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Orchestration in Fog Computing: A Comprehensive Survey
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Fog computing is a paradigm that brings computational resources and services to the network edge in the
vicinity of user devices, lowering latency and connecting with cloud computing resources. Unlike cloud com-
puting, fog resources are based on constrained and heterogeneous nodes whose connectivity can be unstable.
In this complex scenario, there is a need to define and implement orchestration processes to ensure that appli-
cations and services can be provided, considering the settled agreements. Although some publications have
dealt with orchestration in fog computing, there are still some diverse definitions and functional intersection
with other areas, such as resource management and monitoring. This article presents a systematic review of
the literature with focus on orchestration in fog computing. A generic architecture of fog orchestration is pre-
sented, created from the consolidation of the analyzed proposals, bringing to light the essential functionalities
addressed in the literature. This work also highlights the main challenges and open research questions.

CCS Concepts: • General and reference→ Surveys and overviews; • Computer systems organization

→ Cloud computing; Distributed architectures;

Additional Key Words and Phrases: Fog computing, orchestration, monitoring, resource management

ACM Reference format:

Breno Costa, Joao Bachiega Jr., Leonardo Rebouças de Carvalho, and Aleteia P. F. Araujo. 2022. Orchestration
in Fog Computing: A Comprehensive Survey. ACM Comput. Surv. 55, 2, Article 29 (January 2022), 34 pages.
https://doi.org/10.1145/3486221

1 INTRODUCTION

Cloud computing is already a mature paradigm that has been in place since 2006 [83]. It offers vir-
tualized resources, created upon a huge shared infrastructure, that are consumed by the customers
on a pay-per-use business model [139] and with a variety of cost options [19, 62]. Cloud computing
is based on dozens of large datacenters, distributed around the world, that are placed in the center
of the network and accessed by the Internet. Cloud computing also provides automatic scalability
to its services.

Cloud computing datacenters are composed of thousands of resource-rich homogeneous phys-
ical servers that are interconnected by a redundant and stable network [157]. To optimize the
infrastructure in use and comply with service and quality agreements made with the customers, a
resource orchestration framework is in place.
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In recent years, with the technological advances in processors, memory and communications, a
plethora of things was updated with computational capacity, shaping what is known as the Inter-
net of Things (IoT) era [129]. Devices that measure health related parameters, such as smartbands,
smart watches, smart building devices, smart city power grids, and traffic lights, are examples of
this new area [50]. The increased computing power of mobile phones and the desired integra-
tion with these new smart devices create a scenario that combines together several heterogeneous
devices working on the same application or service (e.g. a health monitoring app). Due to its afore-
mentioned characteristics, cloud computing does not attend properly to these new computational
demands, characterized by the need for a nearby computation paradigm.

Fog computing has emerged as a promising solution to meet this growing demand to expand the
processing, network and storage capacity closer to end users, thus complementing the cloud com-
puting fragility [11]. Fog computing’s essential characteristics are low latency, large geographic
distribution, heterogeneity, interoperability, real-time interactions and scalability [57]. However,
researches on the use of this recent computational paradigm are still under development, with
many challenges to overcome [131].

Among these challenges is fog orchestration, which aims to manage computational resources,
dealing with heterogeneity, device mobility and connection uncertainty, to provide services to
the customers while achieving Service Level Agreement (SLA) and Quality of Service (QoS)

requirements [63].
In recent years, some research has been published on orchestration for fog computing, such as

[32, 134, 150, 152]. However, all these papers have presented specific approaches to the orches-
tration and their proposals cover different areas, exposing the lack of consensus in the literature
about what orchestration means in the context of fog computing. Viejo and Sánchez [144] stated
that fog orchestration was still in its infancy since there were only a few published works that
presented actual use cases.

This work aims to present a systematic and comprehensive review of the literature on orches-
tration for fog computing. To reach this goal, five research questions were defined to guide the
analysis and to present relevant results to this topic. In addition, the challenges and open research
issues will also be discussed. Thus, the main contributions of this work are:

• Define and delimit the scope of orchestration for fog computing;
• Present a generic architecture for fog orchestration, created from the consolidation of the 50

analyzed papers;
• Discuss some of the relevant challenges and open issues in the context of orchestration in

fog computing.

To deliver these contributions, this work is organized as follows. Section 2 presents the main
characteristics of fog computing and other related computing paradigms. Section 3 presents an
assessment of orchestration history and its meaning in the context of this study. Section 4 compares
this study with others surveys in the area. The methodology used for the systematic review and
the research questions are presented in Section 5. A fog orchestration generic architecture, derived
from the analysis of selected papers, is presented in Section 6. Next, the challenges inherent to the
theme are presented in Section 7. Finally, Section 8 brings the conclusion and opportunities for
future work.

2 FOG COMPUTING

Just as the natural phenomenon of fog is perceived when a cloud is close to the ground, the
concept of fog computing was created to describe the computational paradigm that aims to bring
the benefits of the cloud closer to end-devices. For this reason, it is considered a highly distributed
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computing paradigm, highly integrated with the cloud, but with the processing also being carried
out at the edge of the network, enabling the execution of applications that until then were not
possible due to the high latency that existed in the communication between the devices and the
cloud [91].

As fog computing concept is relatively recent, with its first definition presented in 2012 [11],
there is still no consensus on the definition of fog computing, as well as requirements related to it,
such as architecture, delivery methods, pricing model, etc. In this way, the initial definition of fog
computing has been revised over time by several researchers from academia [22, 93, 138, 153] and
industry [18, 56, 57, 101]. In these definitions it is possible to note that fog computing is closely
linked to a cloud computing platform, since the fog computing’s computational power will not com-
pletely replace the cloud when dealing with large volumes of data or complex processing problems
[46]. Thus, fog computing is the right choice when the cloud cannot deliver to the applications and
services the needed latency or runtime requirements.

2.1 Features and Architecture

According to National Institute of Standards and Technology (NIST) [57], the essential char-
acteristics of fog computing can be summarized as:

• Low Latency: fog computing nodes are closer to the end users and can offer a faster anal-
ysis and response to the data generated and requested by the users, when compared to the
operations made by a cloud service;
• Geographic Distribution: different from cloud computing, services and applications run-

ning on a fog computing infrastructure require geo-distributed deployment and manage-
ment;
• Heterogeneity: allows the collection and processing of information obtained from different

sources and collected by several means of network communication;
• Interoperability and Federation: resources must be able to interoperate with each other

and services and applications must be federated across domains;
• Real-Time Interactions: fog computing services and applications involve real-time inter-

action, not just batch processing;
• Scalability: allows fast detection of variation in workload’s response time and of changes

in network and device conditions, supporting elasticity of resources.

Regarding fog computing architecture, NIST states [57] that one of its fundamental components
is the fog node. Fog nodes are either physical components (e.g. gateways) or virtual components
(e.g. virtual machines) that are tightly coupled with smart end-devices or access networks and
provide computing resources to these devices. The fog nodes need to support one or more of
the following attributes: autonomy, heterogeneity, hierarchical clustering, manageability, and pro-
grammability [57].

Fog computing environments can base their communication infrastructure on Software-

Defined Network (SDN) [81], on Radio Access Network (RAN) [91] or on a composition of
these technologies. Layered architecture is the most frequent representation used [1, 7, 22, 70, 93].
Specifically, a three-layered architecture is often used to represent a fog computing infrastructure
[36, 71, 88]. However, some different proposals can be found in the literature:

• Four Layers [130]: (1) IoT, (2) Edge Nodes, (3) Intermediate Nodes and (4) Cloud;
• Five Layers [92]: (1) IoT, (2) Edge Network, (3) Intermediate Network, (4) Core Network and

(5) Cloud;
• Six Layers [37]: (1) IoT, (2) Transport Layer, (3) Hardware Layer, (4) Algorithm Layer,

(5) Regional Computing and (6) Cloud.
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Fig. 1. Fog computing architecture overview.

Although there are variations in the number of layers in these proposed architectures, we can see
that IoT and Cloud layers are present in all of them. Thus, the variations can be seen as different
ways of structuring the Fog Layer. Thereby, regardless of the number of layers being proposed,
the architectures can be summarized in three essential layers: IoT, Fog and Cloud, as presented in
Figure 1. Unlike other proposals that used hierarchical architectures with hard borders, this work
utilizes soft borders to delimit each layer, once fog computing devices can be found in the edge,
near the IoT devices, and also near cloud computing devices, like telecom routers and switches. A
comprehensive review of fog computing architectures can be found in [51].

The IoT Layer is a representation of all IoT devices connected at the the network edge. These de-
vices can be operated by the end-users or collect environmental information autonomously. Data
sent by them will be processed and stored in the Fog and Cloud layers. The Fog Layer is comprised
of devices, called Fog Nodes. They are “smart” devices capable of processing, storing and routing
data to the Cloud Layer [121], when needed. For some services that do not have high processing
needs, the requests can be serviced directly from the Fog Layer, saving cloud resources and lower-
ing the risk of network congestion on cloud communication channels. Additionally, it can function
as a stage step between the IoT and Cloud layers providing the needed computational power for
processing services and applications, such as data filtering and aggregation, before transferring
the data to the cloud [4] when not enough resources are available on the Fog Layer. The Cloud
Layer has more powerful resources to process the requests made by the devices in the IoT Layer,
mainly those that were not fully answered by the Fog Layer. Thus, the Cloud Layer is a relevant
component in a fog computing environment [4].

2.2 Related Computing Paradigms

There exist other related computational paradigms and technologies with analogous purposes to
fog computing, but with diverse characteristics and architectures. For these paradigms, as with
fog computing, there is still no mature definition in academia and this generates some confusion
about the intersection among them.
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Fig. 2. Historical timeline of term Orchestration, adapted from [27].

In the literature review carried out for the development of this article, for example, it was pos-
sible to note that there was some confusion about fog computing, the edge computing and Multi-

access Edge Computing (MEC) paradigms. Some authors consider fog and edge computing as
synonymous [42, 123]. MEC can also be interpreted as a niche implementation of a fog environ-
ment [154] that is focused on mobility [140]. This happens due to the similarities between these
computational paradigms, such as proximity to edge devices and also the need for integration with
cloud computing to complement the computational resources required by applications, if neces-
sary [157].

However, there are also differences between them. Fog computing runs services in a multi-
layered architecture while edge computing runs services in a fixed logical location. Edge com-
puting tends to be limited to a small number of peripheral devices [57], whereas fog computing,
in general, has a larger number of devices. MEC can be defined as an implementation of edge com-
puting to bring computational and storage capacities to the edge of the network within the Radio

Access Network (RAN) to reduce latency and improve context-awareness [31].
In addition to Edge computing and MEC, it is also possible to find in the literature some vari-

ations and other proposals for paradigms and technologies that aim to perform tasks closer to
the IoT devices: e.g., Mobile Cloud computing, Mist computing, Mobile Adhoc Cloud computing,
Dew computing and Cloudlet Computing. In any case, supported by the definition of [127], “some
other concepts, not declared as ‘fog computing, might fall under the same ‘umbrella”. In the liter-
ature there are several publications that have focused on the description and comparison of fog
computing with these other computational paradigms and technologies, such as [91, 93, 157].

3 ORCHESTRATION

The Cambridge dictionary [13] defines orchestration as “a careful arrangement of something to
achieve a particular result” and the Merriam-Webster [85] dictionary defines it as “harmonious
organization”. The dictionaries bring the following synonyms to orchestration: managing, orga-
nizing, coordination, reorganization, and restructure.

In the work of de Sousa et al. [27], a survey about Network Service Orchestration (NSO),
the authors have presented a history of usage of “orchestration” in the literature related to NSO.
Figure 2 shows a timeline of the first use of “orchestration” in different research areas. In Cloud
computing, the first time this term was used was in 2009 and in fog computing the term appeared
in 2012.

The paper [97] states that orchestration often refers to “a graph describing relationships between
software elements or processes”, a definition also utilized by [39]. Accordingly, Viejo and Sánchez
[144] define orchestration as the selection of nodes that will participate in the execution of a service
or application. Once selected, these nodes communicate via a secure protocol that guarantees the
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privacy of information exchange. It considers that the demanding entity, in this case an IoT device
requesting services from the upper layer, will always be static and with a fixed association with
the same fog/edge nodes, as in a factory structure. These cited papers have used orchestration
as a dependency or composition graph. In this scenario, all entities involved have an obligatory
participation. This utilization of “orchestration” is usual in the context of Software Oriented

Architecture (SOA) and Web Services [106].
Other studies have definitions of orchestration that approach specific characteristics: orchestra-

tor’s constituent modules, functionalities it is responsible for, and objectives it is supposed to reach.
The paper [151] was one of the first articles that focused on orchestration in Fog environments.
According to it, “Orchestration is a key concept within distributed systems, enabling the align-
ment of deployed applications with users’ business interests”. In its vision, the orchestrator must
“predict, detect, and resolve issues pertaining to scalability bottlenecks that could arise from in-
creased application scale”. In the words of [60], orchestration “refers to the processes of managing
and coordinating the physical computational resources provided by the underlying infrastructure
to serve the applications”. According to [24], “nowadays, orchestration is an overused word; it
is presented in different scenarios to indicate the management of the life cycle of a one or more
distributed components that together deliver a service or functionality”.

The current work uses “orchestration” as a synonym of management, arrangement and coor-
dination. Using the dictionary definitions presented before, it is important to be careful and con-
sider specific characteristics of fog components that will participate in the orchestration. Besides,
there is a need to be harmonious, balancing eventual opposing objectives (e.g. lower latency vs
cost reduction, energy saving vs reaching SLAs) in order to achieve planned results. Two other
synonyms, restructure and reorganization, give dynamism to orchestration in a way that could
envision a lively adaptive or autonomous process.

Considering the diversity of concepts presented, it is necessary to assign a definition for the
term “orchestration” in the fog computing context, and because there is still no standardization
adopted by the academy, the following definition is proposed: “Fog orchestration is a management
function responsible for service life cycle. To provide requested services to the user and assure the
SLAs, it must monitor the underlying infrastructure, react timely to its changes and comply with
privacy and security rules”.

3.1 Orchestration on Fog Computing Related Areas

Orchestration is also found in fog computing related areas that are outside of this work’s scope,
as container orchestration, Software Defined Network (SDN) and Network Function Virtual-

ization (NFV). Figure 3 shows the percentage of results found for each area when searching for
fog orchestration in the databases described in the Section 5.

3.1.1 Software Defined Network (SDN) and Network Function Virtualization (NFV). Software De-
fined Network (SDN) [126] and Network Function Virtualization (NFV) [53] are network technolo-
gies in evidence on the scenario of future internet (FI) due to their improvements to network
programmability and virtualization [133]. SDN’s main characteristic is to separate control and
data planes that are tightly coupled on classic networking devices. Due to this, SDN can distrib-
ute network control functions without losing a centralized (logically) network view in a single
point of management. NFV’s target is to simplify the use of virtual network function (VNF), a
software-based network service, on general-purpose hardware. NFV’s benefits are cost reduction
and elasticity improvements to network functions [133].

They are technologies designed to evolve the network layer, expanding network availability
and performance through the management and orchestration (MANO) of network services.
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Fig. 3. Percentage of results from out of scope areas when searching for fog orchestration.

But SDN controllers lack common application interfaces (northbound interfaces) and NFV orches-
trators rely on different infrastructure models [76]. According to Toosi et al. [133], both Fog and
SDN/NFV are in their infancy and there is no significant research on their integration yet.

This survey aims to delve into fog orchestration, a process that is executed on the application
layer. Despite these differences, Lingen et al. [136] proposed an architecture that integrates the
orchestration of network services with SDN/NFV and user services (applications) on the same
framework. It is one of the 50 analyzed papers, described in the Section 6.5.

3.1.2 Container Orchestration. In an environment such as fog computing, composed potentially
of resource-restricted devices [157], the use of containers, a lightweight and small footprint form
of virtualization [55], is referred to as being more appropriate than the use of virtual machines as
execution environments. There are several container runtimes and Docker [29] is the most well-
known one. Besides the runtime itself, a container orchestration solution, i.e. Kubernetes [67],
Docker Swarm [30], Nomad [100] and Marathon on Mesos [77], can be used to manage container
life cycle, scale them up or down, do self-healing, migrate them and manage a heterogeneous
infrastructure, abstracting the physical devices where they execute. Thus, container orchestration
solutions can be adopted to implement and automate some of the essential characteristics of Fog
Computing (Section 2): heterogeneity, geographic distribution, and scalability.

On the other hand, they have limitations that make them ill-adapted to be fog orchestration
solutions, such as those studied in this work [32]. In a service’s orchestration scenario, the func-
tionalities delivered by deployed artifacts and the relationship among them are central, but in a
container’s orchestration scenario this is not always true [24]. Containers are not device-aware
and they do not consider the geo-location of service instances when deciding which one should
handle each request [44]. Thus the deployment of a container cannot be enforced to a node that has
a specific characteristic (device or sensor attached) and there is no guarantee that the users will be
serviced by a nearby replica [24], [35]. Conversely, a container management solution could favor
resource-rich devices, even if they are located in the cloud, due to their better performance and
load metrics, and this behavior can increase communication latency, harming an essential char-
acteristic of fog computing, as described in Section 2. Finally, container orchestration solutions
implement only a part of what this paper has proposed as fog orchestration on previous subsec-
tion. They do not deliver a full service life cycle management and compliance with privacy and
security rules [135]. Despite these limitations, a container orchestration solution can be a compo-
nent of a broader fog orchestration framework [152], [69] as described in the Section 6.5.
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4 RELATED WORK

Some papers presented taxonomies and surveys about orchestration on different areas of study, for
example SDN [66] and NFV [86]. In [149], the authors proposed a taxonomy for cloud resources
and conducted a survey of cloud orchestration techniques. In the area of Network Service Or-

chestration (NSO), an overview of on-going efforts from research projects, standardization bod-
ies, and both open-source and commercial implementations of MANO frameworks is presented in
[27]. These papers have not included fog computing as a subject of study.

Vaquero et al. [137] approached challenges related to orchestration within which they have
named new generation technologies like fog computing, SDN, NFV, Function as a Service (FaaS).
The authors analyzed the functional orchestration needs brought by these new paradigms and the
requirements that must be met by a next generation of orchestrators that want to implement them.
Several findings and proposals made were designed for paradigms other than fog computing (e.g.
SDN, FaaS) and their applicability to fog is questionable or even impossible. This work has only
analyzed orchestration proposals that can be implemented on fog computing.

The paper [107] surveyed the literature to find and present the main functionalities of fog com-
puting on the context of smart cities applications. The authors mainly focused on connectivity and
device configuration aspects of fog computing, approaching only a few orchestration functionali-
ties: resource management, communication management and security.

The paper [113] compared fog computing to other paradigms (Transparent Computing [153],
MEC [31] and Cloudlet [122]), presenting similarities and differences. The authors also have dis-
cussed about offloading, caching, security and privacy on these paradigms, but without approach-
ing orchestration functionalities.

The survey [72] approached application management on fog computing and identified three
main aspects of it: application architecture, application placement and application maintenance.
The authors presented a taxonomy for each of them. Although the taxonomies have covered some
fog orchestration functionalities, other important ones were outside the scope, e.g. request admis-
sion, communication management and fog infrastructure related monitoring and resource man-
agement.

The paper [98] built a systematic mapping study of Deployment and Orchestration Ap-

proaches for IoT (DEPO4IOT). The authors use orchestration as a synonym of service composi-
tion instead of a broader coordination and management function that includes service composition
and aggregates several other functionalities as this survey does.

The authors of [112] surveyed the literature and presented fog computing main characteristics,
common application domains, existing software and hardware platforms for the IoT and research
challenges. Fog computing orchestration was detailed and described as one of these challenges,
but its functionalities were discussed only partially.

In the work of [140], the authors presented research challenges of fog orchestration and did a
survey about cloud, fog, edge and MEC orchestration architectures. Although 75 works have been
selected for analysis, only four of them had their proposed architectures compared.

In contrast, this work presents an analysis of 50 fog orchestration proposals and it has not in-
cluded cloud orchestration due to the relevant differences that a centralized paradigm has when
compared to distributed ones. Besides, this work aims to carry out a comprehensive and updated
orchestration review and bring to light the main ideas and solutions proposed in the literature,
being an unbiased source of information about fog computing orchestration. Table 1 shows a com-
parison between the related work presented in this section and the contributions made by this
work. As noted, the aforementioned surveys did not delve deeply into fog computing orchestra-
tion concepts, architecture and functionalities.
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Table 1. Related Work Comparison

Surveys Year
Items

Focus on
Fog

Computing

Conceptualizes
orchestration

Discusses
orchestration

functionalities

Consolidates
orchestration
architectures

Relates
orchestration

to management
Kreutz et al. [66] 2014 ∂

Mijumbi et al. [86] 2015 ∂ �
Weerasiri et al. [149] 2017 ∂ � � �

Perera et al. [107] 2017 � ∂
Velasquez et al. [140] 2018 � � � �
De Sousa et al. [27] 2019 � � �
Vaquero et al. [137] 2019 ∂ � �

Ren et al. [113] 2019 ∂ ∂ �
Nguyen et al. [98] 2019 � ∂ ∂

Puliafito et al. [112] 2019 � � ∂ �
Mahmud et al. [72] 2020 � �

This work 2021 � � � � �
�denotes comprehensive discussion about the item.
∂ denotes partial or superficial discussion about the item.

Fig. 4. Steps of SLR methodology used [65] and [108].

5 RESEARCH METHODOLOGY

The methodology of Systematic Literature Review (SLR) adopted in this work was based on
the works [65] and [108]. The steps for the development of this research are summarized in Figure
4 and they will be detailed in the next subsections.

5.1 Research Questions

In the first stage of an SLR, Research Questions (RQ) must be defined, helping to determine what
is being researched, which results should be achieved and guide the SLR [65].

For the purpose of understanding how fog orchestration is characterized in the literature, five
RQs were formulated:

• RQ1: What are the goals of orchestration? - this question aims to collect the proposal’s
objectives, exposing which fog computing issues were intended to be solved. The answers
to this question will be compared to the answers of RQ5 to identify the trends in fog orches-
tration.
• RQ2: What are the orchestrated entities? - the answer to this question will show the

variety of terms used in the literature and help to disambiguate their meaning. Besides, they
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Fig. 5. Research questions overview.

will support the concept of orchestration as a complex management function and not a sub
area of resource management.
• RQ3: What is orchestrator control topology? - this research question will help to catego-

rize the proposals according to the control flow adopted to make and disseminate decisions.
Analyzing the answers, it can be easier to understand the issues that can arise from the
approaches used and to propose solutions already validated on other distributed paradigms.
• RQ4: Which architecture layers are considered? - considering fog computing architec-

ture presented in Figure 1, the answers to this question will show the trends in fog computing
and the relevance of communication and fault management to accomplish orchestration’s
goals.
• RQ5: What are the functionalities comprehended by the orchestration? - orchestra-

tion is a management and coordination function as conceptualized in the Section 3. This
question helps to uncover orchestration proposals and to consolidate a generic architecture
from the ones found in the state of the art.

These questions were also the starting point for search string elaboration, as well as to assist in
the assessment of publications. After performing the search and reading the selected papers, we
expect to find the answers to the RQs. Figure 5 presents an overview of research questions and
points out the subsections where each one will be discussed.

5.2 Search Process

The search process included the selection of the online search databases that were used, the period
and the search string elaboration. For this article, Scopus,1 Web of Science,2 ACM Digital Library3

and IEEE XploreLibrary4 databases were used as research sources. The following search string was
used:

“orchestrat* AND ( fog OR edge OR mec )”
This string was built aiming to bring results that could answer the research questions, presented

in Section 5.1. Besides “orchestration” we also target the variations “orchestrating”, “orchestrated”
and “orchestrator”. As explained in Section 2, some authors consider fog and edge computing as

1scopus.com.
2webofknowledge.com.
3dl.acm.org.
4ieeexplore.ieee.org.
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Fig. 6. Returned results by database.

synonymous and others define MEC as being a niche interpretation of fog computing, focused on
mobility. Due to these considerations, edge and MEC were included in the search string.

5.3 Inclusion and Exclusion Criteria

After using the search string in the related online databases, it was necessary to apply the inclusion
and exclusion criteria. Therefore, the inclusion criteria defined for this research were:

• Publications written in English;
• Peer-reviewed publications;
• Publication date starting from 2012 (year of the first publication on fog computing [11]) ;
• Publications that present architectural models, techniques or methods applied to orchestra-

tion in fog computing.

Likewise, exclusion criteria were those that do not meet any of the inclusion criteria listed above,
as well as:

• Duplicated publications among the databases;
• Publications that are focused on the network layer;
• Publications that present already analyzed orchestration proposals. In this case, the most

recent publication will be included in the survey;
• Publications that have focused on only one of the orchestration functionalities (e.g. resource

management or monitoring) instead of on the coordination and integration of them.

5.4 Quality Assessment

Initially, the research carried out in the four selected databases using the search string and the
inclusion and exclusion criteria returned a total of 1,758 publications. The quantity of search results
by database can be viewed in Figure 6. After removing the duplicates, the number of 1,758 was
reduced to a total of 1,066 publications. Screening of titles and abstracts reduced the quantity to
130 publications.

After reading a sample of selected works, we could identify the most frequently described orches-
tration’s functionalities, i.e. resource management, monitoring and security. To prevent excluding
relevant works that have not used “orchestration” as a management function that coordinates
those functionalities, we decided to run the query defined in Section 5.2 again, but substituting
“orchestrat*” for the functionalities’ names. This step added 15 other publications, reaching a total
of 145. The last step was to read the full text of those 145 works, selecting the 50 publications that
will be analyzed in this survey.
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Fig. 7. Publications by year.

5.5 Data Collection

The first analysis of the 50 selected publications was related to their distribution over the years.
Figure 7 shows this information. It indicates that, although the subject has received more attention
only from 2017, the interest in it remained constant through the years until now. It is important to
notice that 2021 was considered only until February.

A full text reading and analysis of each one of the 50 selected papers was performed to help to
answer the five research questions. The results are presented in the next section.

6 RESULTS

This section presents the results obtained from the 50 selected publications, related to orchestration
on fog computing.

6.1 Goals of Orchestration

RQ1 aims to determine what the goals are that the analyzed orchestration’s proposals try to reach.
Orchestration itself is a coordination of functions and processes and its goals can be perceived as
a resultant of the goals of its constituents. Nevertheless, several papers presented explicit goals
they tried to reach with their proposals and they are described in this section. Some papers have
presented more than one goal and, in this case, they may appear in more than one category. The
analyzed papers that were not cited in the next paragraphs have not presented any specific goals
for their orchestration proposal. Table 2 summarizes the most frequent goals presented by the
analyzed papers and defines a mnemonic code for each goal for further reference.

A proper and optimized resource management is one of the most cited goals [9, 16, 21, 32, 44,
52, 61, 80, 118, 119, 125, 148, 155, 158]. Indeed, processes like service placement and computation
offloading have a strong dependency with resource availability [73]. Another frequently cited goal
is the guarantee of Service Level Agreements (SLAs). Some papers refer to this goal as latency
reduction [59, 142]. Others as an improvement on application performance [58] or application
response time [95], and several set the goal as guaranteeing SLAs or Quality of Service (QoS)

[44, 102, 119, 141, 145, 147, 155]. Service life cycle management is another goal cited by some
papers [20, 28, 47]. It refers to the process of enrolling a service, storing its images on a reposi-
tory, delivering this image to an executing platform when requested, monitoring the availability
and taking proper actions when necessary (e.g. update the image, migrate or replicate the ser-
vice), attending to requirements previously agreed. Last but not least, there are, among the papers
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Table 2. Most Frequent Goals Cited by Analyzed Papers

Goal Code Analyzed Papers Total
Resource management RM [9, 16, 21, 32, 44, 52, 61, 80, 118, 119, 125, 148, 155, 158] 14
Guaranty of SLAs SLA [44, 58, 59, 95, 102, 119, 141, 142, 145, 147, 155] 11
Service life cycle management SLM [20, 28, 47] 3
Minimizing energy consumption ENE [58, 147] 2
Improving application resilience APP [111, 141] 2
Lowering costs COS [34, 147] 2
Providing a trusted orchestration SEC [103] 1
Converging NFV, 5G and Fog NFV-5G [136] 1

analyzed, also citations to other specific goals as lower costs [34, 147], minimizing energy con-
sumption [58, 147], improving application resilience [111, 141], providing a trusted orchestration
[103], and implementing the convergence of NFV, 5G and Fog [136].

Knowing the goals of a specific proposal can help the researcher to better understand the techni-
cal choices and architectural decisions made by the authors of that proposal. Analyzing the results
summarized in Table 2 it is possible to understand why fog orchestration proposals have RM as
the main functionality (48 of 50 analyzed proposals have implemented it, as can be seen in Section
6.5). RM as goal have appeared more frequently in years 2017 and 2018 [16, 118, 119, 148, 155, 158]
and SLA/SLM, in 2019 and 2020 [20, 28, 47, 58, 59, 95]. This finding can suggest a changing in
fog orchestration perspective, in the period of time comprehended by this analysis, from mainly
managing fog infrastructure to run the services to a management and coordination function, man-
aging mainly user relationship with the services provided. As the period of analysis is short, it is
important to monitor the literature to see if this is an actual trend.

6.2 Orchestrated Entities

The second Research Question (RQ2) to be answered refers to the main components being or-
chestrated by the frameworks and architectures proposed. The components are referred here as
orchestrated entities and their frequency of appearance among the analyzed papers can be seen
in Figure 8.

The most frequent entity cited as the target of orchestration actions, among the analyzed pub-
lications, is service [15, 23, 24, 103, 104, 118, 134, 136, 141, 159]. It is a generalization of a piece of
software that delivers a result and must be executed on the fog platform. Some papers have cited
this entity as service components, service segments or micro-services [12, 60, 80, 95, 111], bring-
ing the idea of a fine-grained piece of software. Others referenced them as service chain or service
composition [32, 142, 147], showing the need for managing the dependencies among them.

Within the context of fog orchestration, a synonym of service is application. This orchestrated
entity is referred by several papers [5, 34, 52, 61, 99, 102, 120, 148, 150, 156, 158]. A handful of
papers use application components with the same meaning of micro-services, also exposing the
necessity of managing the dependencies and the composition of small parts to build a larger and
meaningful piece of software [44, 47, 69, 87, 119, 152].

Another orchestrated entity found was task [9, 16, 21, 58, 59, 82, 110, 125, 132]. It has also ap-
peared as a composition of tasks, a pipeline [3] or a workflow [145].

Other entities were found related to specific proposals. The authors of [20] have used pipelines of
“edge functions” (portions of code that will execute on fog nodes). In [155], the entity is a “moving
query”, a request of service made by an IoT object and targeted to another moving IoT object. On
[28] they have used “analytical pipelines”. Only one paper used “hardware”, mobile edge devices,
as a possible orchestrated entity [132]. The authors of [118] also cited the orchestration of end
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Fig. 8. Orchestrated entities.

Fig. 9. Orchestrator’s control topology. (a) Centralized; (b) Decentralized; (c) Distributed. Adapted from [79].

devices, but the actual orchestration on their proposal is only about resources and services. As
each of these entities was referred by only one paper, they were grouped under the label “Others”
in Figure 8.

It is not the intention of this paper to discuss the minor differences in the meaning of the or-
chestrated entities used by analyzed papers. It is helpful to present all the different names used in
the literature to inform the fog computing orchestration researcher that these differences are not
meaningful from the point of view of an orchestration framework, a management and coordination
function. In this sense, the word “service” will be used from now on, representing an executable
piece of code that is managed by the orchestration framework in place.

6.3 Orchestrator Control Topology

RQ3 intends to identify which control topologies are used to implement the orchestrator concern-
ing the control flow and decision making. Masip et al. [79] described three control topologies that
can be used in fog environments: centralized, with only one central node as the orchestrator; de-
centralized, where groups of nodes have a local leader node and the leaders collaborate on decision
making in a pre-defined way; distributed, where all the nodes can interact to make decisions about
the whole infrastructure. A visual representation of these topologies can be seen in Figure 9.

6.3.1 Centralized. A large number of proposals, 34 of 50 papers, have proposed a centralized
topology. With an orchestrator at a central position it is possible to achieve a comprehensive view
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of the distributed and dynamic infrastructure. Thus, functions as resource management become
simpler in this scenario [5, 12, 16, 20, 23, 28, 32, 34, 47, 52, 69, 80, 82, 84, 87, 95, 99, 102–104, 111,
119, 120, 125, 134, 136, 141, 145, 147, 150, 152, 156, 158, 159].

On the other hand, the problem of having a Single Point of Failure (SPOF) and its conse-
quences should be addressed. Some papers have proposed solutions to this issue (SPOF): the use of
replication jointly with leader election. In this sense, although there is only one orchestrator at a
time, there is a predefined way to choose another in case of orchestrator’s failure or unavailability
[103, 111, 145].

In [148], each service has a centralized server in the cloud that supplies the requests made by
the users. To improve service performance, a partitioned server can be placed on fog nodes so the
users in the vicinity can connect to this local server and have their service-related data managed
locally instead of connecting to the cloud. Periodically, the fog nodes update the centralized server
so it can have a global view of the service usage. When a fog node cannot execute an additional
local server or cannot guarantee the SLAs, it denies the allocation or, when already allocated, it
migrates local data back to the cloud.

6.3.2 Decentralized. A handful of papers have proposed a decentralized topology for decision
making regarding the orchestrator’s functions. Some functionalities can be distributed among sev-
eral nodes. These nodes have to exchange status information about the resources they manage and
they have to make decisions using the available information, that can be partial.

In the proposal published in [60], the virtualized infrastructure is splitted into domains, i.e.
groups of nodes, and one of these nodes is the controller, locally responsible for the orchestration
of their resources. Controllers communicate to each other using peer-to-peer (P2P) protocol. In
the architecture proposed by [24], there is a central entity, called Fog Orchestrator (FO), that de-
livers actions to be executed by distributed entities, called Fog Orchestrator Agents (FOA). FOAs
can act also as a central entity when needed: e.g. in the case that the FO can not be reached due to
connectivity shortages. In the approach used by [142], a centralized strategy takes action on north-
bound communication and a decentralized one on the southbound communication. Choreography
is used on the southbound communication. In [155], an entity called midway server, located on
the Fog layer, is in charge of a geographical region of interest. When a request arrives, e.g. a query
about the load of traffic in the next five miles, it broadcasts the query to the edge gateways, located
on the IoT layer and in charge of tracking the things (vehicles, road side units, mobile phones) in
its local area. Each edge gateway has an installed query table used to notify the midway server
when a device goes outside the range of each query. This decentralized architecture aims to reduce
communication cost considering that the things are moving objects.

In Lamen [118], the central orchestration module is in the cloud and it is responsible for re-
ceiving the service requests and delivering them to the decentralized modules in the Fog, called
mediators. Mediators are responsible for the discovery and resource management of a cluster of
IoT devices, gathered together based on their geo-location. When mediators receive a request for
service execution it selects the devices that will do the job and delivers the result back to the cloud,
keeping private the devices’ identities. In the cloud, results are summarized and returned to the
requester.

In [44], there are centralized application controllers in the cloud that manage application place-
ment and life cycle. A specific process runs on the cloud to automatically discover new fog sites,
groups of fog nodes that can share resources from the devices that compose them. At each fog site,
there is an agent responsible for site tenancy, resource management and monitoring. According
to application policies in the cloud, an application controller can share resources from more than
one fog site and this flexibility improves application performance.
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In Hydra [61], each node can assume one or more roles per application deployed on the system,
e.g. leader, host. Using a location-aware based algorithm, a specific node is determined as the leader
of that application and a group of nodes is set to host and control that application in the system.
In a per application basis, there are several groups of nodes, each one with a leader, that interact
to acquire and release resources, i.e. nodes, as needed.

Only [3] have published no details about the way it works and which functions were addressed
on the decentralized architecture the authors have proposed.

6.3.3 Distributed. In the last orchestrator control topology, there is no central or leader node.
All nodes can make decisions about orchestration functionalities and communicate the results to
the others. In [58], each node decides whether and where to offload tasks (to itself, to other nodes
or to the cloud), according to the availability of resources. In [132], each fog device does task or-
chestration. On a rotation-basis, one of the devices does area orchestration, moving the mobile
devices in a way that more computational resources be placed closer to where more requests are
coming. In the case of [15], there is a Service Defined Orchestrator (SDO) for each deployed
service. SDOs use a consensus algorithm to acquire and allocate needed resources from the shared
infrastructure. In the FORA platform [110], an application deployment starts with the collabora-
tion between fog nodes. Each node can make local decisions about which application tasks it will
execute. To better decide, a node receive information about resources and communication latency
of other neighbor nodes.

Although Centralized is the most used control topology among analyzed papers, only three of
them have addressed the SPOF risk. This shows that fault tolerance needs to be improved in fog
orchestration. Besides, as heterogeneity is one of the essential characteristics of fog computing,
as seen in Section 2, it is expected that the node running the orchestrator be one of the most
powerful nodes available, that high availability strategies be used in a set of nodes (clustering,
replication, etc.) or even that the orchestrator executes on cloud nodes, but these scenarios were
barely exploited by analyzed papers. Fog Computing is a distributed paradigm. One may think
that the proper control flow topology would also be a distributed approach, but this assumption
is not confirmed by the findings in this survey. To implement decentralized or distributed deci-
sion control flow, there is a complexity increase due to the need for consensus management and
data replication, processes that are more dependent of good communication channels and higher
processing power, although connectivity issues and restricted resource nodes are expected on fog
infrastructures.

6.4 Covered Architecture Layers

The analysis of which architecture layers are considered in orchestration approaches in fog com-
puting is necessary to answer RQ4. Fog extends the cloud, providing computational resources to
execute services on the edge, closer to the end users. As described in Section 2, this paper considers
a three layered architecture (1.Cloud, 2.Fog, and 3.IoT) where the Fog layer includes everything
between the cloud and the end users. This section categorizes the analyzed papers according to
the layers where their proposals orchestrate services on.

6.4.1 Fog Layer. A handful of papers have proposed frameworks to orchestrate services consid-
ering only the Fog layer. A representation of it can be seen in Figure 10(a). The resource manage-
ment function (see Section 6.5.3) will have to deal with heterogeneous devices, but it is expected
that they occur in a moderate quantity when compared to the IoT layer. This scenario has a lower
complexity when compared to multi-layer scenarios as it will be described on the next subsec-
tions. Even when there is a need for cloud resources, i.e. lack of proper fog resources required by a
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Fig. 10. Fog architecture layers where orchestration operates (inside red lines): (a) only Fog Layer; (b) Fog

and Cloud Layers; (c) all Layers.

service, they are requested by fog orchestration by means of a cloud provider’s APIs. The following
papers have proposed orchestration in the Fog layer: [3, 20, 23, 24, 32, 69, 99, 111, 147, 158].

6.4.2 Fog and Cloud Layers. Some analyzed papers have considered not only the Fog layer, but
also the Cloud layer as places where services could be executed. A representation of this scenario
can be seen in Figure 10(b). In these cases, fog orchestration must monitor and manage available
resources on two different layers and there is a complexity increase in this management. The
papers are: [5, 12, 16, 21, 34, 52, 59, 84, 87, 95, 110, 125, 132, 134, 141, 148, 159].

6.4.3 IoT, Fog and Cloud Layers. Orchestrating services on all layers differs from the last pre-
sented scenario due the use of IoT devices’ resources. Having the IoT layer as a possible exe-
cution environment means that the end user’s devices must be managed and share their avail-
able resources. A representation of this scenario can be seen in Figure 10(c). A huge number of
devices are expected in this layer [43], and this will increase management complexity. The fol-
lowing papers have proposed orchestration functions that manage services throughout all layers:
[9, 15, 28, 58, 60, 61, 80, 82, 102, 119, 120, 136, 142, 150, 152, 155, 156].

6.4.4 Other. Some analyzed papers have proposed frameworks that orchestrate services on a
configuration of layers that are different from the ones presented previously. These variations are
summarized in the following paragraphs.

With the focus on industrial devices and using seamless computing - a standardized service ex-
ecution platform - the authors of [47] have proposed an architecture that orchestrate resources
in four layers: Cloud, Datacenter (on-premises infrastructure), Fog and IoT. In Lamen [118], the
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orchestrator is located on the cloud, but the resources to execute the services are in the IoT layer.
The framework considers that the devices in the IoT layer will form a geo-location based cluster
and one of them will be elected as the leader, named as the Mediator. The Mediator will manage
the other devices to execute the services requested by the orchestrator. In Sunstone [44], the or-
chestration also targets the Cloud and Fog layers, but the architecture has a discovery mechanism
that operates on Internet-scale, allowing the fog layer to be distributed across several independent
sites. The approach uses internet protocols (i.e. BGP and DNS) to discover fog sites. After discov-
ery, their resources can be shared with applications and services orchestrated by Sunstone. The
Maestro framework [145] works only in the IoT layer. One of the IoT devices is defined as the
broker and it has the role of orchestrating the tasks that compose a requested service so they can
be executed on the resources of one or more proximal devices.

Several proposals (19 of 50) have included the IoT layer as a place where their orchestration pro-
posals could work on. But as this layer could represent the end user devices, resource management
can be difficult since it raises privacy issues and potentially mobility management. These issues
were not addressed by the majority of works. In use cases where IoT Layer is related to the end
users and Cloud and Fog layers are related to the service provider, the utilization of IoT devices as
execution environments might not be feasible without clear cost and operation models.

6.5 Functionalities of a Generic Fog Computing Orchestration Architecture

Aiming to answer RQ5, the description and architecture of functional modules proposed to address
fog orchestration were extracted from the analyzed papers. Some functionalities are well known
and easily recognizable as being part of an orchestration framework (e.g. resource management).
They have appeared in the majority of papers as can be seen later in this section. But other func-
tionalities, such as a function that strategically (re)locate mobile fog nodes to better deal with local
changes on computation load, are very specific and may not be well known.

To expose the approaches and solutions given by the literature, this paper presents a generic
architecture that consolidates them. The architecture is presented in Figure 11. It shows all the
orchestration’s functionalities that were described in the analyzed papers. The following subsec-
tions will describe these functionalities, the way they interact with each other, and point out the
papers that have proposed them.

6.5.1 Admission Control of Incoming Requests. An orchestration framework must have a way
of receiving the requests to provide the services available within the fog computing provider’s
portfolio. This functionality may verify a requester’s credentials before serving him, being an ad-
ditional step for privacy preserving and checking if the requester has a proper authorization to
run the requested service.

Although the majority of analyzed papers have not addressed this interface and considered that
the requests will arrive in some way that is not described, few of them addressed this functionality
and provided an interface to admit requests for service delivery and execution [3, 34, 134, 156].
Some proposals have defined and published an Application Programming Interface (API). This
API can be integrated to legacy request management systems or be instantiated directly in order
to access the service requested [23, 52, 59, 119].

The admission control of incoming request module can also help to guarantee SLAs and Quality

of Experience (QoE) agreements. After receiving a request, it is possible to verify if the fog
infrastructure has available resources to provide and also if the requesting user has the minimum
resources required (e.g. signal strength, battery power) to wait, interact and timely receive the
results. A request can be rejected by this functionality when it is not possible to fulfill it [104].
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Fig. 11. A generic fog computing orchestration architecture.

6.5.2 Service Management. A service is an executable piece of code that does some kind of
processing and delivers a result [105]. Service Management (SM) is the functionality that deals
with the life cycle of a service within a provider’s portfolio.

Several analyzed papers have proposed SM module in their architectures [9, 16, 61, 87, 95, 102,
110, 111, 120, 125, 136, 148]. To do what it was made to do, a service will need a set of resources,
dependencies that must be provided prior to its execution. Besides, a service may have specific
requirements to function properly and achieve its objectives, e.g. a minimum amount of execution
memory. This information must be provided at the time of service registry and it can be used in
almost every life cycle phase after a service request has arrived. The executable code, or service
image, must also be provided, following the rules defined by the orchestration framework about the
supported executing environments. Executable code and related information about the constraints
and requirements form a database called service repository, proposed by the papers [3, 5, 16, 24,
44, 52, 69, 82, 99, 118, 119, 134, 136, 141, 152, 156].

Service management may decompose a monolithic service into micro-services to execute them
independently, guaranteeing isolation between them and providing a better use of resources [95].
Service management is also responsible for requesting a resource increase when monitoring infor-
mation about a service points to a risk of not fulfilling a given requirement. This resource increase
will be analyzed by the resource management module and result in one of the following situations:

(1) Fog node executing the service has available resources: Resource Management (RM) re-
quests the improvement;

(2) Fog node executing the service does not have available resources: RM requests service offload
(migration) to a resource-richer node or to the cloud;

(3) Fog node executing the service does not have available resources and there is not another
node that can execute the service properly: SM will be informed and will decide whether a
lower execution performance can be accepted or not.

Service management interacts with resource management to check the availability of fog in-
frastructure at specific moments and to communicate a change in the needed resources of each
service.
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6.5.3 Resource Management. Fog computing is a dynamic environment and its resources, i.e.
hardware and software components, must be well managed to cope with the agreements made with
the users. Resource management in fog computing is a complex subject that aims to address the life
cycle of the portion of the shared infrastructure that is available to support the services provided by
the fog operator [55]. Resource management is the most frequently provided functionality among
analyzed papers. It is also the most-cited goal of an orchestration framework, as shown in the
Section 6.1.

Fog orchestration frameworks use resource management to provide the environment where
services will be executed, helping to reach the purpose of extending the cloud to the edge and
to comply with agreed SLAs. Resource management can be divided on several sub processes (e.g.
resource discovery, allocation, provisioning, scheduling, placement, etc.) [75], [45], according to
the phase of resource life cycle management involved. There is no consensus in the literature
about these sub processes’ names and sequence and it is not the intention of this paper to get
deeper into this issue. None of the analyzed papers presented functionality that has covered all
the sub processes of resource management.

This subsection approaches the focus given by analyzed papers on this subject. The objective is
twofold. First, it presents a view from a higher level of abstraction, from the point of view of an
orchestration framework. Second, it exposes the details of some specific proposals, bringing them
to light to help further studies in this specific area.

The resource discovery sub process is responsible for finding out new fog nodes that could inte-
grate with the fog infrastructure. To be found and integrated, fog nodes can use self-announcement
as an active strategy to send the information about their availability and resources to the orchestra-
tion framework, usually located on the same domain. To find fog nodes located on other domains,
the orchestrator can search for them through the Internet. As soon they are found, a previously
established protocol is initiated to confirm that is safe to integrate them. In ExEC [159], after receiv-
ing requests that come from other domains, the orchestrator can automatically find an independent
fog provider with the use of already proven Internet protocols and tools (e.g. DNS, traceroute) and
propose a commercial agreement with the use of blockchain. After the agreement is established,
the discovered fog nodes are integrated to the fog infrastructure. A similar Internet-scale discovery
strategy is used by Sunstone [44]. The following papers have approached resource discovery in
their orchestration framework: [20, 23, 24, 58, 61, 84, 87, 99, 110, 111, 120, 156, 159].

The information about new fog nodes and the status of availability of their resources is recorded
on a repository (a resource inventory) that is managed by the orchestration framework in place.
This repository can be updated by periodic messages sent by the nodes, by monitoring events
and by service management actions. The following papers have described a resource inventory:
[3, 15, 23, 24, 28, 44, 82, 87, 99, 111, 119, 156].

After a request is accepted by the orchestrator, resource management must allocate the resources
needed to run the requested service. According to Kalyvianaki [63], resource allocation is the task
that aims to provide, in an appropriate manner, the computational resources so that the service or
application can achieve its defined performance and QoS goals. This subject is widely researched
in the area of computing since computational resources are often limited and, therefore, must be
well used. In recent years, several papers have been published on this subject in the most varied
computational paradigms, such as Grid Computing [41], High Performance Computing (HPC)

[48], and Cloud Computing [124]. The resource allocation is relevant in several areas of research
because it aims at the optimized use of available resources [64]. Resource allocation, also referred as
resource provisioning [68], is a sub process of RM responsible for selecting and reserving, from the
resource inventory, the best available resources to execute the service. In the paper [34], to avoid
problems related to over and under-allocation of resources, a deep learning approach is used to
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make decisions about scaling the fog resources. In TACRM [21], a trust value is estimated for each
user. Based on this value, a user’s priority is defined and it is used to define the amount of resources
allocated. Users with highest priorities should receive the maximum of requested resources, if
available. The following papers have proposed resource allocation/provisioning functionality:[9,
15, 21, 23, 24, 34, 52, 61, 95, 102, 125, 145, 148].

Resource scheduling in fog computing is responsible for reaching the best viable assignment of
available resources to service requirements, according to the scheduling policies in place. Its goals
are both to meet QoS requirements and to lessen the execution time for the services [45]. This
RM sub-process was described by [12, 28, 52, 60, 61, 95, 118, 119, 145]. The placement of services
makes use of previous RM described sub-processes to find the best resource set that could execute
all the service’s components and meet QoS and SLAs [117]. It was implemented by the proposals
in [15, 16, 28, 32, 44, 80, 82, 84, 95, 99, 118, 132, 141, 147, 148, 150, 156, 158]. Some papers have
focused on the computation offloading, a function that puts on a resource-richer node (or in the
cloud) a service (or part of it), preventing the requester from exhausting its resources, and sending
back the results. The following papers have addressed computation offloading in fog computing
orchestration: [15, 20, 58, 60, 82, 104, 120].

After a service has started its execution, the scenario can change dynamically and it could be
necessary to take actions to guarantee a desirable performance and optimize the resource usage.
Auto-scaling is the resource management sub process that is in charge of taking these actions
[128]. Various approaches were proposed in the literature to address this problem. For instance,
horizontal scaling [94], adding or removing service instances according to the load increase or de-
crease. Or vertical scaling [38], resizing the resources allocated to the service. The scaling behavior
can be proactive, based on techniques that try to predict the load variation and act to anticipate
it, or it can be reactive, based on predefined rules that take action after load variation occurs
and reach specific thresholds, e.g. CPU usage above 90% [128]. In RECAP [102], the framework
proposed performs application modeling, recording application characteristics, dependencies and
limitations. This information will be used thereafter to autonomously scale the application verti-
cally and horizontally, as needed. The following papers also proposed auto-scaling implementation:
[15, 32, 34, 52, 61, 148].

All the analyzed work cited previously in this subsection have proposed resource management
functionalities designed to achieve the specific goals they intended to. PiCasso [69], a service or-
chestration framework targeted to Small Board Computer (SBC) as underlying infrastructure,
utilized containers as an execution environment. The following papers also rely on containers as
execution environment: [5, 16, 95, 119, 148, 156].

Other papers have used modified container orchestration solutions to deal with resource man-
agement inside their proposals. The authors of [152] have extended Kubernetes [67], adding a local
service image repository and a labeling system, used to map service requirements to fog nodes, con-
sidering the nodes’ resources and location, explicitly recorded on labels attached to them on Kuber-
netes. The papers [12, 47, 119] also used Kubernetes as part of their resource management strategy.

6.5.4 Monitoring. Fog is a paradigm that aims to provide computational capacity in the vicinity
of the user by means of fog nodes, heterogeneous resource-restricted devices that are linked to the
user device by one or a few hops through a local network (wired or wireless) [11]. These character-
istics bring uncertainty about resource availability. The resources must be monitored frequently to
guarantee an updated status of the infrastructure that will be used to provide the services. Besides
verifying availability, monitoring is also about the measurements needed to analyze the require-
ments that a resource (or service) must attend to, according to the SLAs or QoEs. Thus, monitoring
is also a function that is of primary importance in a fog computing orchestration framework.
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Due to aforementioned restrictions of fog nodes, there has to be a local monitoring function
of its resources (energy, CPU, memory, storage, accelerators, attached sensors). This information
can be used to make decisions about accepting new services, about offloading, etc. According to
fog computing topology of control in place, as discussed in Section 6.3, this information can be
stored locally to support autonomous decision making, exchanged with other nodes or, to support
a centralized decision-making, exchanged to a central module to give a broader view of all the
infrastructure.

Although this functionality be of primary importance to fog computing orchestration, the pro-
posals barely cited it without offering detailed information about its behavior, complexity and
issues. This is an identified research gap that could be explored in future works. The following
proposals (40 of 50) have included monitoring in the functionalities they provide:[5, 9, 12, 15, 16,
20, 21, 23, 24, 28, 32, 34, 44, 47, 58–61, 69, 80, 84, 87, 95, 102, 104, 110, 111, 118, 120, 125, 132, 134,
136, 141, 142, 147, 148, 150, 152, 156].

6.5.5 Optimization. According to Bellendorf and Mann [10], “Optimization plays an important
role in fog computing research, since the fundamental goals of fog computing are related to op-
timization of metrics like latency, energy consumption, or resource utilization”. An optimization
problem is typically structured by variables that encode decisions to be made, constraints that the
variables should satisfy and an objective function. The goal of optimization is to find a solution that
minimizes or maximizes the objective function and satisfies the constraints [74]. The optimization
module of a fog orchestrator implements algorithms and techniques to minimize some metrics (e.g
latency, network load) and/or maximize others (e.g. resource availability). These optimizations can
help the orchestrator to achieve other composite metrics (e.g. QoS, QoE, SLA). This module must
also consider the requirements and constraints of each service that are available in the Service
Repository, as described in Section 6.5.2.

In the proposal presented by [142], a mobility predictor function is available. The service man-
agement functionality uses it to predict the location of a moving user and, with this information,
place or replace a service requested by that user and comply with the SLA. This approach is also
used by [155].

The paper [147] proposed an optimization function that calculates the optimal re-configuration
of topology in terms of location of services to guarantee agreed QoE/QoS. This strategy is also
adopted by [95, 150, 158]. The work of [95] uses a Bayesian Iterative Reinforcement Learning
approach to reconfigure the topology of services.

Other approaches related to service distribution are (1) Decompose the service [134] into a Di-

rect Acyclic Graph (DAG) of micro-services and make a deduplication [145], finding the sub-
DAGs that are used by more than one service and preventing their multiplication in the infrastruc-
ture and (2) Consolidate the services [158] using the same approach of cloud datacenters’ server
consolidation. The goal is to have a minimum number of service replicas and redirect user requests
to the consolidated services during the process, optimizing resource usage. The approach proposed
by [60] uses analytics on historical data of peer domains to improve the decision of offloading a
service among domains. The use of analytics on already collected data is also made by [58].

Predicting a future scenario to anticipate actions is an optimization strategy found in some
papers. In [132], each Fog device runs an agent that is responsible for the orchestration in its
segment (network range). One device at a time is also responsible for area orchestration, a function
that looks at area (sum of all segments) load and (re)locates mobile edge devices to segments that
need more resources. The paper [141] also uses network load prediction to optimize its resource
and service management actions. Besides predicting network load, communication load prediction
[155] and computation load prediction [104, 118] are other approaches found in the literature.
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Optimization can be used on QoS verification. In [16], a model-free machine learning technique
that fits well on resource restricted devices, called reinforcement learning, is used to accomplish
this task.

CHARIOT [111] uses a domain-specific modeling language (DSML) to describe the fog en-
vironment: fog nodes and service portfolio. It also formulates Satisfiability Modulo Theories

(SMT) constraints that encode environment properties and requirements, enabling the use of SMT
solvers [26] to dynamically compute optimal system (re)configuration at runtime. The use of de-
scription languages to model fog nodes and services is also used by [15, 16, 136].

6.5.6 Communication Management. Although communication is obviously extremely impor-
tant to achieve the goals of an orchestration framework, only a handful of papers have included
this functionality in their proposed architecture and offered details about the entities and means
of communication they use.

As seen in the previous subsections there is a need for communication and an intense data
exchange to implement the decentralized [21] and distributed [9] orchestration control topologies
(Section 6.3), to do resource management considering other domains [60] or different fog sites [44].

Communicating with resource-restricted and heterogeneous devices using an unstable network
is also a challenge that has to be addressed. These fog computing characteristics will restrict the
communication protocols and tools that are proper to use in this scenario. In the paper [24], the
authors have proposed a machine-to-machine (M2M) communication module that is deployed
to the fog nodes for talking to attached devices and sensors on the southbound interface. The
module is responsible for collecting generated data and monitoring information (resources avail-
ability, battery level etc). The authors have used OpenMTC M2M Framework [146] to implement
the proposed module. The paper [120] also used M2M communication. Other approaches were
proposed for southbound communication: inter-layer communication [80], Geographically Ad-

dressed (GA) Messaging [5] and plugin-based [52].
In [142], the authors described a module that controls the communication among different or-

chestrator instances that may be deployed simultaneously in the three layers: IoT, Fog and Cloud.
The paper [60] proposed a communication management functionality responsible for the west-
bound communications, i.e. frequent exchanged messages between peer fog domains. The mes-
sages exchanged have a threefold objective: (1) Communicating available resources and rules to
use them; (2) Measuring transmission delays that will be used to guarantee QoS requirement of
IoT services, and (3) Creating a database of historical data of each domain to improve offload de-
cisions by the use of analytics. The paper [120] also utilized peer-to-peer communication on the
westbound interface. The work of [58] implemented this communication by UDP broadcast while
the proposal of [20] utilizes a shared memory approach.

The paper [15] used communication management for two reasons: (1) in an internal module,
to implement a distributed consensus algorithm (DRAGON) that decides which resources will be
allocated for each service; (2) in an external module, to deliver a message bus, responsible for the
propagation of changes about services configuration and infrastructure status. The Ecco frame-
work [20] also exchanges data in two ways: (1) intra-node, when the data transfer happens be-
tween two services deployed on the same node or between a service and the central orchestrator
(called Maestro); and (2) inter-node, when the transfer takes place between two services on differ-
ent nodes. In the last case, a shared memory approach was proposed, implemented by a custom
module called memory manager (MM).

Regarding the communication model in use, publisher/subscriber (pub/sub) was proposed
by [15]. The papers [28, 156] implemented pub/sub with the use of MQTT [89], a lightweight
messaging protocol for IoT, used also by [110] on the northbound interface. The paper [16] has
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used NGSI [96], a context management protocol. Message queues were adopted by [5, 16] with the
use of RabittMQ tool [143], and by [111], with the use of ZeroMQ tool [54]. The paper [136] used
NETCONF [33], a standard Internet Engineering Task Force (IETF) protocol, to distribute and
update device configuration on fog computing infrastructure. In the proposal presented by [84],
the Web Application Messaging Protocol (WAMP) is used for node-related interactions and
to bridge the communication with other components and boards.

6.5.7 Node Agent. To run services on fog nodes it is necessary to have an execution environ-
ment deployed on them. Besides, to orchestrate services among different fog nodes, it is important
to know precisely the resource availability. These two operations can be executed remotely. The
former can be executed using a container orchestration solution on the nodes. The latter can be
implemented by calling operating system primitives remotely, but in case of network unavailabil-
ity the information cannot be recovered and can be lost. In both cases, the approaches demand the
environment and configuration of fog nodes to comply with each one individually.

An approach that can be more flexible is to deploy a Fog Node agent, a module that is respon-
sible to manage the node locally. This module can be implemented on different platforms, can do
local operations, such as saving monitoring information and managing the life cycle of an exe-
cuting service, and can communicate with other agents or with a central orchestration module,
depending on the control topology of the orchestration framework in place. The following papers
have described node agents with specific functions: [5, 15, 16, 20, 21, 23, 24, 32, 52, 69, 80, 84, 99,
110, 111, 120, 125, 132, 145, 148, 156].

6.5.8 Security. Information security and privacy are important subjects in a fog computing
environment. The hardware limitations of some fog nodes and attached sensors and actuators,
distributed architecture and network uncertainty are fog characteristics that increase the attack
surface and limit the security solutions that could be applied [115].

Regarding the use of security on data communication and storage, only a few articles have estab-
lished the conditions for implementation [24, 142]. Although their architecture described security
modules, there were no implementations yet and their proposals comprises only a conceptual ar-
chitecture.

Security solutions already proven in other environments were also used. Proposals made by [5,
28] used VPN to secure the communications. The authors of [148] proposed a firewall to improve
the communication security and in [61] and [110], the authors proposed the use of a public key

infrastructure (PKI) to encrypt the communications between the orchestration framework and
the service requesters. The paper [103] has used blockchain, a secure distributed, replicated and
shared data structure [17], to implement a trusted orchestration that guarantees data privacy and
provenance inside the orchestration functionalities.

Fog computing extends the cloud to the edge in a three-layered architecture as shown in Figure 1.
According to specific scenarios, e.g. as industrial implementations, some fog nodes can be resource
rich and support execution of services from more than one user, which is known as multi-tenancy.
The papers [52], [136] and [158] have considered multi-tenancy on the orchestration architecture
proposed.

6.5.9 Summary of Results. To summarize the results and to allow researchers easily find the
characteristics of each analyzed proposal regarding the research questions, Table 3 presents all
results by paper. The papers are ordered by year of publication. To show RQ1 answers, we
used goal codes defined in Table 2. To present the answers to RQ5, we have shortened the
functionality’s name as follows: AC-Admission Control of incoming requests; SM-Service
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Table 3. Analyzed Papers’ Answers to Research Questions

Paper Year Goal
(RQ1)

Entity
(RQ2)

Topology
(RQ3)

Layer
(RQ4)

Functionalities (RQ5)
AC SM RM MO OP CM NA SE

[52] 2015 RM Application Centralized Fog/Cloud � � � � �
[145] 2016 SLA Task Centralized IoT � � � �
[125] 2016 RM Task Centralized Fog/Cloud � � � � �
[5] 2016 Application Centralized Fog/Cloud � � � � �
[102] 2017 SLA Application Centralized All � � � �
[24] 2017 Service Decentralized Fog � � � � �
[142] 2017 SLA Service Decentralized All � � � � �
[69] 2017 Application Centralized Fog � � �
[119] 2017 RM Application Centralized All � �
[155] 2017 RM, SLA Moving Query Decentralized All �
[118] 2017 RM Service Decentralized IoT/Cloud � � � �
[136] 2017 NFV-5G Service Centralized All � � � � �
[141] 2017 SLA, APP Service Centralized Fog/Cloud � � �
[150] 2017 Application Centralized All � �
[148] 2017 RM Application Decentralized Fog/Cloud � � � � �
[156] 2017 SLA Application Centralized All � � � � �
[9] 2018 RM Task Distributed All � � � �
[147] 2018 SLA, ENE Service Centralized Fog � � �
[60] 2018 Service Distributed All � � � �
[152] 2018 Application Centralized All � �
[103] 2018 SEC Service Centralized Fog � �
[16] 2018 RM Task Centralized Fog/Cloud � � � � � �
[158] 2018 RM Application Centralized Fog � � �
[120] 2018 Application Centralized All � � � � � �
[111] 2018 APP Service Centralized Fog � � � � � � �
[21] 2019 RM Task Decentralized Fog/Cloud � � � � �
[159] 2019 Service Centralized Fog/Cloud � � � �
[15] 2019 Service Distributed All � � � �
[132] 2019 Task/Hardware Distributed Fog/Cloud � � � �
[32] 2019 RM Service Centralized Fog � � �
[12] 2019 Service Centralized Fog/Cloud � �
[58] 2019 SLA, ENE Task Distributed All � � � �
[28] 2019 SLM Analytical Pipel. Centralized All � � � �
[3] 2019 Task Decentralized Fog � �
[95] 2019 SLA Service Centralized Fog/Cloud � � � �
[99] 2019 Application Centralized Fog � � �
[59] 2019 SLA Task Centralized Fog/Cloud � � �
[84] 2019 Centralized Fog/Cloud � � � �
[20] 2020 SLM Edge Function Centralized Fog � � � �
[23] 2020 Service Centralized Fog � � � �
[104] 2020 Service Centralized Fog � � �
[47] 2020 SLM Application Centralized All � �
[44] 2020 RM Application Decentralized Fog/Cloud � �
[80] 2020 RM Service Centralized All � � � � �
[82] 2020 Task Centralized All �
[134] 2020 Service Centralized Fog/Cloud � � �
[61] 2020 Application Decentralized Fog � � � �
[87] 2020 Application Centralized Fog/Cloud � � � �
[34] 2021 COS Application Centralized Fog/Cloud � � � �
[110] 2021 Task Distributed Fog/Cloud � � � � � �

Count 9 12 48 40 18 22 21 17

Management; RM-Resource Management; MO-Monitoring; OP-Optimization; CM-

Communication Management; NA-Node Agent and SE-Security.
By analyzing Table 3 it is possible to see that none of the papers have implemented all functional-

ities presented in this Section. The generic fog computing orchestration architecture presented in
Figure 11 consolidated all analyzed proposals. It shows the orchestration functionalities addressed
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and also the choices made by the authors to implement them, being helpful to researchers that
want to know better the state of the art on this subject.

As a recent area of research, the proposals have first tried to aggregate, in a structured and
coordinated way, the several functionalities related to orchestration in fog, focusing on the inter-
actions among them and considering cross-layer communications. Thus, resource management
and monitoring were the functionalities that are most implemented by the analyzed proposals,
because they are directly related to services’ execution environment and are fundamental for the
implementation of some of the essential fog characteristics, mentioned in Section 2, such as low
latency (achieved through providing resources close to the user, and measured and accompanied
by monitoring), real-time interactions and scalability, which is leveraged by monitoring events
timely indicating the need for change on resource allocation.

There are many fog computing papers that have focused on each functionality independently,
e.g. Optimization [10], Security [90], getting a broader and deeper view of the subject and ana-
lyzing different approaches. The orchestration research could focus on the management and coor-
dination issue of how to get all the functionalities working properly simultaneously, all of them
contributing to specific goals that the orchestration framework in place has proposed to achieve.
In this sense, the use of policies to determine the choice of optimization algorithms and techniques
that must took place in each of integrated functionality may be a research direction. Thus, instead
of proposing something new about one or two functionalities, a fog orchestration proposal could
adopt the state of the art of each one, adapting it to follow the policy stated in the orchestration
framework by means of parameterization.

7 CHALLENGES

This work analyzed 50 papers related to orchestration in fog computing. The five research ques-
tions were answered with the results found on the analysis of the papers, which brought to light
the issues addressed by the authors and the proposals they offered to cope with them. The anal-
ysis also made it possible to identify open challenges that need more research and proposals in
the context of this work. They are privacy and security, evaluation in real environments, and
a standardized execution environment. The intention is not to be an exhaustive list, but that
the information presented below can support future work on the issue of orchestration in fog
computing.

7.1 Privacy and Security

Privacy and information security are challenges that need more attention from academia in the
context of orchestration in fog computing. From the 50 studies analyzed in this article, privacy
and security in orchestration were considered by only 17 of them (34%). None of the analyzed pa-
pers have implemented authentication and authorization as a way to verify the identity of service
requester and to preserve data privacy [78].

Considering the strategies used by an orchestration framework, it is possible that re-allocations,
replication and migration of services may be necessary to cope with user mobility, fault handling
and to ensure adequate service availability and performance [142, 150]. Considering the number
of hops the data travels, or the quantity of devices it is copied or shared to, the risk of theft or
misuse may be high [2]. Using the Cloud layer when there is a lack of resources in the Fog layer is
a scenario implemented by many proposals, as shown in Section 6.4. A federation of fog comput-
ing domains could be a better alternative, since it can warrant fog computing benefits, e.g. lower
latency. On the other hand, authentication and authorization have to be enforced to increase data
privacy. Only two of the analyzed papers have proposed a federation of fog environments, [16]
and [158], and this scenario deserves more attention in future research.

ACM Computing Surveys, Vol. 55, No. 2, Article 29. Publication date: January 2022.



Orchestration in Fog Computing: A Comprehensive Survey 29:27

7.2 Evaluation in Real Environments

Orchestration in fog computing is a recent area of study as shown in Figure 2. Most of the analyzed
papers have proposed an architecture for orchestration and described the interactions among its
modules. But only a few of them have used simulators (13 of 50 papers) to evaluate and compare
their proposals with alternative solutions. A smaller number of papers (12 of 50 ) have evaluated
their proposals on real testbeds.

Using simulators, there is no way to create a database with the history of service execution on
real fog nodes. These databases can be used jointly with artificial intelligence to allow the develop-
ment of predictive algorithms [8, 140] to be used in the optimization module of an orchestration
framework as seen in the Section 6.5. Therefore, there are only a few works in the literature that
have evaluated their fog computing orchestration proposals in real implementation environments.

7.3 Standardized Execution Environment

A federation of public and private providers, connected through the Internet, is largely adopted in
cloud computing [25, 116], expanding the resource availability with the increase of management
complexity. In the fog computing scenario there is a lack of studies about this topic. Due to het-
erogeneity of devices that compose a fog environment, it is important also to research about the
use of standardized execution environments that support service execution seamlessly through
the federated fog providers.

8 CONCLUSION

This article provided, through a systematic literature review, an overview of the state of research
on the process of orchestration in fog computing, in addition to presenting the characteristics of
this computational paradigm. To achieve this goal, it was necessary first to define the scope of
the term orchestration in fog computing, since there is no consensus about this in the literature.
Thus, the mapping process continued with the definition of five research questions that guided the
search, the selection criteria and the evaluation of the publications found.

Evaluating the 50 selected publications, it was possible to answer all the research questions, cre-
ate a generic fog computing orchestration architecture, and present some challenges that are still
not well addressed in the literature, concluding that there are still many questions that need to be
investigated by academia. Thus, by presenting a systematic review of the literature specifically on
the orchestration for fog computing, the present work contributes significantly to the fog comput-
ing knowledge base, providing support to researchers to direct their future works to the existing
gaps.
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