Brian S. Steidinger

Brian S. Steidinger
Stanford University | SU · Department of Biology

PhD

About

13
Publications
14,812
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
569
Citations
Citations since 2016
10 Research Items
565 Citations
2016201720182019202020212022050100150
2016201720182019202020212022050100150
2016201720182019202020212022050100150
2016201720182019202020212022050100150

Publications

Publications (13)
Article
Full-text available
Mutualisms between species are ecologically ubiquitous but evolutionarily puzzling. Host discrimination mechanisms that reduce the fitness of uncooperative symbionts can stabilise mutualism against collapse, but also present a paradox - if discrimination is effective, why do uncooperative symbionts persist? Here, we test whether mutations or fitnes...
Article
Full-text available
All organisms struggle to make sense of environmental stimuli in order to maximize their fitness. For animals, the responses of single cells and superorganisms to stimuli are generally proportional to stimulus ratios, a phenomenon described by Weber's law. However, Weber's law has not yet been used to predict how plants respond to stimuli generated...
Preprint
Full-text available
Most tree species predominantly associate with a single type of mycorrhizal fungi, which can differentially affect plant nutrient acquisition and biogeochemical cycling. Here, we address for the first time the impact of mycorrhizal distributions on global carbon and nutrient cycling. Using the state-of-the-art carbon-nitrogen economics within the C...
Article
Full-text available
Ectomycorrhizal fungi (ECMF) are partners in a globally distributed tree symbiosis implicated in most major ecosystem functions. However, resilience of ECMF to future climates is uncertain. We forecast these changes over the extent of North American Pinaceae forests. About 68 sites from North American Pinaceae forests ranging from Florida to Ontari...
Article
Full-text available
In this Letter, a middle initial and additional affiliation have been added for author G. J. Nabuurs; two statements have been added to the Supplementary Acknowledgements; and a citation to the French National Institute has been added to the Methods; see accompanying Author Correction for further details.
Article
Full-text available
2019, The Author(s), under exclusive licence to Springer Nature Limited. In this Letter, the middle initial of author G. J. Nabuurs was omitted, and he should have been associated with an additional affiliation: ‘Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands’ (now added as affiliation 18...
Article
Full-text available
A spatially explicit global map of tree symbioses with nitrogen-fixing bacteria and mycorrhizal fungi reveals that climate variables are the primary drivers of the distribution of different types of symbiosis.
Preprint
Ectomycorrhizal fungi (ECMF) are partners in a globally distributed tree symbiosis that enhanced ecosystem carbon (C)-sequestration and storage. However, resilience of ECMF to future climates is uncertain. We sampled ECMF across a broad climatic gradient in North America, modeled climatic drivers of diversity and community composition, and then for...
Article
Full-text available
Findings of immense microbial diversity are at odds with observed functional redundancy, as competitive exclusion should hinder coexistence. Tradeoffs between dispersal and competitive ability could resolve this contradiction, but the extent to which they influence microbial community assembly is unclear. Because fungi influence the biogeochemical...
Article
Full-text available
Plants in multiple symbioses are exploited by symbionts that consume their resources without providing services. Discriminating hosts are thought to stabilize mutualism by preferentially allocating resources into anatomical structures (modules) where services are generated, with examples of modules including the entire inflorescences of figs and th...
Article
Full-text available
We hypothesized that tropical plant species with different mycorrhizal associations reduce competition for soil phosphorus (P) by specializing to exploit different soil organic P compounds.We assayed the activity of root/mycorrhizal phosphatase enzymes of four tree species with contrasting root symbiotic relationships–arbuscular mycorrhizal (angios...
Article
Full-text available
Abstract Evolutionary theory predicts that mutualisms based on the reciprocal exchange of costly services should be susceptible to exploitation by cheaters. Consistent with theory, both cheating and discrimination against cheaters are ubiquitous features of mutualisms. Several recent studies have confirmed that host species differ in the extent tha...

Network

Cited By