Brian Anderson

Brian Anderson
California Institute of Technology | CIT · Jet Propulsion Laboratory

Doctor of Philosophy

About

10
Publications
2,088
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
57
Citations
Citations since 2016
8 Research Items
54 Citations
20162017201820192020202120220510152025
20162017201820192020202120220510152025
20162017201820192020202120220510152025
20162017201820192020202120220510152025
Introduction
I am a Mission Design Engineer in the Outer Planets Mission Analysis Group at JPL. Currently, I am working on tour design for the Europa Clipper mission. I am also interested in visualization techniques for Mission Design.

Publications

Publications (10)
Conference Paper
Full-text available
A novel indirect-based trajectory optimization framework is proposed that leverages ephemeris-driven, "invariant manifold analogues" as long-duration asymptotic terminal coast arcs while incorporating eclipses and perturbations during the optimization process in an ephemeris model; a feature lacking in state of the art software like MYSTIC and Cope...
Article
Full-text available
In this paper, we investigate the manifolds of three Near-Rectilinear Halo Orbits (NRHOs) and optimal low-thrust transfer trajectories using a high-fidelity dynamical model. Time- and fuel-optimal low-thrust transfers to (and from) these NRHOs are generated leveraging their ‘invariant’ manifolds, which serve as long terminal coast arcs. Analyses ar...
Article
Full-text available
A novel methodology is proposed for designing low-thrust trajectories to quasi-periodic, near rectilinear Halo orbits that leverages ephemeris-driven, "invariant manifold analogues" as long-duration asymptotic terminal coast arcs. The proposed methodology generates end-to-end, eclipse-conscious, fuel-optimal transfers in an ephemeris model using an...
Article
Full-text available
In this work, end-to-end low-thrust transfers from a GTO orbit to a low-altitude lunar orbit by exploiting the manifolds of a chosen Earth-Moon L1 halo orbit was studied. The practicality of piece-wise, minimum-time transfers that exploit halo orbit manifolds is demonstrated, which offers more flexibility to meet mission objectives. It is known tha...
Conference Paper
Full-text available
Near-Rectilinear Halo Orbits (NRHOs) are deemed to be favorable candidates for establishing a near-future crewed space station in the cis-lunar space. Although the 9:2 resonant southern $L_2$ NRHO has been earmarked as the working orbit for the Lunar Gateway Mission, a plethora of other neighboring resonant NRHOs are also viable options. The invari...
Conference Paper
Full-text available
A renewed interest in revisiting the Moon has blown wide open the previously ajar door to research avenues in the field of Earth-Moon transfer trajectories. While the advent of low-thrust propulsion systems has opened up possibilities to undertake more complicated missions, designing optimal transfer trajectories in this domain is no easy feat. His...
Conference Paper
An investigation of the topology of flow in the equilibrium region of the Planar Circular Restricted Three-Body Problem is presented. By utilizing a homeomorphic mapping we are able to visualize trajectories in the energy surface directly, giving insight into the governing role of invariant manifolds. We show that manifolds govern the flow of objec...
Chapter
The Sun–Earth L_5 Lagrange point is an ideal location for an operational space weather forecasting mission to provide early warning of Earth-directed solar storms (coronal mass ejections, shocks and associated solar energetic particles). Such storms can cause damage to power grids, spacecraft, communications systems and astronauts, but these effect...
Article
The Sun–Earth L5 Lagrange point is an ideal location for an operational space weather forecasting mission to provide early warning of Earth-directed solar storms (coronal mass ejections, shocks and associated solar energetic particles). Such storms can cause damage to power grids, spacecraft, communications systems and astronauts, but these effects...

Network

Cited By

Projects

Project (1)
Project
The aim of this project is to design a methodology and supporting algorithms to design fuel-optimal low-thrust interplanetary eclipse-conscious transfers in a full ephemeris dynamical model. In particular, the methodology is to be applied to re-supply/Earth-return mission to the Lunar Gateway in the 9:2 Earth-Moon L2 Southern NRHO. The hybrid methodology relies on pre-computing stable/unstable pseudo-invariant manifolds of differentially corrected quasi-periodic orbits and using them as long terminal coast arcs, while formulating and solving the rest of the problem using indirect optimization methods.