
Supporting Information Notes S1−S4 and Figs. S1−S4

Deviation from symmetrically self-similar branching in

trees predicts altered hydraulics, mechanics, light

interception and metabolic scaling

Duncan D. Smith1,∗, John S. Sperry1, Brian J. Enquist2, Van
M. Savage3, Katherine A. McCulloh4, Lisa P. Bentley2

1Department of Biology, University of Utah, Salt Lake City,
UT, 84112, USA

2Department of Ecology and Evolutionary Biology, University
of Arizona, Tucson, AZ, 85721, USA

3Department of Biomathematics, University of California, Los
Angeles, CA, 90095, USA

4Department of Forest Ecosystems and Society, Oregon State
University, Corvallis, OR, 97331, USA

∗Corresponding author: duncan.smith@utah.edu; 801-585-0381



Notes S1 Materials used in Pf measurements

Trees and shrubs used for empirical Pf measurements came from three

locations within the United States. All networks came from healthy looking

plants with minimal dieback. All species were either native or naturalized

and harvested from natural settings.

Red Butte Canyon (RBC; 40.8◦ N, 111.8◦ W) is located adjacent to the

University of Utah in Salt Lake City, UT. One Quercus gambelii and one Acer

grandidentatum were collected in the spring of 2008 while others from the

area were collected during the late winter and spring of 2010. Only Cornus

sericea, Rhus glabrum, and Salix exigua were located near permanent sur-

face water. Self-supporting networks were preferred although shrubby Rhus

trilobata was more prostrate and clonal Salix exigua likely leaned against

neighbors. Plants overshadowed by neighbors were avoided but many had

similar sized neighbors nearby.

Cedar Creek (CC; 45.4◦ N, 93.2◦ W) is part of the eastern deciduous

forest located ca. 45 km north of Minneapolis, MN. Plants were collected in

2008 from sites without permanent surface water and soils ranging from very

wet to sandy and drier. All plants were self-supporting and received direct

sun for at least half of the daytime.

The Pinus ponderosa trees came from the Coronado National Forest

(CNF) near Tucson, AZ during February 2007. The trees chosen were rela-

tively isolated from neighbors.
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Notes S2 WBE compatibility with L∗↑(D) function (Eqn. 8)

The WBE model achieves an eventual 2/3-power L∗↑ by D relationship by

scaling individual lengths with D2/3 and summing those lengths. The form

of this relationship conforms to

L∗↑ = aD2/3 − lo (S1)

which is given by McMahon & Kronauer (1976) to apply to all trees regardless

of their branching architecture. We use Eqn. S1 as a starting point and show

how it is entirely consistent with the special case of WBE architecture when

the correct lo is used. We derive this WBE-compatible lo and use it in Eqn. S1

for application to all modeled trees (see Eqn. 8 in main text). We do this in

order to be able to compare the properties of WBE and non-WBE trees.

In the special case of WBE structure, segment lengths, l, scale with their

diameters to the 2/3 power:

l = cD2/3. (S2)

Twig length, lt, may be calculated independently both by Eqn. S2 and as

L∗↑(Dt) (Eqn. 10 in the main text). Therefore,

lt = L∗↑(Dt) = aD
2/3
t − lo = cD

2/3
t (S3)

making,

lo = D
2/3
t (c− a) (S4)
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As a is already defined by safety from buckling, finding lo requires a value of

c that satisfies WBE.

In the WBE architecture, symmetric self-similarity produces levels of

identical branch segments. Using WBE terminology, k is the level index

where the trunk is level k = 0 and the twigs comprise level k = N . The

diameter and length ratios between segments in adjacent levels are β and γ.

β ≡ Dk+1

Dk

= f−1/2 (S5)

γ ≡ lk+1

lk
= f−1/3 (S6)

The second equalities only apply to WBE structures. Using the twig level

as a reference in Eqn. S6, it follows that lN/lN−1 = f−1/3. Then, applying

Eqn. S4 to Eqn. S1 and using Eqns. 9-10 to get segment lengths gives

lN
lN−1

=
aD

2/3
t − lo

(aD
2/3
N−1 − lo)− (aD

2/3
t − lo)

=
aD

2/3
t − (c− a)D

2/3
t

aD
2/3
N−1 − aD

2/3
t

. (S7)

Based on Eqn. S5, the D of any level k may be defined using DN (= Dt) as

Dk = DNf
(N−k)/2 (S8)

With k = N − 1, plugging Eqn. S8 into Eqn. S7 produces

lN
lN−1

=
aD

2/3
N − (c− a)D

2/3
N

aD
2/3
N f 1/3 − aD2/3

N

=
2a− c

af 1/3 − a
(S9)
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Recalling the requirement that lN/lN−1 = f−1/3, we get

c = a(1− f 1/3) (S10)

and plugging Eqn. S10 into Eqn. S4 finally gives

lo = af−1/3D
2/3
t . (S11)

Equation S11 provides an lo which satisfies γ = f−1/3 at the twig level in

WBE trees when plugged into Eqn. S1. The resulting equation (Eqn. 8 in

the main text) was then used for all trees, regardless of structure.

However, the preceding equations only explicitly show that the length ra-

tio between twigs and their mothers complies to WBE. We must additionally

check the length ratio between all other adjacent levels by applying Eqn. S4

to Eqn. S1 and using Eqn. 9 to get segment lengths:

lk+1

lk
=

(aD
2/3
k+1 − lo)− (aD

2/3
k+2 − lo)

(aD
2/3
k − lo)− (aD

2/3
k+1 − lo)

=
aD

2/3
k+1 − aD

2/3
k+2

aD
2/3
k − aD2/3

k+1

. (S12)

Substituting diameters from Eqn. S8 into Eqn. S12 produces

lk+1

lk
=
aD

2/3
N f (N−k−1)/3 − aD2/3

N f (N−k−2)/3

aD
2/3
N f (N−k)/3 − aD2/3

N f (N−k−1)/3
= f−1/3 (S13)

which meets the WBE requirement. Note that all lo values canceled out

in Eqn. S12. Therefore, in a WBE tree, across all levels except the twig
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level, any value of lo in Eqn. S1 satisfies the WBE length ratio requirement.

However, a specific lo (Eqn. S11) is needed to make the twig level comply.

In the strict rules of WBE architecture, lo is a function of f , which is a

constant. We used f = 2 to obtain the generic lo for use in all trees. In

non-WBE trees, branching only needs to follow Eqn. S1 where lo can be set

to any value. Because lo only influences twig length (Eqn. S12), the only real

consequence of using f = 2 for all trees is that symmetrically branching trees

with f > 2 have twigs which are slightly shorter than WBE would predict.

Notes S3 Branch segment hydraulic conductance

As stated in the main text, we follow the Sperry et al. (2012) model of

xylem architecture to determine hydraulic conductance of each branch seg-

ment. To summarize, their model takes branch diameter as an input and a

number of equations are used to define the dimensions and numbers of func-

tional conduits in that branch. Incorporating conduit length (= branch seg-

ment length) allows hydraulic conductance to be calculated with the Hagen-

Poiseuille equation. In general, we utilize the default coefficients given by

Sperry et al.. The equations used are as follows.

Conduit diameters, Dc (µm), increase with stem diameter, D (mm). This

taper occurs both within stems and across stems and is given by

Dc = atapD
btap . (S14)
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The exponent, btap = 1/3, provides the optimal tapering defined by Savage

et al. (2010) while the multiplier, atap = 7.9, corresponds with a maximum

Dc of 10 µm in the default twig diameter, Dt = 2 mm.

The number of conduits per xylem area, Nc/Ax (mm−2), tends to decrease

as conduits become wider

Nc/Ax = apakD
bpak
c (S15)

The exponent, bpak = −2, also comes from Savage et al. (2010) and it cor-

responds to a constant fraction of xylem area being occupied by conduits,

regardless of their diameter. The multiplier, apak = 105 indicates that 10%

of xylem area is occupied.

Part of the stem area is devoted to a pith in the center, which is given a

constant diameter of 1 mm. On the outside of the stem is phloem, periderm,

and possibly cortex. These are collectively the “bark” and bark thickness,

Tbrk (mm), increases with D as

Tbrk = abrkD
bbrk (S16)

Parameters bbrk = 1.05 and abrk = 0.0225 come from thin-barked Acer gran-

didentatum. The area between pith and bark is the total xylem area, ΣAx.

However, the oldest xylem near the pith eventually loses function and be-

comes heartwood with functional sapwood outside of it. Sapwood area, Asap
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(mm2), increases with D but cannot exceed ΣAx. Therefore,

Asap =


asapD

bsap if asapD
bsap < ΣAx,

ΣAx otherwise.

(S17)

The parameters, bsap = 1.93 and asap = 0.905, are also based on A. grandi-

dentatum which is diffuse-porous with multiple years of functional xylem.

Equations S14−S17 collectively define the numbers and diameters of

all functional conduits within a stem of any diameter. Using the Hagen-

Poiseuille equation, one can then predict stem hydraulic conductivity. The

Hagen-Poiseuille equation makes predictions for laminar flow through open,

cylindrical tubes. We account for resistive endwalls in xylem with an an-

giosperm correction factor, aew = 0.44, meaning actual conductivity is 44%

of that predicted by Hagen-Poiseuille (Hacke et al. 2006). For our model, we

combined all of the above into a single integral that predicts branch segment

hydraulic conductivity, κ (mm4 MPa−1 s−1):

κ = c2

[
xc1

c1
−
(

2abrk(bbrk + 1)xc1+bbrk−1

c1 + bbrk − 1

)
+(

4a2brkbbrkx
c1+2bbrk−2

c1 + 2bbrk − 2

)]∣∣∣∣D
x=Dv

(S18)

where

c1 = 4btap + btapbpak + 2,
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c2 = aew

(
π2apaka

bpak+4
tap

)
/
(
256µ1012

)
,

and µ (MPa s) is the dynamic viscosity of water. The Dv is a “virtual”

diameter. By way of explanation, note that Eqn. S14 predicts Dc at the

bark-xylem interface (not at the stem surface). When integrating over the

sapwood area, we recognize that the current heartwood-sapwood interface

is where the bark-xylem interface was at one time. Therefore, in order to

predict Dc at this location, we need to know what the overall stem diameter

was at that time. That diameter is Dv, which must be found numerically.

Branch segment hydraulic conductance (mm3 MPa−1 s−1) is just κ/l.

Notes S4 Partial derivation of Lcrit(DT ) function (Eqn. 13)

Based on Greenhill (1881), Jaouen et al. (2007) define Lcrit as

Lcrit =
π1/2E1/2r2T c(|m− 4n+ 2|)

4(Mtotg)1/2
. (S19)

The rT is trunk radius, g is gravity and E is Young’s elastic modulus (N m−2).

Equation S19 is somewhat problematic as both Mtot and rT are inputs which

means Lcrit is predicted for a constrained mass and trunk radius. We prefer

that Mtot be a function of rT and tree form. We express Mtot as a function

of rT by using tissue density, ρ, and volume, V , predicted using Eqn. 15 and

Vf = Pf .

Mtotg = V ρg = πr2TLcritPfρg (S20)
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We also combine ρ and g into ρg which is the specific weight of supporting

tissue (N m−3). The ratio of E/ρg is approximately constant across woody

plants (1253 m; Niklas 1994). Substituting Eqn. S20 into Eqn. S19, rear-

ranging, and converting rT to DT leads to Eqn. 13 in the main text. To

predict b in Eqn. 8, we used a WBE tree with 1024 twigs and f ∗ = 2. This

tree resulted in m = 2.91 and n = 0.96. Among other WBE trees (24 − 212

twigs), larger size tended to increase both m (2.28 to 3.06) and n (0.64 to

1.03). However, the resulting b changed very little as size increased (range =

107.55 to 108.25). By comparison, a “fishbone” tree with 1024 twigs would

have b = 141.19.

It should be noted that using parameters that correspond to a straight

column (Pf = 1, m = 1 and n = 0) in Eqn. 13 produces

Lcrit(D) = 0.788

(
E

ρg

)1/3

D2/3 (S21)

which is essentially1 the common equation used for critical heights (e.g. Niklas

1994).
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Figure S1: Measured and modeled crown area scaling. Closed circles indicate
data from angiosperms (grey) and conifers (black). OLS regressions for these
data (inset) had similar but significantly different slopes (p < 0.01). Random
model trees (not shown) whose crown areas matched the angiosperm regres-
sion ± 5% were used to predict a Pf ontogeny (see Fig. 3). Open circles
indicate WBE trees from the model. The model was built agnostic to the
empirical crown area data. Therefore, it is somewhat surprising that not only
did model trees fall among the data, but the WBE trees (which should have
among the largest crowns for their trunk diameter) more or less followed the
upper bound of the empirical data.
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Figure S2: Three sample 1024-twig trees formed when more than one asym-
metry parameter, u, is used in each tree. Such trees were excluded from the
model due to their unrealistic nature.
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Figure S3: Illustration of the equations used to determine tree heights and
path lengths. Plots use model inputs with an eventual safety factor of 4
and Dt = 2 mm. From top to bottom, the “critical” path (dashed; Eqn. 13)
predicts the heights of WBE trees at elastic buckling. The “elastic similarity”
path (dotted) parallels the critical line and thereby provides a constant safety
factor from buckling. The “actual” path (solid; Eqn. 8) only approaches
elastic similarity because of the constant virtual length, lo, that exists because
twigs do not taper to zero. Note that lo is constant but does not appear so
due to the log-log plotting axis.
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Figure S4: Metabolic scaling (i.e. K ∝ V cq) for trees which follow the crown
area scaling measured by Olson et al. (2009; i.e. scenario three, S3). The three
colors correspond to Pf decreasing (black; 26−210 twigs), Pf increasing (grey;
212− 218 twigs) and trees in between (open; 211 twigs; see Fig. 3, dashed line
and Fig. 5, “S3”). Solid SMA regression lines are extended by dotted lines to
highlight the non-log-linearity caused by decreasing and then increasing Pf .
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