Brian Shortt

Brian Shortt
European Space Agency | ESA · Future Missions Preparation Office (SRE-F)

About

109
Publications
13,282
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
930
Citations

Publications

Publications (109)
Article
Full-text available
The Gamma-ray Module, GMOD, is a miniaturised novel gamma-ray detector which will be the primary scientific payload on the Educational Irish Research Satellite (EIRSAT-1) 2U CubeSat mission. GMOD comprises a compact (25 mm $$\times$$ × 25 mm $$\times$$ × 40 mm) cerium bromide scintillator coupled to a tiled array of 4 $$\times$$ × 4 silicon photomu...
Conference Paper
Recent advancements in gamma-ray detector technology have brought new opportunities to study gamma-ray bursts and other high-energy phenomena. However, there is a lack of dissemination on the development methods, tools and techniques used in the production of instrument flight firmware. This is understandable as firmware for spacecraft payloads may...
Preprint
Full-text available
The Gamma-ray Module, GMOD, is a miniaturised novel gamma-ray detector which will be the primary scientific payload on the Educational Irish Research Satellite (EIRSAT-1) 2U CubeSat mission. GMOD comprises a compact (25mm $\times$ 25mm $\times$ 40mm) cerium bromide scintillator coupled to a tiled array of 4$\times$4 silicon photomultipliers, with f...
Article
Full-text available
The compact, standardised form factor of CubeSats allows for the use of commercial off-the-shelf components, reducing traditional barriers to entry, such as cost and development time. More than 1500 of these small spacecraft have been launched in the past 20 years, with improving capabilities that enable a wide range of mission profiles. The Educat...
Article
Full-text available
CubeSats facilitate rapid development and deployment of missions for educational, technology demonstration, and scientific purposes. However, they are subject to a high failure rate, with a leading cause being the lack of system-level verification. The Educational Irish Research Satellite (EIRSAT-1) is a CubeSat mission under development in the Eur...
Preprint
The Gamma-ray Module (GMOD) is an experiment designed for the detection of gamma-ray bursts in low Earth orbit as the principal scientific payload on a 2-U CubeSat, EIRSAT-1. GMOD comprises a cerium bromide scintillator coupled to silicon photomultipliers which are processed and digitised by a bespoke ASIC. Custom firmware on the GMOD motherboard h...
Article
Full-text available
Recent advances in silicon photomultiplier (SiPM) technology and new scintillator materials allow for the creation of compact high-performance gamma-ray detectors which can be deployed on small low-cost satellites. A small number of such satellites can provide full sky coverage and complement, or in some cases replace the existing gamma-ray mission...
Article
Full-text available
The Educational Irish Research Satellite 1 (EIRSAT-1) is a 2U CubeSat being developed under ESA’s Fly Your Satellite! programme. The project has many aspects, which are primarily educational, but also include space qualification of new detector technologies for gamma-ray astronomy and the detection of gamma-ray bursts (GRBs). The Gamma-ray Module (...
Preprint
Full-text available
The Educational Irish Research Satellite 1 (EIRSAT-1) is a 2U CubeSat being developed under ESA's Fly Your Satellite! programme. The project has many aspects, which are primarily educational, but also include space qualification of new detector technologies for gamma-ray astronomy and the detection of gamma-ray bursts (GRBs). The Gamma-ray Module (...
Preprint
Full-text available
Using the high-resolution OLED screen of a smartphone to project arbitrary scenes and patterns can open a complete new dimension for testing sensors in the visible. Based on an original concept from JPL (Jet Propulsion Laboratory), this contribution describes a new experimental setup designed to achieve the demanding performance of its first applic...
Preprint
Full-text available
Radiation damage of J-series silicon photomultipliers (SiPMs) has been studied in the context of using these photodetectors in future space-borne scintillation detectors. Several SiPM samples were exposed to 101.4 MeV protons, with 1 MeV neutron equivalent fluence ranging from 1.27*10^8 n/cm^2 to 1.23*10^10 n/cm^2 . After the irradiation, the SiPMs...
Article
Full-text available
Radiation damage of J-series silicon photomultipliers (SiPMs) has been studied in the context of using these photodetectors in future space-borne scintillation detectors. Several SiPM samples were exposed to 101.4 MeV protons, with 1 MeV neutron equivalent fluence ranging from 1.27×108 neq/cm2 to 1.23×1010 neq/cm2. After the irradiation, the SiPMs...
Article
Two PLATO Teledyne-e2v CCD280 have been proton irradiated: one whilst operating at cold, the other unbiased at room temperature. We report on differences in the post-irradiation hot pixel population, trap species, and CTI, including after annealing. We demonstrate once more that proton irradiation performed at the CCD temperature of operation can s...
Conference Paper
The ATHENA (Advanced Telescope for High Energy Astrophysics) X-ray observatory is an ESA-selected L2 class mission. In the proposed configuration, the optical assembly has a diameter of 2.2 m with an effective area of 1.4 m 2 at 1 keV, 0.25 m 2 at 6 keV, and requires an angular resolution of 5 arcsec. To meet the requirements of effective area and...
Article
This work determines the X-ray powder diffraction peak positions for trigonal GdF3 experimentally and using simulation. An oxyfluoride matrix glass-ceramic containing the inorganic compound GdF3 was synthesised by quench casting followed by controlled heat treatment. X-ray diffraction analysis was used to confirm the amorphous nature of the as-cast...
Conference Paper
Full-text available
The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA’s optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In t...
Conference Paper
The work on the definition and technological preparation of the ATHENA (Advanced Telescope for High ENergy Astrophysics) mission continues to progress. In parallel to the study of the accommodation of the telescope, many aspects of the X-ray optics are being evolved further. The optics technology chosen for ATHENA is the Silicon Pore Optics (SPO),...
Article
Full-text available
Localisation of gamma-ray interaction points in monolithic scintillator crystals can simplify the design and improve the performance of a future Compton telescope for gamma-ray astronomy. In this paper we compare the position resolution of three monolithic scintillators: a 28×28×20 mm³ (length×breadth thickness) LaBr3:Ce crystal, a 25×25×20 mm³ CeB...
Conference Paper
Silicon Pore Optics is a high-energy optics technology, invented to enable the next generation of high-resolution, large area X-ray telescopes such as the ATHENA observatory, a European large (L) class mission with a launch date of 2028. The technology development is carried out by a consortium of industrial and academic partners and focuses on bui...
Conference Paper
Full-text available
The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA’s optic with more than 1000 mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. E...
Conference Paper
We use the X-ray ray-tracing package McXtrace to simulate the performance of X-ray telescopes based on Silicon Pore Optics (SPO) technologies. We use as reference the design of the optics of the planned X-ray mission Advanced Telescope for High ENergy Astrophysics (ATHENA) which is designed as a single X-ray telescope populated with stacked SPO sub...
Conference Paper
ATHENA (Advanced Telescope for High ENergy Astrophysics) is being studied by the European Space Agency (ESA) as the second large science mission, with a launch slot in 2028. System studies and technology preparation activities are on-going. The optics of the telescope is based on the modular Silicon Pore Optics (SPO), a novel X-ray optics technolog...
Conference Paper
The Advanced Telescope for High-Energy Astrophysics, Athena, selected as the European Space Agency's second large-mission, is based on the novel Silicon Pore Optics X-ray mirror technology. DTU Space has been working for several years on the development of multilayer coatings on the Silicon Pore Optics in an effort to optimize the throughput of the...
Conference Paper
This study reports development and testing of coatings on silicon pore optics (SPO) substrates including pre and post coating characterisation of the x-ray mirrors using Atomic Force Microscopy (AFM) and X-ray reflectometry (XRR) performed at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II....
Article
A gamma-ray detector composed of a single 28 x 28 x 20 mm(3) LaBr3:Ce crystal coupled to a custom built 4 x 4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measure...
Article
This work describes the development of a gamma detector based on silicon drift detectors (SDDs) to read out large LaBr3:Ce scintillators for gamma-ray astronomy applications, within an activity supported by the European Space Agency (ESA). SDDs, characterized by high quantum efficiency and low electronic noise, when coupled with a scintillator are...
Conference Paper
Full-text available
As part of the ongoing effort to optimize the throughput of the Athena optics we have produced mirrors with a state-of-the-art cleaning process. We report on the studies related to the importance of the photolithographic process. Pre-coating characterization of the mirrors has shown and still shows photoresist remnants on the SiO 2-rib bonding zone...
Conference Paper
The Advanced Telescope for High ENergy Astrophysics (Athena) was selected in 2014 as the second large class mission (L2) of the ESA Cosmic Vision Science Programme within the Directorate of Science and Robotic Exploration. The mission development is proceeding via the implementation of the system studies and in parallel a comprehensive series of te...
Conference Paper
This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to read out large (2" up to 3") LaBr3:Ce scintillators for gamma-ray spectroscopy for astronomy applications, an activity supported by ESA. SDDs, characterized by high quantum efficiency and low electronic noise, are good candidates in such applicat...
Conference Paper
With the selection of “The hot and energetic Universe” as science theme for ESA's second large class mission (L2) in the Cosmic Vision programme, work is focusing on the technology preparation for an advanced X-ray observatory. The core enabling technology for the high performance mirror is the Silicon Pore Optics (SPO) [1 to 23], a modular X-ray o...
Conference Paper
We report on the present and future detector development activities for the European Space Agency Science Programme. The development of European technology in that field is a key mission enabler for the program, which requires TRL6 (ISO scale) by end of the definition phase, so called "mission adoption". This is particularly true for Astronomy and...
Article
This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to readout large LaBr3:Ce scintillators for gamma-ray spectroscopy and imaging applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP) and by Istituto Nazionale di Fisica Nucleare (INFN) w...
Article
The spectral transmittance of a new generation of SiN based X-ray windows is characterized. The windows are strengthened by low aspect-ratio support grid. As expected for this unprecedented thin window material, the transmittance in the soft X-ray spectral region outperforms the present technologies. A detailed study of the various performance prop...
Article
The ATHENA mission concept, now called ATHENA+, continues to be refined to address important questions in modern astrophysics. Previous studies have established that the requirement for effective area can be achieved using a combination of bi-layer coatings and/or simple graded multilayers. We find that further coating developments can improve on t...
Conference Paper
Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA) in collaboration with research institutions and i...
Article
In this work, we report on a new development of Silicon Drift Detectors (SDDs) for gamma-ray spectroscopy with space science applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP). The final goal of the development is the realization of monolithic arrays of SDDs which will be assembled t...
Article
We have demonstrated the fabrication of ultra-thin Si fine grid supported silicon nitride X-ray windows. These X-ray windows exhibit unequaled transmission of soft X-rays, high strength and excellent thermal stability. Measured soft X-ray transmission performance is significantly enhanced compared to typical polymer or beryllium based X-ray window...