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1 Introduction 11 IntroductionThis paper is concerned with the problem of estimating the dynamics of single input, singleoutput linear time invariant systems on the basis of noisy sampled observations of theirinput-output response. One of the most popular existing methods for dealing with thisproblem involves modelling the system dynamics via a so-called ARX structure [12, 20]. Aproblem then is that it is di�cult to evaluate the variance of the estimated model except inan asymptotic sense. Additionally, the model parameters generally do not appear linearlyand so estimation of them involves numerical solution of a non-linear optimisation problem.This latter di�culty can be overcome by recasting the problem in a linear regressionform, but in this case the parameters to be estimated a�ect both the dynamic model andthe noise model. This can cause estimates of them to be biased [27].An approach overcoming all these di�culties involves choosing a model structure whichis a-priori linear in the parameters. For exampleyk = 0@p�1Xn=0 �nBn(q)1Auk: (1)Here f�ng are the parameters to be estimated, fukg is an observed input, fykg is an observedoutput, fBn(q)g is a set of transfer functions rational in the forward shift operator q, andp is the model order.Now since � , [�0; �1; � � � ; �p�1]T appears linearly, its least squares estimate b� can befound in closed form and is linear in fykg so that if fukg is not noise corrupted then �nitedata variances for b� can be calculated. Furthermore, � parameterises only the model forthe dynamics and so b� is not biased by measurement noise.The remaining di�culty is that the estimate could be poor if the fBn(q)g have beenchosen inappropriately with respect to the true underlying dynamics that have generatedthe observed data. For example, the simplest choice for fBn(q)g isBn(q) = q�nso that (1) represents an FIR model structure. However, if the true dynamics have a slowmode, then the model order p will need to be very large for the model structure (1) toprovide an accurate approximation to the true dynamics. The obvious strategy to overcomethis is to instead choose Bn(q) = 1q � �n (2)where the poles f�ng are chosen according to a-priori knowledge of the underlying dynamics;in the previous case of a known slow mode at least one of the f�ng would be chosen near1. This idea of incorporating prior information into the model structure (1) has led to thepopular use of the so-called Laguerre model where instead of (2) the choiceBn(q) =  p1� �2q � � ! 1� �qq � � !n ; j�j < 1 (3)



1 Introduction 2is made. Estimation using these models was �rst proposed in [9, 1] and has been studiedin detail in [23, 25]. Where prior knowledge indicates resonant modes the so called Kautzmodel Bn(q) = 8>>>>>>>><>>>>>>>>: q(1� �2)(1� 
2)q2 � �(
 + 1)q + 
  
q2 � �(
 + 1)q + 1q2 � �(
 + 1)q + 
 !(n�1)=2 ;n oddq(1 � 
2)(q � �)q2 � �(
 + 1)q + 
  
q2 � �(
 + 1)q + 1q2 � �(
 + 1)q + 
 !n=2 ;n even (4)where j�j < 1 and j
j < 1 has been suggested and analysed in [22, 26, 24].However, with both the Laguerre and Kautz structures, the reader will notice thata restriction over the general fBng in (2) has been made in that knowledge of only onemode and not a variety of modes can be incorporated; the magnitude frequency responseof all the fBn(q)g are the same. This restriction is imposed to obtain the fBn(q)g as anorthonormal system. Orthonormality is important since it leads to� Improved numerics in solving the least squares normal equations [23, 2].� Parsimony in representation [27].� Independence of parameters for broad band excitation signals [12].The contribution of this paper is to show that the simple constructionBn(q) = 0@q1� j�nj2q � �n 1A n�1Yk=0  1 � �kqq � �k ! (5)preserves orthonormality, but also allows prior knowledge about a variety of modes atf�0; �1; � � � ; �p�1g to be incorporated. Furthermore, the construction (5) provides a unifyingformulation of all known system identi�cation orthonormal systems since the well knownFIR, Laguerre and Kautz models and a new method using balanced realisations of userchosen dynamics [4] are all special cases of (5) when only one and not a range of modesare incorporated.Since these known systems are only special cases, our unifying construction (5) allowsricher and more useful systems to be developed. More speci�cally, the 
exibility in ourconstruction of allowing prior knowledge about more than one mode to be incorporated,while still preserving orthonormality, leads to more accurate estimation. Finally, our unify-ing construction has a very simple and physically motivated development which we believeclari�es some earlier derivations for orthonormal systems.A key tool in developing the model structure (5) is to consider the fBng as basisfunctions for the system identi�cation problem. Using this vector space idea we show thatour construction (5) is in essence the Gram-Schmidt procedure and also show that undercertain mild necessary and su�cient conditions the basis functions in (5) are H2 complete.



2 Orthonormal Basis Construction 3We then go on to explore links between our orthonormal construction and bases formedfrom the classical orthogonal polynomials. This leads to a new basis, the `Legendre' basis,which like the already known Laguerre basis is a special case of our general construction.We �nd that it is not possible to form any more bases from other classical orthogonalpolynomials such as Chebychev and Hermite since non-rational in q discrete time transferfunctions are necessary to implement the bases.Having done this we show how using the model structure (1) our basis functions canbe used for system identi�cation. We continue by providing a result which quanti�esthe accuracy of the resultant estimate. This result generalises the variance expressionspresented in [15] for FIR models, in [27] for Laguerre models and in [21] for balancedrealization models with the important feature that in contrast to these known results, ourresult is not asymptotic in the model order.We �nish the paper with some simulation examples that illustrate the utility of usingour generalised orthonormal basis functions instead of the more popular Laguerre andKautz models.2 Orthonormal Basis ConstructionThe idea with system identi�cation is to estimate the impulse response fgkg of a system.Most successful methods do not do this directly, but instead estimate some constrainedrepresentation of fgkg. For example, an ARX model of some �xed order can be found, andthis places some smoothness constraints on the estimated fgkg. Alternatively, as has beensuggested in (1), a linear combination of known �xed impulse responses can be estimated.The �xed responses can then be considered as `basis functions' for the approximation ofthe true fgkg. This latter idea is the one we wish to pursue in this paper.As mentioned in the introduction, the paradigm has already been analysed in a numberof special cases by a number of authors. If prior knowledge of a �rst order mode is available,then estimating fgkg as a linear combination of the impulse responses of the Laguerretransfer functions (3) seems appropriate while if knowledge of a resonant mode exists thenthe Kautz system (4) is preferable.The de�ciency with these existing ideas is that prior knowledge of only one mode canbe incorporated. Furthermore, the basis function choices (3) and (4) seem strange; theirderivations from the classical Laguerre and Kautz orthogonal polynomials are non-obviousand so the use of Laguerre and Kautz bases may seem obscure or not physically motivated.In a series of ingenious works Heuberger, Van den Hof and others [4, 5, 6, 21] have ad-dressed this issue by showing how the same and richer classes of orthogonal basis functionsmay be derived on `physical' grounds via balanced realisations of user chosen dynamics. Inthis paper we will refer to this construction method as the `balanced realisation construc-tion'. Unfortunately, it retains the limitation of only allowing the incorporation of one setof modes.The purpose of this section is to show how a unifying construction (5) may be triviallyderived as an orthonormal basis, allows the incorporation of any number of modes, and



2 Orthonormal Basis Construction 4gives the Laguerre, Kautz and balanced realisation bases as special cases.Up to this point we have been discussing ideas rather loosely. To explain our construc-tion clearly we need to become a little more precise by introducing some mathematicalformalism. To begin with, we will assume that any impulse response fgkg we are inter-ested in is causal so that gk = 0 for k < 0 and is in `2 so that P1k=0 jgkj2 <1. Althoughsuch time domain considerations are physically intuitive, it is often easier to work in thefrequency domain by instead considering the Fourier Series (or DFT) G(ej!) given byG(ej!) = 1Xk=0 gke�j!k:The essential link between these time and frequency domain characterisations is providedby Plancherel's relation which gives us that for fgkg; fhkg 2 `21Xk=0 gkhk = 12� Z ��� G(ej!)H(ej!) d!: (6)Therefore, if fgkg 2 `2 then the Fourier series G(ej!) 2 L2([��; �]) and in fact the equalityin (6) tells us that there is an isometric isomorphism between the representations fgkg andG(ej!) so that we can work with either equally well.Additionally, it is well known that (6) de�nes an inner product on `2 and L2. Therefore,if we want to examine the orthogonality properties of 2 basis functions Bn(q) and Bm(q)we can do so by calculatinghBn;Bmi = 12� Z ��� Bn(ej!)Bm(ej!) d!: (7)Let's see how we can use this formalism to design as set of orthonormal basis functionsfBng for system identi�cation.Suppose that we suspect a pole in the true dynamics near �0. Then it makes sense tohave a basis function B0 in the model structure (1) of the formB0(q) = A qdq � �0 ; d = 0 or 1: (8)The choice of d corresponds to a simple time shift on the impulse response of B0 and dependson whether the user feels that a causal or strictly causal model is most appropriate. Itremains to choose the constant A to achieve the normalisation kB0k = 1.The value for A is most easily calculated by writing the inner product (7) as a contourintegral around the unit circle T by using the change of variable z = ej!,hBn;Bmi = 12�j IT Bn(z)Bm(z) dzz (9)and then using Cauchy's Residue Theorem and the fact that on T we have �z = z�1 to givekB0k2 = A22�j IT dz(z � �0)(1� �0z) = A21� j�0j2 (10)



2 Orthonormal Basis Construction 5so that if we want a unit norm basis vector we should put A = q1� j�0j2.Now, suppose we also suspect another mode in the true dynamics which we can repre-sent as a pole in the near �1. Then it makes sense to include a second basis function B1(q)given by B1(q) = A0 qd(1 � �0q)(q � �0)(q � �1) : (11)This choice of the structure of B1 may seem unusual, but is explained by noting that thenon-minimumphase zero at q = 1=�0 is included to ensure that the orthogonality condition< B0;B1 >= 0 is satis�ed.To see this, notice that B0(z) has a pole within the unit disk D at �0, so to ensureorthogonality of B0 and B1 we must include a zero in B1(z) at �0 to cancel this pole. Thisfollows since now B0(z)B1(z) is analytic in D which ensures < B0;B1 >= 0 by Cauchy'sIntegral Theorem:hB0;B1i = q1 � j�0j22�j IT A0(z � �0)(z � �0)(1 � �0z)(1 � �1z) dz = 0: (12)Again we need to choose A0 to achieve the normalisation kB1k2 = 1:kB1k2 = A022�j IT (�0 � z)(�0z � 1)(z � �0)(z � �1)(1� �0z)(1� �1z) dz = A021� j�1j2 : (13)Note that in the choice of B1 the pole at �0 could in fact be chosen anywhere in theunit disk and orthogonality would be preserved. However, we have already decided in thechoice of B0 that dynamics at �0 are important. Continuing in this fashion for user chosenpoles at f�0; �1; �2; � � � ; �p�1g then provides our unifying construction for orthonormal basisfunctions: Bn(z) = zd 0@q1� j�nj2z � �n 1A n�1Yk=0 1 � �kzz � �k ! ; d = 0 or 1: (14)Now, if we restrict ourselves to knowledge of only one real mode by choosing �k = � forevery pole then the general construction (14) gives the Laguerre basis (3) as a special casewhen we also choose d = 0. If we go further and set � = 0 then we have the FIR basiswhen we choose d = 1.When we wish to incorporate a complex mode we need to rethink our strategy a little.This is so since as soon as we choose one pole, say �n, complex then the impulse responsesfor the fBkg for k � n become complex, and this is physically unreasonable in our systemidenti�cation setting. The solution is to only include complex modes in conjugate pairs.This is achieved as follows.Suppose n modes f�0; � � � ; �n�1g have been included in fB0; � � � ;Bn�1g and we now wishto include a complex mode at �n. Then two new basis functions B0n;B00n with real impulseresponses should be formed as linear combinations of Bn;Bn+1 generated by (14). These



2 Orthonormal Basis Construction 6new functions then replace Bn and Bn+1 in the model structure (1). The linear combinationwe are suggesting can be expressed as B0nB00n ! =  c0 c1c00 c01 ! BnBn+1 ! ; c0; c00; c1; c01 2 C: (15)Now it is obvious that we have preserved orthogonality in our construction in that <B0n;Bk >= 0 for k < n. Furthermore, since < Bn;Bn+1 >= 0 we have kB0nk2 = jc0j2+ jc1j2.Requiring B0n and B00n to be unit norm then uses up two degrees of freedom in our choiceof the real and imaginary parts of c0; c00; c1; c01. If B0n and B00n are to be orthogonal to oneanother we need c0c00+c1c01 = 0 and this uses up one more degree of freedom. Finally, if wewant the co-e�cients of B0n and B00n to be purely real then this uses up four more degreesof freedom. But there are eight variables in the real and imaginary parts of c0; c00; c1; c01, soone degree of freedom remains. We should therefore be able to form an in�nite number oforthonormal real co-e�cient orthonormal basis vectors B0n and B00n by exploiting this lastdegree of freedom.This in fact is the case, and is most clearly seen by �rst writing the unifying construction(14) in a recursive form (assume in what follows that we have selected d = 0)Bn = vuut 1 � j�nj21� j�n�1j2  1 � �n�1zz � �n !Bn�1(z):Using this in (15) where we choose complex poles in conjugate pairs as �n+1 = �n thengives B0n(z) = vuut 1� j�nj21 � j�n�1j2Bn�1(z)( (1� �n�1z)(�z + �)z2 � (�n + �n)z + j�nj2) (16)where the co-e�cients �; � are related to the choice of c0; c1 byc0 = � + �n�1 � �n2 ; c1 = �n� + �1 � �n2 :Therefore, to ensure normality we must choose � and � according to the constraint thatjc0j2 + jc1j2 = 1 which (assuming � and � are real) becomes(1 + j�nj2)(�2 + �2) + 2(�n + �n)�� = 1 + j�nj4 � (�2n + �n2)or more compactly xTMx = j1� �2nj2 (17)where x , (�; �)TM ,  1 + j�nj2 2Ref�ng2Ref�ng 1 + j�nj2 ! :



2 Orthonormal Basis Construction 7The eigenvalues ofM are �1; �2 = j1��nj2 > 0 so that choices of � and � giving unit normvectors lie on an ellipse. Now, suppose we make two pairs of choices x , (�; �) giving abasis function B0n and y , (� 0; �0) giving a basis function B00n. These two choices correspondto two pairs of choices fc0; c1g and fc00; c01g. The requirement c0c00 + c1c01 = 0 ensuringorthogonality of B0n and B00n can be expressed as needingxTMy = 0 (18)to hold. As predicted, there is one degree of freedom remaining and hence many solutionsx and y to (17) and (18) exist. To formulate them, suppose we begin by choosing any xsatisfying (17). Then a y that also satis�es (17) but also satis�es (18) may be found byrotating x by ninety degrees in the normalised eigenspace of M :y =M�1=2  0 �11 0 !M1=2xor, to be more explicit, after some arithmetic we have �0�0 ! = 1p1 � �2  � 1�1 �� ! �� ! ;� , �n + �n1 + j�nj2 : (19)To summarise this discussion, if we want to include complex modes in the model struc-ture (1) then we obtain two basis vectors B0n and B00n from two linear combinations of Bnand Bn+1 that come from the unifying construction (14). The �rst basis function B0n isfound as B0n(z) = q1� j�nj2(�z + �)z2 + (�n + �n)z + j�nj2 n�1Yk=0  1 � �kzz � �k !where xT = (�; �) is chosen to lie anywhere on the ellipse (17). A vector yT = (� 0; �0) isthen found that also lies on the ellipse (17) by using the formula (19). The second basisfunction B00n is then obtained asB00n(z) = q1� j�nj2(� 0z + �0)z2 + (�n + �n)z + j�nj2 n�1Yk=0  1 � �kzz � �k !These real valued impulse response basis vectors B0n and B00n are then used in the modelstructure (1) instead of Bn and Bn+1. If we require further basis functions with complexmodes then we repeat the process in (15) by forming B0n+1 and B00n+1 from linear combina-tions of Bn+2 and Bn+3 and so on.A special case of this construction is when we have only one �xed complex mode �k = �to consider and where we make the following special choice satisfying (17)(�; �) = �0;q(1 � �2)(1 + j�nj2)�



2 Orthonormal Basis Construction 8
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1��p�2qq��p�2 �p�1p1�j�p�1j2q��p�1� ykFigure 1: Diagrammatic illustration of the use of our unifying basis.in which case (19) gives (� 0; �0) = q(1 + j�nj2)(1;��):With the initialisation B�1 = 1,��1 = 0 in (16) this gives the Kautz basis (4) if we associate
 = j�j2. Di�erent initial choices for (�; �) satisfying (17) give an in�nite number of secondorder bases other than the Kautz one. This is interesting, since despite this plentiful natureof second order bases, the particular case of the Kautz basis is the only instance we can�nd in the literature save for the balanced realisation construction [4, 5, 6, 21].In fact, as we range through all possible choices of � and � that satisfy (17) we rangethrough all possible second order orthonormal bases given by the balanced realisationconstruction. With this latter system this corresponds to ranging through all possiblebalanced realisations of the all pass function1� 2Ref�gz + j�j2z2z2 � 2Ref�gz + j�j2 :The details of this equivalence between the balanced realisation construction and our con-struction are presented in section 5 and appendix B following.Therefore, all the known orthonormal bases for system identi�cation are special cases ofour unifying construction in (14) under the restriction of �xed modes. However, we suggestthat once the simple construction (8)-(13) is recognised it is unnecessary to make �xedmode restrictions, and as much prior information as possible should be incorporated intothe estimation problem by using the basis choice (14) and a range of poles f�0; � � � ; �p�1g.To �nish this derivation, our unifying construction, together with the model structure(1) is illustrated diagrammatically in �gure 1. The reader can compare this illustration tothe corresponding �gures in [23, 26, 21] in order to gain a perhaps more intuitive impressionof how our unifying construction embodies previously known ones, and also extends them.



3 Gram-Schmidt Interpretation 93 Gram-Schmidt InterpretationThe derivation (8)-(13) of our general basis (14) has the 
avour of a Gram-Schmidt con-struction. With this latter scheme a set of basis vectors say fVng are chosen and an or-thonormal set fBng that span the same space as fVng are constructed via the well knownrecursion Wn = Vn � n�1Xk=0 hVn;Bki Bk (20)Bn = kWnk�1=2Wn: (21)Indeed, any suspicion that a Gram-Schmidt construction has been performed in (8)-(13)is correct.Lemma 1. The general basis functions we arrived at in (14) can also be derived usingthe Gram-Schmidt procedure (20)-(21) with the initial basis vector choice fVng as the oneswe suggested in (2): Vn(q) = 1q � �nProof. See Appendix A. 2224 CompletenessThe question now arises as to whether the unifying basis functions suggested in (14) are`complete'. That is, do they span a comprehensive space of physically reasonable fre-quency responses? Intuitively one would expect SpanfB0; � � � ;Bn; � � �g to be `rich' sinceeach Bk(ej!) can be identi�ed in a 1-1 fashion with the standard basis e�j!k via a Fourierdecomposition.Unfortunately, intuition is often false in in�nite dimensional spaces. Speci�cally, a1-1 map from an in�nite dimensional space to itself is not necessarily onto so that thecompleteness question is not trivial.Nevertheless, in this section we answer the completeness questions as follows. If thereare in�nitely many poles f�kg selected strictly inside the stability boundary jzj = 1 thenour basis functions (14) span all causal systems with square summable impulse responses.Furthermore, this is a necessary and su�cient condition for completeness.In order to state and prove this precisely it is necessary to associate such causal `2impulse responses with a Hardy Space of frequency responses since this lets us draw onknown results on Blaschke products. The only di�culty with this is that the de�nition ofa Hardy space is tied to the classical de�nition of a Fourier series which is an expansion interms of fej!ng instead of the basis fe�j!ng which spans the frequency responses of causalsystems. With this di�culty in mind we begin by noting that by de�nition a function f isin L2([��; �]) if Z ��� jf(!)j2 d! <1



4 Completeness 10in which case it can be written as a Fourier seriesf(!) = 1Xk=�1 ckej!k (22)where equality is in the sense of norm convergence. Since f can be written in terms of ej!,then f can also be considered as de�ned on the circle T so that f 2 L2(T). Now, if thefckg happen to be the impulse response co-e�cients of a discrete time system, then f(�!)is the frequency response of the system and furthermore the Fourier co-e�cients fckg canbe calculated from f(!) as ck = 12� Z ��� f(!)e�j!k d!: (23)The Hardy space H2(T) is formally de�ned [3] as the closed subspace of L2(T) on whichthe elements have Fourier co-e�cients which are zero for negative k. That is, ck = 0 fork < 0.Given this pre-amble, if we are only interested in stable and causal systems, then we areonly interested in systems whose frequency responses f(!) evaluated at �! are in H2(T),and with a slight abuse of terminology we will refer to this as a search for a basis for H2(T).The question of the richness of the basis functions in (14) can then be phrased abstractlyas a question of their completeness in H2(T). This is answered with a necessary andsu�cient condition on the choice of the poles f�kg as follows.Theorem 1. Consider the basis functions Bk(ej!) de�ned in (14). Then SpanfBk(e�j!)gis dense in H2(T) if and only if 1Xk=0(1 � j�kj) =1:Proof. See Appendix C. 222Of course, what we really require is completeness of the impulse responses of the fBng inthe signal space of causal `2 sequences which are also real valued. But Theorem 1 impliesthis since it proves completeness in a larger class.To be speci�c, by Theorem 1 any sequence in the signal space can be made up asa possibly complex linear combination of the impulse responses of the fBng. If any ofthese impulse responses are complex valued, then they may be written as a complex linearcombination of the real valued impulse responses of B0n and B00n introduced in the previoussection. Therefore, by Theorem 1 equating real and imaginary parts shows that any signalspace impulse response can be written as a real linear combination of the real impulseresponses of our basis functions.



5 Relationship to Construction Methods using Balanced Realisations 115 Relationship to Construction Methods using Bal-anced RealisationsThe �rst authors to generalise the construction of orthonormal bases were Heuberger, Vanden Hof and co-workers [4, 5, 6, 21]. Here we provide our interpretation of their methodin order to show how it is subsumed by the unifying construction (14).Suppose a basis with modes at f�0; � � � ; �n�1g is desired. Then form an all pass prototypefunction G(z) which has poles at f�0; � � � ; �n�1g and has state space descriptionxk+1 = Axk +Bukyk = Cxk +Duk:In this case, the Z transform X(z) of the state sequence fxkg is related to the Z transformU(z) of the input sequence fukg asX(z) = (zI �A)�1BU(z) = V (z)U(z) (24)where we write the vector V (z) as V (z) = N(z)d(z)with N(z) being a vector of polynomials in z and d(z) beingd(z) = n�1Yk=0(z � �k):Now suppose that fukg is a zero mean unit variance white noise sequence. Then byParseval's Theorem12� Z ��� V (ej!)V ?(ej!) d! = limn!1 1n n�1Xk=0 EnxkxTk o , P:But, assuming x0 is zero we have xk = k�1Xm=0An�m�1Bumso that 1n n�1Xk=0E nxkxTk o = 1n n�1Xk=0 k�1Xm=0 k�1Xr=0An�m�2BE fumurgBT (AT )n�r�2= 1n n�1Xk=0 k�1Xm=0An�m�2BBT (AT )n�m�2= n�1Xk=0  1� kn!AkBBT (AT )k:



5 Relationship to Construction Methods using Balanced Realisations 12Therefore, by the properties of C�esaro means [10], provided all the poles f�kg satisfy j�kj < 1then P can be written as P = 1Xk=0AkBBT (AT )kwhich is better known as the controllability Grammian satisfying the Lyapanov equationAPAT +BBT = P: (25)The observability Grammian Q may be similarly de�ned as the solution ofATQA+ CTC = Q: (26)The key to the balanced realisation scheme is to notice that if (A;B;C;D) is a balancedrealisation of G then by de�nition P = Q = diagonal. But since G(z) is all-pass, then it isalso true that PQ = I so that in fact P = Q = I. In this case12� Z ��� V (ej!)V ?(ej!) d! = Iwhich means that the n transfer functions in the vector V (z) are orthonormal to oneanother. Furthermore, if we considerVm(z) = V (z)Gm(z) = N(z)d(z)  d(1=z)d(z) !mthen since jG(ej!)jm = 1 we have VmV ?m = V V ? so that the n transfer functions in Vm(z)are also orthonormal to one another. Finally12� Z ��� Vm(ej!)V ?n (ej!) d! = 12�j IT N(z)N(1=z)Td(z)d(1=z)  d(z)d(1=z)!m�n dzzso that if m > n then Vm ? Vn since the integrand is analytic inside T and hence theintegral is zero.In summary then, one takes an all pass prototype functionG(z) with poles f�0; � � � ; �n�1gas desired, �nds a balanced realisation (A;B;C;D) of G(z), forms the vector V (z) as in(24) of n orthonormal basis functions and then extends this to an in�nite set of orthonormalbasis functions by forming V (z)Gm(z).The question now arises of how this neat construction method relates to our uni�edformulation (14). In fact it is a special case of (14) where the modes are restricted to a�nite set f�0; � � � ; �n�1g instead of being allowed to be extended inde�nitely.To see this, note that for the case of the all-pass prototype G(z) being �rst order thebalanced realisation method generates the Laguerre basis [4] which is a special case ofour unifying construction (14) when one �xed real mode �k = � is chosen. When G(z) issecond order, then as detailed in appendix B the balanced realisation method is again a



6 Links to Classical Orthogonal Polynomials 13special case of our unifying construction method, this time when one �xed complex modeis chosen.For higher order G(z) the equivalence is in the sense of linear combinations. Take thethird order case as an example. The balanced realisation method provides the �rst threebasis functions as all third order, whereas our unifying basis provides either a �rst orderand then two third order basis functions, or two second order functions and then a thirdorder one. Either way, by a simple partial fraction argument, the �rst three balancedrealisation bases are a linear combination of the �rst three basis vectors of the unifyingconstruction (14). Continuing in this fashion for higher order G(z) shows that the balancedrealisation bases are subsumed by the unifying formulation (14).6 Links to Classical Orthogonal PolynomialsThe basis vectors fBkg given in (3), as we've already mentioned, have been extensivelystudied under the title of `Laguerre Models'. They inherit this name from the classicalLaguerre orthonormal polynomials from which they are derived. This raises an obviousquestion. Can orthonormal bases suitable for system identi�cation be generated from theother classical orthogonal polynomials such as Legendre, Chebychev and Hermite whichare more commonly used for the solution of certain partial di�erential equations?In order to answer this question we need to chart the course of the Laguerre polynomialto discrete basis development in order to ascertain if the same template can be successfullyapplied to other polynomial systems.This development seems to be shrouded in secrecy in the literature. Here we give ourinterpretation which we have not been able to �nd elsewhere. To begin with, the classicalLaguerre polynomials [19] denoted Ln(x) which most commonly arise in the solution ofSchr�odingers wave equation are de�ned byLn(x) = nXk=0 (�1)kk!  nk !xk (27)and satisfy the orthogonality conditionZ 10 e�xLn(x)Lm(x) dx = ( 1 ;n = m0 ;n 6= m (28)so that the so-called `Laguerre functions' given by  n(x) , e�x=2Ln(x) are L2([0;1))orthonormal. Using a change of variable x = 2�t; � > 0 in (28) and Parseval's Theoremthen gives 12� Z 1�1 b n � !2�� b m � !2��d! = ( 2� ;n = m0 ;n 6= m : (29)where we have used the b� notation to denote Fourier Transform. Now, using (27), theBinomial Theorem and the fact that the Laplace Transform of xne�ax is given by n!(s +



6 Links to Classical Orthogonal Polynomials 14a)�(n+1) we are led tob n � !2�� = nXk=0 nk ! (�1)k(2�)k+1(j! + �)k+1 = 2�(j! + �) "1� 2�(j! + �)#n = 2� (j! � �)n(j! + �)n+1 :(30)Therefore, by (29) the `continuous time' basis functionsB0(j!) = p2�(j! + �)  j! � �j! + �!n (31)are H2(R) orthonormal. Finally, if we use the Bilinear transformation which is de�ned byj! = (ej' � 1)(ej' + 1)�1 , M(') and which maps the imaginary axis to T we get anH2(T) orthogonal set of functions:�(m� n) = 12�j Z ��� B0n(M('))B0m(M('))dM(')d' d' = 12� Z ��� Bn(ej')Bm(ej') d' (32)where Bn(ej') = p1� �2(ej' � �)  �ej' � 1ej' � � !n ; � , 1� �1 + � (33)which are the basis functions we arrived at much more simply in (14) with the specialchoice �k = � for every k.Actually, to be completely precise, the careful reader will notice that (33) does notcome from (14) since the sign of the d.c. gain in (33) is negative for n odd, and this isnot the case in (14). Nevertheless, (14) with �k = � is the construction which has becomeknown in the literature as the `Laguerre Basis'. The fact that it di�ers slightly from (33)merely highlights that this accepted terminology is a trivial misnomer.Having recognised this construction of discrete time bases from classical orthogonalpolynomials we can use the same analysis as for the Laguerre case but begin with the useof Legendre polynomials which are useful in describing the solution of Laplace's equationin the sphere and are de�ned as satisfying the Rodrigues formula [18]:Pn(x) , 12nn! dndxn (x2 � 1)n (34)and which satisfy the orthogonality propertyZ 1�1 Pn(x)Pm(x) dx = ( 2(2n+ 1)�1 ;n = m0 ;n 6= m :Therefore, using the substitution x = 2e��t � 1; � > 0 we obtainZ 10 Pn(2e��t � 1)Pm(2e��t � 1)e��t dt = ( [�(2n+ 1)]�1 ;m = n0 ;m 6= n



6 Links to Classical Orthogonal Polynomials 15so that the `Legendre functions' pn(t) de�ned bypn(t) , q�(2n + 1)e��t=2Pn(2e��t � 1)are L2([0;1)) orthonormal. But from (34)pn(t) = q�(2n + 1)e��t=22nn! dndx(t)n �x2(t)� 1�n ;x(t) , 2e��t � 1= q�(2n + 1)e��t=22nn! dndx(t)n nXk=0 nk !x2k(t)(�1)n�k= q�(2n + 1)e��t=22n [n=2]Xm=0 nm ! 2n� 2mn ! (�1)mxn�2m= q�(2n + 1) [n=2]Xm=0 n�2mXr=0  nm ! 2n � 2mn ! n� 2mr ! (�1)n�m�r2r�ne��t(r+1=2)so thatbpn(!) = q�(2n+ 1) [n=2]Xm=0 n�2mXr=0  nm ! 2n� 2mn ! n� 2mr ! (�1)n�m�r2r�nj! + �(r + 1=2) :This is a very complicated expression, but in fact it is the partial fraction expansion of thefollowing formula which is given in [11]bpn(!) = q�(2n + 1)j! + (n+ 1=2)� n�1Yk=0 j! � (k + 1=2)�j! + (k + 1=2)�! : (35)So, as for the Laguerre case, using Parseval's Theorem we have that bpn(!) given by (35)is an orthonormal basis for H2(R), and again by using the Bilinear transform as for theLaguerre basis we get the Legendre orthonormal basis for H2(T):Bn�1(ej!) = q1� �2nej! � �n n�1Yk=0  1� �kej!ej! � �k ! (36)�k , 2 � �(2k + 1)2 + �(2k + 1) (37)which we could have obtained much more simply from the general construction (14) withthe substitution for �k given by (37).We can �nd no reference to these Legendre functions being used for system identi�cationeven though they would intuitively seem more useful than the popular Laguerre basisfunctions since they have a progression of the pole position and hence allow approximationof a range of modes. They are used for continuous time system synthesis in the seminalwork of Wiener and Lee [11].



7 System Identi�cation using the General Basis 16Having examined the method of passing from orthogonal polynomials to H2(T) basisfunctions, we now show that bases generated from other classical orthogonal polynomialswill not be feasible since the orthonormal bases generated will not by rational in ej!. Thisis due to the nature of the kernel in the orthogonality representation.To be more explicit, the Laguerre and Legendre polynomials are special cases of themost general class of orthogonal polynomials [19] which may be found by orthonormalisingf1; t; t2; t3; � � �g using Gram-Schmidt and the inner product de�nitionhp(t);m(t)i = Z 1�1 p(t)m(t)K(t) dtwhere p(t) and m(t) are polynomials and K(t) is a positive de�nite function we call the`kernel function'. Di�erent choices of kernel give di�erent sets of polynomials, some ofwhich occur so commonly as to be given special names such as `Laguerre' and `Legendre'.These latter two correspond to kernel choices ofK(t) = ( e�t ; t � 00 ;Otherwisefor Laguerre and K(t) = ( 1 ; jtj � 10 ;Otherwisefor Legendre. The crucial point is that both these kernels have Laplace transforms whichare rational in s so that the procedure we have just illustrated of turning orthogonalpolynomials into orthonormal discrete time bases yields functions fBk(q)g that are rationalin q.In contrast, if we take the Hermite and Chebychev polynomials as examples, they haveorthogonality kernels K(t) of e�t2 and (1� t2)�1=2 respectively, whose Laplace transformsare not rational in s. This will lead to bases not rational in q and hence not implementablewith �nite dimensional �lters. Such basis functions are therefore, for practical intents,ruled out.In fact, there seems to be no other classical orthogonal polynomials other than Laguerreand Legendre with appropriate kernels. Other non-classical polynomials such as Kautz can,of course, be generated with appropriate choice ofK(t), but they will lead to basis functionsthat can be more directly derived by just using the unifying formulation (14).7 System Identi�cation using the General BasisThe original ambit of this paper was to attack a system identi�cation problem. We arenow �nally ready to address this after having examined the choice of basis functions fBkgto be used in the model structure (1) that we intend to employ.The problems we are interested in are ones in which N point data records of an inputsequence fukg and output sequence fykg of a linear time invariant system are available.



7 System Identi�cation using the General Basis 17We assume this data is generated as followsyk = GT (q)uk +H(q)�k:Here GT (q) is a stable (unknown) transfer function describing the system dynamics thatwe wish to identify by using fukg and fykg. Unfortunately fykg is possibly noise corruptedby a zero mean stationary white noise process f�kg which has �nite variance �2� = E f�2kg.In fact, this noise corruption may be coloured by the stable �lter H(q). Finally we assumethat fukg is a quasi-stationary sequence [12] with spectral density �u(!).The method of estimating the dynamics GT (q) that we wish to examine is the leastsquares method that we mentioned in the introduction. To be speci�c, we examine the useof the model structure G(q; �) given in (1)G(q; �) = p�1Xk=0 �kBk(q): (38)where � , [�0; � � � ; �p�1] is a vector of parameters. We take G(q; b�) as out estimate of thedynamics GT (q) where the vector b� is found by minimising the squared errorb� = arg min� 8<: 1N N�1Xk�0 �yfk �G(q; �)ufk�29=; (39)and fyfkg, fufkg are �ltered versions of the observed data fykg and fukgyfk = F (q)yk; ufk = F (q)uk:The �lter F (q) is user chosen and stable. The solution b� to (39) is well known once themodel structure (38) is cast in more familiar linear regressor form notation asG(q; �)ufk = �Tk �:Here �Tk = [B0(q)ufk; � � � ;Bp�1ufk] (40)and (39) then has the closed form solutionb� =  N�1Xk=0 �k�Tk!�1 N�1Xk=0 �kyk (41)provided that the indicated inverse exists. The estimated frequency response is taken asG(ej!; b�). The purpose of the rest of the paper is to examine how the choice of the basisfunctions fBkg a�ects the accuracy of the estimate G(ej!; b�).



8 Accuracy of Estimate 188 Accuracy of EstimateGiven the experimental conditions we have assumed, if jF (ej!)j2�u(!) is never zero andLipschitz continuous then we can use the results of [13] to conclude that as the data lengthN grows the estimate b� converges asb� a:s:�! �? as N !1where �? minimises a weighted quadratic norm error�? = arg min� �Z ��� jGT (ej!)�G(ej!; �)j2jF (ej!)j2�u(!) d!� : (42)Therefore, if the basis function set fBkg is H2 complete we can make the asymptotic in Nestimation error as small as we like by making the model order p su�ciently large.Of course, in practice we never have the luxury of in�nite data. Our �nite data estimateb� will therefore have a `variance' error component a�ecting the accuracy of our estimate.It is due to the noise corrupting process f�kg and prevents us from making p arbitrarilylarge.This phenomenon is part of the folk wisdom of system identi�cation that the varianceerror component is inversely proportional to the data length N and proportional to themodel order p. The net result is that for a given N there is an optimal p for which thevariance error due to noise is balanced against the so called `bias error' that results froma parsimonious model structure. At this point the estimation error, by some measure, is aminimum. This is called the bias-variance tradeo�.Rigorous results have been obtained in this area for FIR models by Ljung and Yuan [15],for ARX models by Ljung [14] for Laguerre models by Wahlberg [23] and for the balancedrealisation construction [21]. These results are all of the nature that asymptotically inboth N and p the estimation error due to noise is proportional to p=N times a signal tonoise ratio term.In the following Theorem we provide the same results for our unifying basis. Thisencapsulates the previously known variance error results [15, 23, 21] as special cases. Fur-thermore, the result is not asymptotic in the model order p, although this is obtained ata cost of not providing strict convergence results except in special cases.Theorem 2. Using the model structure (1) with H2(T) orthonormal basis functions fBkgand least squares estimation the asymptotic variance in the frequency response estimatesatis�es limN!1NE njG(ej!; b�)�G(ej!; �?)j2o � 
 p�1Xk=0 jBk(ej!)j2: w.p.1. (43)Furthermore, in the special case where we have white measurement noise which correspondsto jH(ej!)j2 = 1 then we have an upper bound as well
 p�1Xk=0 jBk(ej!)j2 � limN!1NE njG(ej!; b�)�G(ej!; �?)j2o � 
 p�1Xk=0 jBk(ej!)j2 w.p.1. (44)



8 Accuracy of Estimate 19In both cases we have
 , �2� min'2[��;�]( jH(ej')j2jF (ej')j2�u(')) ; 
 , �2� max'2[��;�]( jH(ej')j2jF (ej')j2�u(')) :Proof. See Appendix E. 222The bounds in (43) and (44) are tight since for fBn(ej!)g an FIR basis (43) leads tolimN!1 Np EnjG(ej!; b�)�G(ej!; �?)j2o � min'2[��;�]( jH(ej')j2�2�jF (ej')j2�u(')) w.p.1. (45)which can be compared to the convergence result of Ljung [15]Np EnjG(ej!; b�)�G(ej!; �?)j2o a:s:�! jH(ej!)j2�2�jF (ej!)j2�u(!) as N; p!1: (46)Also, for fBn(ej!)g a Laguerre basis (43) leads tolimN!1 Np EnjG(ej!; b�)�G(ej!; �?)j2o � min'2[��;�]( jH(ej')j2�2�jF (ej')j2�u(')) 1� �2j1� �e�j!j2! w.p.1.(47)which can be compared to Wahlberg's result [23]Np EnjG(ej!; b�)�G(ej!; �?)j2o a:s:�! jH(ej!)j2�2�jF (ej!)j2�u(!)  1 � �2j1 � �ej!j2! as N; p!1 (48)Notice the important point that the convergence results we are comparing our bounds toare asymptotic in both the data length N and the model order p whereas our bounds holdfor a �xed and �nite model order p.Furthermore in the special case case of white input as well as white measurement noise,that is jF j2�u = �2u = constant and jHj2 = 1, Theorem 2 does provide a convergence resultthat is not asymptotic in p and gives (46) and (48) as special cases:NEnjG(ej!; b�)�G(ej!; �?)j2o a:s:�! �2��2u p�1Xk=0 jBk(ej!)j2 as N !1:In summary, Theorem 2 indicates that the variance error in the estimate at a particularfrequency may be minimised by including as few basis functions as possible with signi�cantresponse at that frequency. Of course, one should also keep in mind that this strategy couldresult in increased bias error. This tradeo� will be illustrated in the next section.



9 Simulation Examples 209 Simulation ExamplesWe believe that our general construction (14) is useful for two reasons. Firstly, it pro-vides a unifying construction embodying all known bases in a physically intuitive fashion.Secondly, the general construction (14) can provide bases that are richer than the knownones.They are richer in the sense that more prior information can be injected into the systemidenti�cation problem by the incorporation of a variety of modes in the orthonormal basisfunctions. This is in contrast to the already known bases which only allow the inclusion ofprior information about one mode.In this section we will illustrate the utility of this richness by presenting some simulationexamples. To begin with, suppose we have an underlying continuous time systemGT (s) = e�2s(s+ 1)(10s + 1) (49)which we sample with period one second. The zero order hold equivalent discrete timemodel relating output samples to input samples then isGT (q) = q�2(0:0355q + 0:0247)(q � 0:9048)(q � 0:3679) : (50)Suppose also that our mission is to estimate the dynamics (50) on the basis of observingN = 500 samples of the output fykg of GT when the input fukg is a unit amplitudesquare wave of fundamental frequency 0.02Hz. Finally, suppose we have prior knowledgeabout the time constants in (49) that is accurate to within 30 per cent. That is, out priorknowledge is that the time constants are 7 seconds and 1:3 seconds.Now there are a range of options as to how we might complete our system identi�ca-tion mission, but let us investigate the use of least squares estimation (40),(41) using themodel structure (1) and the unifying basis (14) so that we can take advantage of our priorinformation about the modes of the system.To begin with we choose all the poles f�kg the same and re
ecting the prior informationabout a 7 second time constant. That is we put �k = � = e�1=7 so that a Laguerre modelstructure is employed that incorporates prior information about the slowest mode. Theresults of these choices are shown in the left hand plot of �gure 2 where we have chosenthe model order p = 3. If we use our general basis (14) which allows the incorporation ofthe prior knowledge of both modes with the choice �0 = �1 = e�1=7; �2 = e�1=1:3 then theresult is shown in the right hand plot of �gure 2. As can be seen, using the general basiswith a range of modes can result in much more accurate modelling when compared to themore common Laguerre basis.Now let us increase the di�culty of the problem by corrupting the observed outputdata fykg with stationary and white Gaussian distributed noise of variance �2� = 0:005.Let us also reduce the amount of observed data to 50 samples. In this case, the resultsare presented in �gure 3, where the information presented di�ers from �gure 2 in that
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Figure 2: Comparison of true and estimated frequency responses. Solid Line is true Nyquist,dash-dot line is the estimate. On the left a Laguerre model with all modes at 7 seconds hasbeen used. On the right a generalised basis model with modes at 7 and 1:3 seconds has beenused.
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Figure 3: This shows the same information as in the previous �gure save that measurementnoise has been introduced into the simulation and hence 99:5% con�dence ellipses are shownon these diagrams
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Figure 4: Plot of �2�Pp�1k=0 jBk(ej!)j2 for basis functions used in previous two �gures. Thesolid line is for the general basis with distributed modes. The dash-dot line is for theLaguerre basis.ellipsoidal 99:5% con�dence regions on the estimated frequency response have been drawn.For the model structure (1) we are using these may be calculated as�T (!)P�1�(!) � �where �T (!) ,  RefB0(ej!)g; � � � ;RefBp�1(ej!)gImfB0(ej!)g; � � � ; ImfBp�1(ej!)g !P , Enb�b�To = �2�  N�1Xk=0 �k�Tk!�1 :The constant � is chosen as 12:85 to give 99:5% con�dence regions by recognising that�TP�1� is �2 distributed with p = 3 degrees of freedom.Notice that these con�dence regions are signi�cantly tighter for the right hand plotwhere our generalised basis with distributed modes is used than they are for the Laguerremodel in the left hand plot.This improved accuracy is commensurate with the results of Theorem 2 which tells usthat the variability in the estimated frequency response is proportional to �2� Pp�1k=0 jBk(ej!)j2which we have plotted in in �gure 4 for both the Laguerre basis and our multi-mode basis.From this plot Theorem 2 predicts the variance for our general basis model to be smallerthan for the Laguerre model at all except high frequencies. Indeed, careful inspection of�gure 3 shows negligibly larger con�dence regions for the generalised basis estimate at highfrequencies.



10 Conclusions 23Together, �gures 1 and 2 show that the two error components in system identi�cation,namely `bias error' due to parsimonious model structure and `variance error' due to noisecorruption of measurements can both be signi�cantly reduced by taking advantage of themulti-modal nature of our unifying basis construction.To complete this illustration, we close the simulation study by replacing the systemunder study in (49) with a resonant systemGT (s) = !2c e�2s(3s+ 1)(s2 + 2�!cs+ !2c ) ;!c = 0:8; � = 0:2: (51)If we drive this system with the unit amplitude, 0.02Hz fundamental frequency, 500 samplesquare wave that we used previously and then estimate the system dynamics using themodel structure (1) and a least squares criterion, then the results for di�erent basis functionchoices are shown in �gures 5 and 6. No measurement noise was included in the simulation.In the left hand plot of �gure 5 we show the use of a 4th order Laguerre model with allmodes at 3 seconds. Here the resonant and time delay nature of GT has been completelymissed in the estimated model. In the right hand plot, a 4th order Kautz model with polescommensurate with the resonant mode !c = 0:8; � = 0:2 in GT is used. Again, the error isvery large, this time due to the inability to capture the 3 second mode and the time delay.To remedy this, we use a 4th order unifying basis model with mixed modes; two realones with 3 second time constant as in the Laguerre model and 2 resonant ones as in theKautz model. The result is shown in the left hand plot of �gure 6. The results are muchmore accurate than for the previous cases with the only error component here resultingfrom approximation of the time delay nature of GT .This illustrates that bias error can be signi�cantly reduced in trying to estimate (51)by using our unifying basis with distributed modes. To see the e�ect of our basis on thevariance error, we appeal to Theorem 2 which indicates that this will be proportional toPp�1k=0 jBk(ej!)j2, which we plot for the Laguerre, Kautz, and unifying basis choices of fBkgin the right hand diagram of �gure 6.The results are not so conclusive as they were for the previous simulation example.Depending on the frequency range of interest, �gure 6 shows that any one of the threemodel structures could be expected to give an estimate least sensitive to measurementnoise. However, the unifying basis model appears to be the least sensitive of the threemodels on average over all frequencies. Combined with the much improved bias error forthe unifying basis model, this would appear to be the best choice for minimising the totalerror consisting of both a bias and variance component.10 ConclusionsThis paper has attempted to unify an area of recent interest in the system identi�cationliterature. Namely, the study of using orthogonal basis functions to estimate system dy-namics. Towards this aim we showed how a very general orthonormal basis formulationmay be trivially derived by a process that is essentially a Gram-Schmidt construction. This
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Figure 5: Comparison of true and estimated frequency responses for the case of GT havingresonant modes. Solid Line is true Nyquist, dash-dot line is the estimate. On the left a4th order Laguerre model with all modes at 3 seconds has been used, on the right a 4thorder Kautz Basis model with all modes at a resonant frequency of 0.8 rad/s and dampingconstant � = 0:2 has been used.
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10 Conclusions 25general formulation achieves our uni�cation aim since, as we showed, all other currentlyknown orthonormal bases are simple special cases of our general construction.More interestingly, the known bases are seen to be quite restrictive special cases in whichprior knowledge about only one mode is incorporated. Our unifying construction thereforeleads to an in�nite number of new orthonormal basis systems that allow incorporation ofprior knowledge of any number and type of mode. Taking advantage of this 
exibilityresults in more accurate estimation which we illustrated both by theoretical analysis ofestimate variance and by simulation example.



A Proof of Gram-Schmidt Lemma 26Appendix A Proof of Gram-Schmidt LemmaProof. To begin with, we have W0 = V0 so normalisation givesB0(z) = q1� j�0j2z � �0 :Continuing, B1 is given by Gram-Schmidt asW1(z) = 1z � �1 �  12�j IT  zz � �1! 1� j�0j21 � �0z ! dzz ! 1(z � �0)= 1z � �1 �  1� j�0j21 � �1�0 ! 1(z � �0) :It is easy to verify that W1(1=�0) = 0 so that after the normalisation step (21) we havethat B1(z) is B1(z) = q1� �21(z � �1)  1 � �0zz � �0 !so that we have proved the Lemma for n = 0; 1. Now suppose that the Lemma is true forsome arbitrary n > 1. ThenWn+1(z) = 1z � �n+1 � nXk=0* 1z � �n ;Bk+Bk(z) = N(z)n+1Yk=0(z � �k)for some numerator polynomial N(z). Now, by the orthogonality implied by the Gram-Schmidt procedure0 = hWn+1;B0i = 12�j IT B0(z)Wn+1(z) dzz = q1 � j�0j2Wn+1(�0)so thatWn+1(�0) = 0. Using this and the fact that Gram-Schmidt implies<Wn+1;B1 >= 0then gives thatWn+1(�1) = 0 and so on so thatWn+1 has zeros at 1=��0; � � � ; 1=��n. Therefore,N(z) must be of the form N(z) = Qnk=0(1� ��kz). After normalisingWn+1 to produce Bn+1we �nd Bn+1 must be of the formBn+1(z) = q1� j�n+1j2z � �n+1 nYk=0 1 � �kzz � �k ! :The Lemma then follows by induction. 222



B Correspondence with the Balanced Realisation Construction 27Appendix B Correspondence with the Balanced Realisation ConstructionHere we show that the second order basis vectors generated by the scheme of Heuberger,Van den Hof and others [4, 5, 6, 21] are identical to our construction under the restrictivespecial assumption of �xed modes. That is �k = � for all k. As explained in section 5in the balanced realisation scheme one begins with an all pass version G(z) of the secondorder dynamics of interest: G(z) = 1 � 2Ref�gz + j�j2z2z2 � 2Ref�gz + j�j2 :This has observer form state space description G = (A;B;C;D) given asA =  2Ref�g 1�j�j2 0 ! ; B =  (j�j2 � 1)2Ref�g1 � j�j4 ! ; C = (1; 0); D = j�j2:One then �nds a balanced realisation of these dynamics. Here we use the algorithm ofMoore [16] to �nd this realisation. We begin by solving the appropriate Lyapanov equations(25) and (26) for the controllability and observability Grammians P and Q asP = (1� j�j2) 1 + j�j2 �2Ref�g�2Ref�g 1 + j�j2 !Q = 1(1� j�j2)j1� �2j2  1 + j�j2 2Ref�g2Ref�g 1 + j�j2 ! :We then Cholesky factor Q as Q = RTR whereR = 1q2(1 � j�j2)  j1 � �j�1 j1� �j�1�j1 + �j�1 j1 + �j�1 !and go on to form S = RPRT and then spectrally factor S as S = U�UT . However, inthe special case we are considering of starting with an all pass function the Grammianssatisfy PQ = I so that S as de�ned is the identity matrix which is invariant under asimilarity transformation consisting of rotation by any angle '. Therefore, we can performthe spectral factorisation of S with � = I andU =  cos' � sin'sin' cos' ! :The �nal step of forming a balanced realisation of G is to form the transformation matrix Tas T = UTR. The balanced realisation (AB; BB; CB;DB) is then formed as (TAT�1; TB;CT�1;D).The balanced realisation orthonormal construction scheme then �nds basis functions fB0n;B00ngfrom the balanced realisation as B0nB00n ! = z(zI �AB)�1BBG(z)n



B Correspondence with the Balanced Realisation Construction 28which in our case evaluates to B0nB00n ! =  �z + �� 0z + �0 ! zq1 � j�j2z2 � 2Ref�gz + j�2jG(z)nwhere p2� = j1 � �j cos '+ j1 + �j sin' (B.52)p2� = j1 � �j cos '� j1 + �j sin' (B.53)p2� 0 = j1 + �j cos'� j1� �j sin' (B.54)�p2�0 = j1 + �j cos'+ j1� �j sin': (B.55)Adding and subtracting (B.52) and (B.53) in order to express cos' and sin' in terms of(� + �) and (� � �) then gives that in the balanced realisation construction � and � areconstrained to satisfy (1 + j�j2)(�2 + �2) + 2(� + �)�� = j1� �2j2after we use the identity cos2 '+ sin2 ' = 1. This is identical to the constraint (17) on �and � in our construction. Finally, if we equate expressions for cos' and sin' obtainedfrom (B.52) and (B.53) and also (B.54) and (B.55) we obtain� � �j1 + �j = �0 + � 0j1 � �j (B.56)� + �j1� �j = �0 � �0j1 + �j : (B.57)Solving (B.56) and (B.57) for � 0 and �0 in terms of � and � then gives �0�0 ! = 1p1� �2  � 1�1 �� ! �� ! ; ;� = � + �1 + j�j2 :which is identical to the rotation (19) used in our unifying construction. The balancedrealisation construction with second order G(z) prototype is therefore identical to theunifying construction (14) when the modes �k are restricted to be �xed and in complexconjugate pairs.



C Proof of Completeness 29Appendix C Proof of CompletenessProof. Throughout we use the idea that a set is dense in a Hilbert Space if and only ifthere does not exist a non-zero element of the space that is orthogonal to all the elementsin the set [17].Firstly, suppose that P(1�j�k j) <1. Then by Lemma D.1 the Blaschke product f(z)de�ned by f(z) = 1Yk=0 ��kj�kj  �k � z1 � ��kz!is a well de�ned inner function on D. Therefore f(ej!) is a non-zero function in H2(T) forwhich Df(ej!);Bn(e�j!)E = 12�j IT f(z)Bn(z�1)dzz = 0for any n by Cauchy's Integral Theorem. Therefore SpanfBn(e�j!)g is not complete inH2(T). Conversely, suppose that SpanfBn(e�j!)g is not complete in H2(T). Then thereexists a function f 2 H2(T) not equal to zero such that < f;Bn >= 0 for every n. Now,by Cauchy's Integral Theorem, if f is to be orthogonal to B0(e�j!), then f must have azero at �0. By the same argument, if f is to be orthogonal to both B0(e�j!) and B1(e�j!)then since f is already known to have a zero a �0 then f must have zeros at both �0 and�1. Continuing this argument, if f is to be orthogonal to all the fBkg, then f(z) must havezeros at f�0; �1; �2; � � �g. If f(z) is also to be non-zero and in H2(T), then by Lemma D.2it must be that P(1� j�kj) <1. 222



D Results on Blaschke Products 30Appendix D Results on Blaschke ProductsLemma D.1. Let f�ng be a sequence of non-zero complex numbers in D. A necessaryand su�cient condition that the Blaschke productB(z) = zm 1Yk=0 ��kj�kj � �k � z1� ��kz�should converge uniformly on compact subsets of D is that1Xk=0(1 � j�kj) <1in which case B(z) is an inner function and has no other zeros than those at �0; �1; �2; � � �(and 0 if m > 0).Proof. See [7] page 64 or [17] page 310 (Theorem 15.21). 222Lemma D.2. Suppose f(z) 2 Hp(D) for some p and suppose f 6� 0. Suppose f�ng arethe zeros of f(z). Then 1Xk=0(1 � j�kj) <1Proof. See [8] page 53(Theorem 2.1). 222



E Proof of Variance Bounds 31Appendix E Proof of Variance BoundsProof. A combination of Slutsky's Theorem and Theorem 9.1 in [12] gives the asymptoticresult limN!1NE njG(ej!; b�)�G(ej!; �?)j2o = �(!)�R�1QR�1�(!) w.p.1 (E.58)whereR , limN!1 1N N�1Xk=0 �k�Tk = 12� Z ��� �(!)��(!)jF (ej!)j2�u(!) d! (E.59)Q , limN!1 1N N�1Xk=0 N�1Xm=0 �k�TmE fH�kH�mg = �2�2� Z ��� �(!)��(!)jF (ej!)j2jH(ej!)j2�u(!) d!:Furthermore, by construction the following matrix is positive semi-de�nite12� Z ��� �ujHj2�2� " �F�F jHj2�2� # h ��F ��F jHj2�2� i d! = " Z RR Q #where Z , Z ��� �(!)��(!) jF (ej!)j2�u(!)jH(ej!)j2�2� d!:Therefore, by a standard result for partitioned positive semi-de�nite matrices3 we havethat Z�1 � R�1QR�1. Using this, and using Lemma E.1 with the substitution f =jF j2�ujHj�2��2� then gives the general lower bound (43). Finally, when jH(ej!)j2 = 1 then�2�R = Q so thatlimN!1NEnjG(ej!; b�)�G(ej!; �?)j2o = �2��(!)�R�1�(!) w.p.1 (E.60)so that we can again use Lemma E.1 but this time with the substitution f = jF j2�u��2�to get the white noise speci�c upper and lower bounds. 222Lemma E.1. If �(!)T = [B0(ej!); � � � ;Bp�1(ej!)] and the fBk(ej!)g are L2(T) orthonor-mal, then for f(') any positive de�nite functionmin'2[��;�] S(!)f(') � ��(!)�Z ��� �(')��(')f(') d'��1 �(!) � max'2[��;�] S(!)f(')where S(!) , 2� p�1Xk=0 ���Bk(ej!)���23See Lemma A.3 in [20]
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