) $243\left(\mathrm{MH}^{+}, 100 \%\right)$.

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-2-((2-methyl-5-nitrobenzyl)thio)thiazole (39). Reaction of 36 ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $31(43 \mathrm{mg}, 0.18 \mathrm{mmol})$ by the same method as 37 , gave 39 as a pale yellow solid ($50 \mathrm{mg}, 72 \%$). HPLC purity 99.7%. ${ }^{1} \mathrm{H}$ NMR $\delta(400 \mathrm{MHz}$, CDCl_{3}) 8.31 (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.27 (s, 1H), 8.25 (d, J $=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.89$ (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.6$ (C), 148.6 (C), 146.5 (C), 144.7 (C), 141.2 (CH), 137.7 (C), 136.2 (C), 131.4 (CH), 129.4 (CH), 124.7 (CH), 122.8 (CH), 121.3 (CH), 118.5 (C), 116.2 (CH), 111.2 (CH), 107.3 (C), 36.2 $\left(\mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{3}\right)$. LCMS (APCI $) 461\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 463\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 80 \%\right)$. HRMS (APCI $)$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: 460.9736; found $\left(\mathrm{MH}^{+}\right) 460.9739$.

Synthesis of N-(4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)-2-methyl-5-nitrobenzenesulfonamide (40).

N-Carbamothioyl-2-methyl-5-nitrobenzenesulfonamide (32). 2-Methyl-5-nitrobenzenesulfonyl chloride (27) ($2.35 \mathrm{~g}, 10 \mathrm{mmol}$) was added in small portions to a solution of $\mathrm{Na}_{2} \mathrm{NCN}(1.01 \mathrm{~g}, 11 \mathrm{mmol})$ in water $(40 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ over 1 h . The reaction was stirred for an additional 1 h then cooled to room temperature. Next $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3.7 \mathrm{~g}, 15 \mathrm{mmol})$ was added in one portion, followed by the dropwise addition of $4.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature, then the resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and the precipitate collected by filtration. The solid was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{-}$ $\mathrm{MeOH} 9: 1$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo to give 32 as an orange solid ($700 \mathrm{mg}, 25 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 12.00 (br s, 1H) 8.98 (s, 1H), 8.72 (d, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{~s}$, 3H). LCMS (APCI $\left.{ }^{+}\right) 276\left(\mathrm{MH}^{+}, 100 \%\right)$.

N-(4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)-2-methyl-5-nitrobenzene-

 sulfonamide (40). Reaction of 36 ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $32(49.5 \mathrm{mg}, 0.18 \mathrm{mmol})$ by the same method as $\mathbf{3 7}$, gave 40 as an orange solid ($50 \mathrm{mg}, 67 \%$). HPLC purity 98.2%. Mp 250$254{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) $13.36(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=7.3,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=8.4,1 \mathrm{H}$), 7.18 (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(100$ MHz, d ${ }_{6}$-DMSO) 168.7 (C), 145.2 (C), 144.6 (C), 144.2 (C), 144.2 (CH), 136.9 (C) 133.9 (CH), 130.6 (CH), 129.0 (C), 126.4 (CH), 122.2 (CH), 119.6 (C), 119.4 (CH), $116.8(\mathrm{CH})$, $101.5(\mathrm{CH}), 101.1(\mathrm{C}), 20.2\left(\mathrm{CH}_{3}\right)$. LCMS $\left(\mathrm{APCI}^{+}\right) 494\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 85 \%\right), 496\left(\mathrm{MH}^{+}\right.$ with ${ }^{81} \mathrm{Br}, 100 \%$). HRMS (ESI^{+}) Calcd for $\mathrm{C}_{17} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{5} \mathrm{NaO}_{4} \mathrm{~S}_{2}$: 515.9406; found (MNa^{+}) 515.9406.Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-(((2-methyl-5nitrophenyl)sulfonyl)methyl)thiazole (41).

2-((2-Methyl-5-nitrophenyl)sulfonyl)acetonitrile. 27 ($5.0 \mathrm{~g}, 21 \mathrm{mmol}$) was added in small portions to a stirred suspension of $\mathrm{Na}_{2} \mathrm{SO}_{3}(5.3 \mathrm{~g}, 21 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(3.57 \mathrm{~g}, 42.5$ mmol) in water (40 mL) over 1 h . Stirring was continued overnight, followed by removal of
the solvent in vacuo. The yellow solid was triturated with $\mathrm{MeOH}(100 \mathrm{~mL})$ and filtered through celite. The solvent was removed from the filtrate in vacuo, and then the crude sulfinate salt was reacted with bromoacetonitrile ($3.36 \mathrm{~g}, 28 \mathrm{mmol}$) in DMF (50 mL) at room temperature overnight. The solvent was removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the title compound as white solid $(1.00 \mathrm{~g}, 20 \%) .{ }^{1} \mathrm{H}$ NMR $\delta(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.65(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (s, 2H), 2.80 (s, 3H). LCMS (APCI) 239 ($\mathrm{M}-\mathrm{H}^{+}, 100 \%$).

2-((2-Methyl-5-nitrophenyl)sulfonyl)ethanethioamide (33). $\mathrm{H}_{2} \mathrm{~S}$ was bubbled for 5 mins through a solution of the above nitrile ($200 \mathrm{mg}, 0.83 \mathrm{mmol}$) and NEt_{3} (1 drop) in EtOH (30 mL) at $0^{\circ} \mathrm{C}$. The solution was stirred overnight at room temperature, and then purged with nitrogen for 30 min . The reaction mixture was diluted with water, extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\left.\mathrm{EtOH} 98: 2\right)$ gave 33 as a light red oil ($180 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) $9.91(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H})$, 8.55 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.45 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H})$, 2.78 (s, 3H). LCMS (APCI $\left.{ }^{-}\right) 273\left(\mathrm{M}-\mathrm{H}^{+}, 100 \%\right)$.

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-2-(((2-methyl-5-nitrophenyl)sulfonyl)methyl)thiazole (41). Reaction of 36 ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $33(40 \mathrm{mg}, 0.18 \mathrm{mmol})$ by the same method as $\mathbf{3 7}$, gave 41 as a pale yellow solid ($40 \mathrm{mg}, 54 \%$). HPLC purity 99.9%. ${ }^{1} \mathrm{H}$ NMR δ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.61(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.4$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (s, 1H), 7.74 (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (s, $1 \mathrm{H}), 6.87$ (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 154.4$ (C), 148.7 (C), 145.9 (C), 145.7 (C), 140.4 (CH), 136.9 (C), 136.8 (C), 133.2 $(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 125.8(\mathrm{CH}), 120.4(\mathrm{CH}), 117.9(\mathrm{C}), 115.7(\mathrm{CH}), 112.8(\mathrm{CH})$, $106.0(\mathrm{C}), 58.5\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{3}\right)$. LCMS $\left(\mathrm{APCI}^{+}\right) 493\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 495\left(\mathrm{MH}^{+}\right.$ with ${ }^{81} \mathrm{Br}, 80 \%$). HRMS (APCI^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$: 492.9634; found (MH^{+}) 492.9625.

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-N-(2-methyl-5-nitrophenyl)thiazol-2-amine hydrobromide (42).

Reaction of 36 ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$) and 1-(2-methyl-5-nitrophenyl)thiourea ${ }^{3}$ (34) (38 mg , 0.18 mmol) by the same method as 37 , gave 42 as a white solid ($40 \mathrm{mg}, 62 \%$). HPLC purity 99.1\%. Mp 269-271 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 9.77 (br s, 1H), 9.32 (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.66$ (dd, $J=7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ (dd,
$J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.45 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 163.6 (C), 146.2 (C), 142.5 (C), 141.0 (CH), 140.0 (C), 136.5 (C), 134.7 (C), 131.4 (CH), 130.3 (CH), 120.7 (CH), 117.7 (C), 116.4 (CH), $115.7(\mathrm{CH}), 113.0(\mathrm{CH}), 107.6(\mathrm{C}), 102.0(\mathrm{CH}), 18.4\left(\mathrm{CH}_{3}\right)$. LCMS (APCI $\left.{ }^{+}\right) 430\left(\mathrm{MH}^{+}\right.$with ${ }^{79} \mathrm{Br}, 100 \%$), $432\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 70 \%\right)$. HRMS (ESI $)$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{5} \mathrm{O}_{2} \mathrm{~S}$: 429.9968; found $\left(\mathrm{MH}^{+}\right) 429.9965$.

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-((2-methyl-5nitrobenzyl)sulfonyl)thiazole (43).

MMPP ($133 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added to a suspension of 39 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and MeOH $(20 \mathrm{~mL})$. The reaction mixture was stirred for three days at room temperature, and then 5% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 10% aqueous NaHCO_{3}. The aqueous layer was back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo to leave 43 as a yellow solid ($29 \mathrm{mg}, 76 \%$). HPLC purity 94.4%. Mp 188-192 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.36(\mathrm{dd}, J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=2.1$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (s, 1H), 7.40 (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 2.55\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\delta(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.7 (C), 151.6 (C), 146.6 (C), 146.3 (C), 141.5 (CH), 137.9 (C), 131.9 (CH), 129.5 (CH), 127.2 (C), 126.8 (CH), 124.2 (CH), 120.9 (CH), 119.7 (C), 117.7 (CH), 116.8 $(\mathrm{CH}), 105.7(\mathrm{C}), 58.4\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{3}\right)$. LCMS $\left(\mathrm{APCI}^{+}\right) 493\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 495$ (MH^{+}with ${ }^{81} \mathrm{Br}, 80 \%$). HRMS (APCI^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: 492.9634; found $\left(\mathrm{MH}^{+}\right) 492.9623$.

Synthesis of N-(4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)-N,2-dimethyl-5nitrobenzenesulfonamide (44) and N-(4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-3-methylthiazol-2(3H)-ylidene)-2-methyl-5-nitrobenzenesulfonamide (45).

MeI ($33 \mu \mathrm{~L}, 5.36 \mathrm{mmol}$) was added to a suspension of $\mathbf{4 0}(53 \mathrm{mg}, 0.107 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($40 \mathrm{mg}, 0.27 \mathrm{mmol}$) in anhydrous DMF (10 mL) and stirred at room temperature overnight. The reaction mixture was poured onto ice and the precipitate collected by filtration.
Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOAc} 9: 1$ to 85:15 to 6:4) gave firstly 44 as a red oil ($20 \mathrm{mg}, 36 \%$). NMR data presented in Table S3. LCMS (APCI $) 508\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 95 \%\right), 510\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. HRMS (APCI^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrN}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}$: 507.9743; found $\left(\mathrm{MH}^{+}\right) 507.9747$. Followed by 45 as a red oil ($20 \mathrm{mg}, 36 \%$). HPLC purity 81.3\%. NMR data presented in Table S4. LCMS (APCI^{+}) $508\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 95 \%\right), 510$ $\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. HRMS (APCI^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrN}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}$: 507.9743; found $\left(\mathrm{MH}^{+}\right) 507.9743$.

Table S3. NMR assignment for 44 (recorded in CDCl_{3}).

C/H	${ }^{1} \mathrm{H}$ (ppm)	Coupling	NOESY	HMBC	${ }^{13} \mathrm{C}$ (ppm)
2	8.19	s	H9	C3, C3a	141.0
3					107.2
3a					137.6
4	8.16	d (J 2.1 Hz)	H9	C3a, C5, C6	121.2
5					118.4
6	6.87	dd (${ }^{\text {7 }} .3,2.1 \mathrm{~Hz}$)		C4, C5, C7	116.1
7	8.29	dd (${ }^{\text {7 }} .3,0.7 \mathrm{~Hz}$)		C3a, C5, C6	129.3
8					144.2
9	7.00	s	H2, H4	C3, C8, C10	107.5
10					160.9
11					138.1
12					145.5
13	7.53	d (${ }^{8.4 .4 \mathrm{~Hz} \text {) }}$	H17	C11, C15, C17	134.2
14	8.32	dd ($\left.{ }^{\text {8 }} 8.4,2.4 \mathrm{~Hz}\right)$		C12, C16	127.7
15					146.1
16	8.88	d (J 2.4 Hz)	H18	C11, C12, C14	125.4
17	2.67		H13, H18	C11, C12, C13	20.9
18	3.65	s	H16, H17	C10	37.4

Table S4. NMR assignment for 45 (recorded in CDCl_{3}).

C / H	${ }^{1} \mathrm{H}(\mathrm{ppm})$	Coupling	NOESY	HMBC	${ }^{13} \mathrm{C}(\mathrm{ppm})$
2	7.97	s	H18	C3, C3a	142.6
3					99.8
3 a					139.7
4	7.65	$\mathrm{dd}($ J 2.1, 0.7 Hz$)$	H9, H18	C3a, C5, C6	118.8
5					120.5
6	7.01	dd (J 7.3, 2.1 Hz		C4, C5, C7	117.3
7	8.38	dd (J 7.3, 0.7 Hz)		C3a, C5, C6	129.8
8					130.9
9	6.49	s	H4	C3, C8, C10	105.6
10					167.3
11					141.8
12					145.1

13	7.48	$\mathrm{~d}(\mathrm{~J} 8.4 \mathrm{~Hz})$	H17	C11, C15, C17	133.2
14	8.25	$\mathrm{dd}(\mathrm{J} \mathrm{8.4}, \mathrm{2.4} \mathrm{Hz)}$		C12, C16	126.2
15					145.8
16	8.95	$\mathrm{~d}(\mathrm{~J} 2.4 \mathrm{~Hz})$		C12, C14	123.4
17	2.89	s	H13	C11, C12, C13	21.0
18	3.46	s	H2, H4	C8, C10	34.1

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-((3-nitrophenyl)thio)thiazole (47).

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)thiazole-2(3H)-thione (46). A suspension of ammonium dithiocarbamate ($208 \mathrm{mg}, 1.89 \mathrm{mmol}$) and 36 ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred for 10 mins . The precipitate was filtered off, resuspended in acetic acid (10 mL) and refluxed for 1 h . The reaction mixture was cooled to room temperature and diluted with ice cold water. The precipitate was filtered, and then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 95: 5$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo to leave 46 as a pale green solid ($136 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) 13.59 (br s, $1 \mathrm{H}), 8.74$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.51 (s, 1H), 8.22 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (s, 1H), 7.19 (dd, J $=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})$. LCMS (APCI^{+}) $312\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 314\left(\mathrm{MH}^{+}\right.$with ${ }^{81} \mathrm{Br}$, 100\%).

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-2-((3-nitrophenyl)thio)thiazole (47). A solution of 46 ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}$, ($29 \mathrm{mg}, 0.15 \mathrm{mmol}$), 1,10-phenanthroline ($58 \mathrm{mg}, 0.30$ mmol) and (3-nitrophenyl)boronic acid ($107 \mathrm{mg}, 0.64 \mathrm{mmol}$) were dissolved in 1,2-dichloroethane (10 mL) and the mixture stirred at room temperature for 30 mins. The reaction mixture was refluxed for 48 h , and then the solvent removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 47 as a yellow solid ($46 \mathrm{mg}, 72 \%$). HPLC purity $98.7 \% . \mathrm{Mp}$ $140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.54(\mathrm{dd}, \mathrm{J}=2.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(J=7.3,0.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.28 (ddd, $J=8.2,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.23 (s, 1H), 8.19 (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.98 (ddd, $J=7.8,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (dd, $J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (s, 1H), 6.87 (dd, $J=$ 7.3, $2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.4$ (C), 149.4 (C), 148.8 (C), 140.9 (CH), 138.5 (CH), 137.8 (C), 134.6 (C), 130.3 (CH), 129.2 (CH), 127.4 (CH), 123.9 (CH), 121.5 (CH), 118.6 (C), 116.3 (CH), 112.6 (CH), $107.0(\mathrm{C}) . ~ L C M S ~\left(\mathrm{APCI}^{+}\right) 433\left(\mathrm{MH}^{+}\right.$with ${ }^{79} \mathrm{Br}, 100 \%$), 435 (MH^{+}with ${ }^{81} \mathrm{Br}, 85 \%$). HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{16} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4} \mathrm{NaO}_{2} \mathrm{~S}_{2}$: 454.9243; found (MNa^{+}) 454.9241.

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-((3-nitrophenyl)sulfinyl)thiazole (48).

Sulfide 47 ($22 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added to a stirred solution of Oxone ${ }^{\circledR}$ ($156 \mathrm{mg}, 0.25$ mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$ and water (3 mL). The reaction was stirred at room temperature for 3 days, then the methanol was removed in vacuo. The aqueous residue was diluted with water, extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed in vacuo.
Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc 9:1) gave 48 as a lime green solid ($15 \mathrm{mg}, 66 \%$). HPLC purity 99.8%. Mp 206-208 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.79 (dd, $J=2.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{ddd}, J=8.2,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25$ (ddd, $J=7.8,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.23 (s, 1H), 8.21 (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80(\mathrm{dd}, J=8.2$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 174.9 (C), 151.3 (C), 149.0 (C), 146.4 (C), 141.3 (CH), 138.0 (C), 130.9 (CH), 130.2 (CH), 129.6 (CH), 126.7 (CH), 121.3 (CH), 119.9 (CH), 119.4 (C), 116.8 (CH), $115.4(\mathrm{CH}), 106.5(\mathrm{C})$. LCMS (APCI $) 449\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 451\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 85 \%\right)$. HRMS (ESI $)$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4} \mathrm{NaO}_{3} \mathrm{~S}_{2}$: 470.9192; found (MNa^{+}) 470.9183.

Synthesis of 4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)-2-((3-nitrophenyl)sulfonyl)thiazole (49).

A solution of MMPP ($285 \mathrm{mg}, 0.57 \mathrm{mmol}$) in EtOH (10 mL) was added dropwise to a solution of $47(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred at room temperature overnight. The reaction was diluted with 5% aqueous NaHCO_{3}, extracted three times with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc 7:3) gave 49 as a brown solid ($7 \mathrm{mg}, 14 \%$). HPLC purity 99.8%. Mp 189-191 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.02(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~m}, 2 \mathrm{H}), 8.31$ (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.15$ (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~s}, 1 \mathrm{H}), 6.93$ (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 165.3 (C), 151.7 (C), 148.6 (C), 141.2 (CH), 141.1 (C), 138.0 (C), 134.3 (CH), 130.9 (CH), 129.4 (CH), 128.8 (CH), 124.1 (CH), 121.1 (CH), 119.6 (C), 117.1 (CH), 116.8 (CH), 105.7 (C). LCMS (APCI ${ }^{+} 465$ (MH^{+}with ${ }^{79} \mathrm{Br}, 95 \%$), $467\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. HRMS (ESI $)$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{10}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$: 464.9321; found (MH^{+}) 464.9317.

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-2-(o-tolylthio)thiazole (50). A solution of 46 (94 $\mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}$, ($55 \mathrm{mg}, 0.30 \mathrm{mmol}$), 1,10-phenanthroline ($109 \mathrm{mg}, 0.60 \mathrm{mmol}$) 2-tolylboronic acid ($163 \mathrm{mg}, 1.2 \mathrm{mmol}$) were dissolved in 1,2-dichloroethane (30 mL) and the mixture stirred at room temperature for 30 mins. The reaction mixture was refluxed for 48 h , and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred vigorously with 0.5% aqueous Na_{4} EDTA. $\mathrm{xH}_{2} \mathrm{O}$ for 15 mins. The layers were separated, and then the organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 50 as a pale green oil ($52 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta(400 \mathrm{MHz}$, CDCl_{3}) 8.30-8.25 (m, 2H), 8.21 (s, 1H), 7.71 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45-7.38 (m, 2H), 7.29 (td, $J=7.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.12(\mathrm{~s}, 1 \mathrm{H}), 6.86$ (dd, $J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR δ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 166.9 (C), 159.3 (C), 148.7 (C), 142.5 (C), 140.9 (CH), 137.8 (C), 136.0 (CH), 131.3 (CH), 130.7 (CH), 129.1 (CH), 127.3 (CH), 121.7 (CH), 118.3 (C), 116.2 (CH), 110.6 (CH), 107.0 (C) $20.9\left(\mathrm{CH}_{3}\right)$.

4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)-2-(o-tolylsulfinyl)thiazole (51). MMPP (270 mg, 0.47 mmol) and water (one drop) were added to a solution 50 ($37.5 \mathrm{mg}, 0.093 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The reaction mixture was heated in a microwave (temperature profile: $0-$ 1.5 mins ramp from room temperature to $60^{\circ} \mathrm{C}$; hold 1.5 mins - 2 h at $60^{\circ} \mathrm{C}$). After cooling to room temperature, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$, water and brine, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOAc} 85: 15$) gave 51 as a pale green solid (10 mg, 25\%). HPLC purity 98.6%. Mp 172-174 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.29$ (dd, $J=7.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.25(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H})$, 7.47-7.40 (m, 2H), $7.32(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR δ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 175.6 (C), 149.9 (C), 141.4 (C), 140.4 (CH), 137.6 (C), 136.0 (C), 131.3 (CH), 130.8 (CH), 128.8 (CH), 126.8 (CH), 123.2 (CH),120.9 (CH), 118.3 (C), 115.9 (CH), $114.2(\mathrm{CH}), 106.2(\mathrm{C}), 18.2\left(\mathrm{CH}_{3}\right)$. LCMS ($\left.\mathrm{APCI}^{+}\right) 418\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 90 \%\right), 420\left(\mathrm{MH}^{+}\right.$ with ${ }^{81} \mathrm{Br}, 100 \%$). HRMS (ESI $)$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{3} \mathrm{NaOS}_{2}$: 439.9497; found (MNa^{+}) 439.9496.

Synthesis of 3-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfinyl)-4-fluorobenzonitrile (53) and 3-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfonyl)-4fluorobenzonitrile (54).

3-((4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)thio)-4-fluorobenzonitrile (52). Reaction of 46 ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and (5 -cyano-2-fluorophenyl)boronic acid ($98 \mathrm{mg}, 0.64$ mmol) by the same method as $\mathbf{5 0}$, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 52 as a yellow solid ($46 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.29$ (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.22 (s, 1H), 8.11 (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (dd, $J=6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (ddd, $J=8.5$, $4.6,2.1,1 \mathrm{H}), 7.35(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.5(\mathrm{C}, \mathrm{d}, J=257 \mathrm{~Hz}), 159.2(\mathrm{C}), 148.8(\mathrm{C}), 140.3(\mathrm{CH}), 138.5(\mathrm{CH}$, d, $J=2 \mathrm{~Hz}$), 137.3 (C), 135.1 (CH, d, $J=9 \mathrm{~Hz}$), 128.7 (CH), 121.5 (C, d, $J=20 \mathrm{~Hz}$), 120.9 (CH) 118.1 (C), 117.2 (CH, d, $J=24 \mathrm{~Hz}), 116.6$ (C), 115.8 (CH), 112.1 (CH), 109.3 (C, d, J $=3 \mathrm{~Hz}), 106.3(\mathrm{C})$. LCMS (APCI $) 431\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right)$, $433\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 80 \%\right)$.

3-((4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfinyl)-4-fluorobenzonitrile (53) and 3-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfonyl)-4-

fluorobenzonitrile (54). Reaction of 52 ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) by the same method as 49 for 3 weeks, after chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOAc} 4: 1$ then EtOAc) gave firstly 54 as a pale yellow solid ($30 \mathrm{mg}, 30 \%$). HPLC purity 95.1%. ${ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.54 (dd, $J=6.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.32 (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25$ (s, 1H), 8.18 (dd, $J=2.1$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (ddd, $J=8.6,4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (s, 1H), 7.41 (t, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.13$ (C), 161.5 (C, d, $J=269$ Hz), 150.7 (C), 140.4 (CH), 140.0 (CH, d, $J=10 \mathrm{~Hz}), 138.0$ (C), 137.6 (C), 135.0 (CH), 128.9 (CH), 120.7 (CH), 119.3 (C), 118.7 (CH, d, $J=23 \mathrm{~Hz}), 117.1$ (CH), 116.4 (CH), 115.5 (C), 109.6 (C, d, $J=4 \mathrm{~Hz}$), 105.2 (C). LCMS $\left(\mathrm{APCI}^{+}\right) 463\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 70 \%\right), 465\left(\mathrm{MH}^{+}\right.$ with ${ }^{81} \mathrm{Br}, 100 \%$). HRMS (APCI^{+}) Calcd for $\mathrm{C}_{17} \mathrm{H}_{9}{ }^{79} \mathrm{BrFN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: 462.9329; found (MH^{+}) 462.9330. Followed by 53 as a pale yellow solid ($30 \mathrm{mg}, 30 \%$). HPLC purity $92.5 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.34-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.26$ (dd, $\left.J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.23(\mathrm{~s}, 1 \mathrm{H})$, 7.88 (ddd, $J=8.5,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}) 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.39$ (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (dd, $J=7.3$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.7$ (C), 161.1 (C, d, $\left.J=261 \mathrm{~Hz}\right), 151.1$ (C), 141.0 (CH), 138.2 (C), 138.0 (CH, d, $J=9 \mathrm{~Hz}$), 133.8 (C, d, $J=19 \mathrm{~Hz}$), 130.3 (CH, d, $J=3$ Hz), 129.5 (CH), 121.6 (CH), 119.3 (C), 118.1 (CH, d, $J=22 \mathrm{~Hz}$), 116.9 (C), 116.7 (CH), $115.6(\mathrm{CH}), 110.7$ (C, d, $J=4 \mathrm{~Hz}$), 106.5 (C). LCMS ($\left.\mathrm{APCI}^{+}\right) 447\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 70 \%\right)$, $449\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. HRMS (APCI^{+}) Calcd for $\mathrm{C}_{17} \mathrm{H}_{9}{ }^{79} \mathrm{BrFN}_{4} \mathrm{OS}_{2}$: 446.9380; found $\left(\mathrm{MH}^{+}\right) 446.9373$.

Synthesis of 5-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfonyl)-2-fluorobenzonitrile (56).

5-((4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)thio)-2-fluorobenzonitrile (55).
Reaction of 46 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) and (3-cyano-4-fluorophenyl)boronic acid (210 mg , 1.28 mmol) by the same method as $\mathbf{5 0}$, after chromatography (on alumina, eluting with hexanes to hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1$) gave 55 as a white solid ($100 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.29 (dd, $\left.J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.98-7.91 (m, 2H), 7.34 (dd, $J=9.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (s, 1H), 6.88 (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}$). LCMS (APCI $) 431\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 433\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 80 \%\right)$.

5-((4-(5-Bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfonyl)-2-fluorobenzonitrile
(56). Reaction of 55 ($80 \mathrm{mg}, 0.19 \mathrm{mmol}$) by the same method as 49 , gave 56 as a yellow solid ($80 \mathrm{mg}, 93 \%$). HPLC purity 92.9%. Mp 199-202 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 8.49-8.41 (m, 2H), 8.32 (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (s, 1H), 7.51 (dd, $J=9.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.95 (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})$. LCMS (APCI ${ }^{+}$) $463\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 70 \%\right), 465\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 100 \%\right)$. HRMS (APCI ${ }^{+}$) Calcd for $\mathrm{C}_{17} \mathrm{H}_{9}{ }^{79} \mathrm{BrFN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: 462.9329; found (MH^{+}) 462.9327.

Synthesis of 3-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfinyl)-4-((2(dimethylamino)ethyl)(methyl)amino)benzonitrile (57).

A solution of 53 ($20 \mathrm{mg}, 0.047 \mathrm{mmol}$) and N, N, N '-trimethylethylenediamine ($28 \mathrm{mg}, 0.28$ mmol) in THF (10 mL) was stirred overnight at room temperature. The solvent was removed in vacuo. Chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOH} 95: 5$) gave 57 as a pale green oil ($21 \mathrm{mg}, 86 \%$). HPLC purity $95.5 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.32$ (d, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.31 (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}$, 1 H), 7.04 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (dd, $J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (m, 2H), 3.13 (s, 3H), 2.50 (m, 2H), 2.17 (s, 6H). ${ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.8$ (C), 152.8 (C), 149.8 (C), 140.5 (CH), 137.3 (C), 135.3 (CH), 133.9 (C), 130.3 (CH), 128.9 (CH), 120.7 (CH), 118.6 (CH), 118.4 (C), 117.9 (C), $116.9(\mathrm{CH}), 114.7(\mathrm{CH}), 106.0(\mathrm{C}), 103.6(\mathrm{C}), 56.2\left(\mathrm{CH}_{2}\right), 54.2\left(\mathrm{CH}_{2}\right)$, $45.2\left(\mathrm{CH}_{3}\right), 41.6\left(\mathrm{CH}_{3}\right)$. LCMS $\left(\mathrm{APCI}^{+}\right) 529\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 531\left(\mathrm{MH}^{+}\right.$with ${ }^{81} \mathrm{Br}$, 90%). HRMS (ESI^{+}) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22}{ }^{79} \mathrm{BrN}_{6} \mathrm{OS}_{2}$: 529.0474; found (MH^{+}) 529.0478.

Synthesis of 3-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfonyl)-4-((2(dimethylamino)ethyl)(methyl)amino)benzonitrile (58).

Reaction of 54 ($20 \mathrm{mg}, 0.043 \mathrm{mmol}$) and N, N, N '-trimethylethylenediamine ($28 \mathrm{mg}, 0.278$ mmol) by the same method as 57 , after chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOH 95:5) gave 58 as a pale green solid ($20 \mathrm{mg}, 88 \%$). HPLC purity 92.1%. ${ }^{1} \mathrm{H}$ NMR δ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.63$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, $\left.J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.22$ (s, 1H), 7.91 (dd, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (s, 1H), 7.35 (d, $J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89$ (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (m, 2H), 2.70 (s, 3H), 2.14 (m, 2H), 2.02 (s, 6H). ${ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.4$ (C), 156.7 (C), 149.5 (C), 140.4 (CH), 137.6 (CH), 137.6 (C), $136.2(\mathrm{CH}), 133.8(\mathrm{C}), 129.8(\mathrm{CH}), 123.9(\mathrm{CH}), 120.6(\mathrm{CH}), 118.9(\mathrm{C}), 116.9(\mathrm{C})$, $116.2(\mathrm{CH}), 115.5(\mathrm{CH}), 106.8(\mathrm{C}), 105.3(\mathrm{C}), 56.0\left(\mathrm{CH}_{2}\right), 54.6\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{3}\right), 42.6$ $\left(\mathrm{CH}_{3}\right)$. LCMS (APCI^{+}) $545\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{79} \mathrm{Br}, 100 \%\right), 547\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{81} \mathrm{Br}, 90 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22}{ }^{79} \mathrm{BrN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: 545.0424; found (MH^{+}) 545.0418.

Synthesis of 5-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfonyl)-2-((2(dimethylamino)ethyl)(methyl)amino)benzonitrile (59).

Reaction of 56 ($25 \mathrm{mg}, 0.055 \mathrm{mmol}$) and N, N, N '-trimethylethylenediamine ($28 \mathrm{mg}, 0.278$ mmol) by the same method as 57 , after chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOH 95:5) gave 59 as a pale green solid ($29 \mathrm{mg}, 98 \%$). HPLC purity 92.9%. ${ }^{1} \mathrm{H}$ NMR δ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.31 (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.27-8.20$ (m, 3H), 8.07 (dd, $J=9.3,2.4$ Hz, 1H), 7.55 (s, 1H), 6.98 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (t, $J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.27 ($\mathrm{s}, 3 \mathrm{H}$), $2.62(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H})$. LCMS (APCI $\left.{ }^{+}\right) 545\left(\mathrm{MH}^{+}\right.$with ${ }^{79} \mathrm{Br}, 100 \%$), 547 (MH ${ }^{+}$with ${ }^{81} \mathrm{Br}, 90 \%$). HRMS (ESI $)$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{22}{ }^{79} \mathrm{BrN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: 545.0424; found (MH^{+}) 545.0432.

Synthesis of 5-((4-(5-bromopyrazolo[1,5-a]pyridin-3-yl)thiazol-2-yl)sulfonyl)-2-((2morpholinoethyl)amino)benzonitrile (60).

Reaction of 56 ($15 \mathrm{mg}, 0.033 \mathrm{mmol}$) and 4-(2-aminoethyl)morpholine ($22 \mathrm{mg}, 0.16 \mathrm{mmol}$) by the same method as $\mathbf{5 7}$, after chromatography (on alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOH} 98: 2$) gave 60 as a pale green solid ($29 \mathrm{mg}, 17 \%$). HPLC purity 94%. ${ }^{1} \mathrm{H}$ NMR $\delta(400 \mathrm{MHz}$, CDCl_{3}) $8.31(\mathrm{dd}, J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (ddd, $J=9.0,2.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 6.92$ (dd, $J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, $J=9.0 \mathrm{~Hz}$, 1H), $6.27(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 4 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H})$. LCMS (APCI $\left.{ }^{+}\right)$ 573 (MH^{+}with ${ }^{79} \mathrm{Br}, 100 \%$), 575 (MH^{+}with ${ }^{81} \mathrm{Br}, 90 \%$). HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{22}{ }^{79} \mathrm{BrN}_{6} \mathrm{O}_{3} \mathrm{~S}_{2}$: 573.0373; found (MH^{+}) 573.0366.

References

1. Kendall, J. D.; O'Connor, P. D.; Marshall, A. J.; Frédérick, R.; Marshall, E. S.; Lill, C. L.; Lee, W.-J.; Kolekar, S.; Chao, M.; Malik, A.; Yu, S.; Chaussade, C.; Buchanan, C.; Rewcastle, G. W.; Baguley, B. C.; Flanagan, J. U.; Jamieson, S. M. F.; Denny, W. A.; Shepherd, P. R. Bioorg. Med. Chem. 2012, 20, 69.
2. Maulding, D. R.; Lotts, K. D.; Robinson, S. A. J. Org. Chem. 1983, 48, 2938.
3. Mahboobi, S.; Dove, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. J. Med. Chem. 2009, 52, 2265.
