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Abstract Next to pollen, stamens of flowering plants often producemicrostructures, called
orbicules, lining the locules. Although the existence of orbicules has been known since
1865, their function still remains enigmatic. This paper surveys orbicule distribution
throughout angiosperms, including +1,500 entries. We show that orbicules are found all
over of flowering plants with an evolutionary trend towards orbicule absence in more
derived clades. Orbicules are common in the ANITA-grade and 85 % of the monocots
studied produce orbicules, with Orchidaceae, Commelinales and Zingiberales as notable
exceptions. Within eudicots, asterids are most densely sampled with 61 % orbicule
presence. Asteraceae and the majority of Lamiaceae lack orbicules. For 17 angiosperm
orders orbicule distribution data are lacking entirely. We demonstrate that the hypothesized
correlation of orbicule presence with non-amoeboid tapetum types holds true. The presence
of orbicules is therefore a convenient proxy for tapetum characterization. The potential of
orbicules as an a-cellular model system for patterned sporopollenin polymerization is
discussed and suitable model plants for future functional orbicule-research are identified.

Keywords Angiosperms . Orbicules . Pro-orbicule . Sporopollenin . Tapetum . Ubisch
bodies

Introduction

Orbicules are readily observable by scanning electron microscopy (SEM) in mature
anthers as a layer of tiny particles lining the inner locule wall, in close contact with the
pollen grains (El-Ghazaly, 1999; Huysmans et al., 2000; Galati, 2003). Orbicules (syn.
Ubisch bodies,1 con-peito grains) are a-cellular structures of sporopollenin that might

Bot. Rev. (2014) 80:107–134
DOI 10.1007/s12229-014-9135-1

1Rowley (1962) coined the term to acknowledge Gerta von Ubisch (1882–1965), a German biologist who did
pioneering work on orbicules in the 1920’s. She was, however, not the first scientist to describe orbicules; to
our knowledge Rosanoff (1865) was the first to discover orbicules.
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occur on the inner tangential and radial walls of tapetal cells. Usually they are smaller
than 1 μm, but orbicules with a diameter up to 15 μm are reported in Quararibea
(Malvaceae; Nilsson & Robyns, 1974). They originate as lipid droplets (pro-orbicules)
within the cytoplasm of tapetal cells, most likely from the rough endoplasmic reticulum
(ER; Echlin & Godwin, 1968; Risueño et al., 1969; El-Ghazaly & Jensen, 1986). After
exocytosis the pro-orbicules nest on the tapetal plasmalemma and get a sporopollenin
coat synchronously with the developing pollen exine (Christensen et al., 1972). The
orbicule surface ornamentation often resembles that of the pollen sexine (Rowley et al.,
1959; Hesse, 1986; Huysmans et al., 2000), touching the prime challenge in palynol-
ogy, viz. the source of control over the specific ornamentation of the pollen exine. This
resemblance in ornamentation indicates that a similar patterned biosynthesis of sporo-
pollenin is possible on an a-cellular sporophytic structure (pro-orbicule) as on a cellular
gametophytic structure (microspore).

The existence of orbicules is known since 1865 when Rosanoff published his
observations on anthers of Fabaceae species where he noticed small granules on
the inner locule wall that were resistant to concentrated sulphuric acid (Rosanoff,
1865). Both von Ubisch (1927) and von Kosmath (1927) have published lists of
species with and without orbicules and considered orbicules to be restricted to taxa
with a ‘secretory’ tapetum type. Ubisch and Kosmath are considered as pioneers in
orbicule research, but they were most likely inspired by preceding papers by
Chatin (1870; angiosperms), Mascré (1922; Boraginaceae), Schnarf (1923;
Lilium), and Krjatchenko (1925; Lilium). The latter suggested an intratapetal
origin for orbicules, possibly in the mitochondria.

Since the early days of orbicule-research, a positive correlation was hypothesised
between the presence of orbicules and a parietal tapetum type (von Ubisch, 1927; von
Kosmath, 1927), although several species were identified with parietal tapetal cells but
lacking orbicules (Huysmans et al., 1998). For a long time only one exception to this
hypothesis was known, viz. Gentiana acaulis that has anthers with orbicules and an
amoeboid tapetum type (Lombardo & Carraro, 1976). Parietal tapeta are the dominant
type in land plants and occur in the extant ‘basal’ angiosperm groups and in most fossil
taxa. It is considered as the plesiomorphic condition in angiosperms (Furness & Rudall,
2001a). Parietal tapetum cells keep their individuality and position lining the locules
throughout their entire life cycle. In literature, this tapetum type is also referred to as
‘secretory’ or ‘glandular’. In amoeboid tapetal cells, on the contrary, cell walls
degenerate prior to fusion of the protoplasts into a plasmodium that invades the
locule and assures close contact with the developing microspores. This tapetum
type is also known as ‘plasmodial’. Next to these two main tapetum types, a few
intermediates are described illustrating the complex metabolism of this ephemeral
tissue (Pacini et al., 1985). In an invasive tapetum type for instance the cell walls
degenerate and the individual protoplasts, without formation of a plasmodium,
intrude the locules often in a cyclic pattern during microspore development. The
latter type is recorded in a few families throughout angiosperm phylogeny (e.g.
Furness & Rudall, 1998, 2001a; Furness, 2008a).

Since mature orbicules consist of sporopollenin they are well represented in the
fossil record. One of the few papers devoted to fossil orbicules and tapetal membranes
is the ultrastructural work on fossil Pennsylvanian (Carboniferous, 286–320 mya)
pollen grains of the Schopfipollenites-type (Taylor, 1976). A more recent study on
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Craigia (Malvaceae, Miocene) focused on orbicules and pollenkitt (Zetter et al., 2002).
Most data on orbicules in the fossil record are from Cretaceous flowering plants, e.g.
the excellent preserved flowers of Teixeiraea lusitanica (Ranunculales affinities) with
abundant doughnut-shaped orbicules (von Balthazar et al., 2005).

Only a decade ago, it was demonstrated that orbicules occur in all higher order
taxonomic units of the angiosperms: from the most early diverged groups (ANITA
grade) up to and including the most derived clades of the core-eudicots (see review by
Huysmans et al., 1998, updated in Huysmans et al., 2000).

To date our knowledge is insufficient to provide plausible answers to why many
plants produce orbicules and why they are absent in several evolutionary success-
ful lineages, even when they are characterized by a parietal tapetum type (e.g.
entire family Orchidaceae with >22.000 sp.). Many different functions were
hypothesized to explain the occurrence of orbicules (for a review see Huysmans
et al., 1998), but none of these is yet satisfactorily proven by experiments or
available data. The question whether orbicules have an active function in the
anther locules (e.g. in pollen release) or merely represent a by-product of the
tapetum, as a reminiscence of the phylogenetically shared origin of tapetum and
microsporophytic tissue, remains open.

There is a growing body of literature on the possible allergenic properties of
orbicules (e.g. Vinckier & Smets, 2001a, b). Several immunocytological studies pro-
vided evidence of localisation of allergens on the orbicular wall (Suàrez-Cervera et al.,
2003; Canini et al., 2004; Jato et al., 2010), but negative results were reported for birch
(Schäppi et al., 1997; Vinckier et al., 2006). However, the question whether orbicules
are dispersed stogether with the pollen grains remains open. Dinis et al. (2007)
provided evidence for two grass species showing that the orbicule density of both
dehisced and undehisced anthers did not differ significantly.

The study of orbicules could be particularly rewarding since they offer a window on
several biological issues on the borderline between gametophyte and sporophyte, such
as the ratio of sporophytic and gametophytic genetic control in the development of the
sporoderm, the function and chemical composition of lipidic fractions of tapetal origin
in flowering plants (Piffanelli et al., 1998), the patterned sporopollenin polymerisation
in the anther mediated by ‘white lines’ and a glycocalyx, and the possible contribution
of in vivo self-assembly of sporopollenin in the development of the sporoderm
(Gabarayeva & Hemsley, 2006).

Kress (1986: 342) stated that «the original or true function of any character may only
be apparent or correctly interpreted in light of its phylogenetic history». In this line
of thought we updated the distribution data of orbicules in flowering plants by
thoroughly screening the literature since the first review on the topic (Huysmans
et al., 1998). Complementary original observations from certain model plants and
selected families were added. The current study aims at (1) providing a summary
of all data available on orbicule presence/absence in the flowering plants; (2)
identifying patterns in the distribution data by mapping them on a recent angio-
sperm classification; (3) discussing correlations with tapetum types, pollination
syndromes and other traits. (4) Finally, the potential of orbicules as a model
system for in vivo research on patterned sporopollenin polymerization (including
genetic control by gametophyte/sporophyte and self-assembly processes) is
demonstrated.
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Materials and Methods

Microscopy

In general, mature orbicules are readily visible on the tapetal membrane (remnants of
tapetal cells after programmed cell death) and are chemically inert to any preparation
method because of their sporopollenin composition. Useful source material therefore
also includes herbarium specimens and pickled flowers. Light microscopy is, due to
their small size range, less appropriate for orbicule observations (but see Bhandari &
Kishori, 1971). Field emission scanning electron microscopy (FE-SEM) is desirable
because it provides high-resolution images with negligible electrical charging of the
samples at low accelerating voltage.

Dried flowers or anthers were rehydrated for at least 1 h in a wetting agent such as
Agepon or Photo Flo (1:200 in distilled water) prior to dehydration by a graded ethanol
series (50 %–70 %–95 %–100 %), preferably inside the CPD container(s) to avoid
distortion. Pickled flowers were dehydrated completely by continuation of the graded
ethanol series from concentration of stock fluid. Living flowers were fixed overnight in
FAA (90 ml ethanol 50 %+5 ml acetic acid glacial+5 ml formaldehyde) prior to
dehydration. Critical point drying (CPD) involves two washes in 100 % acetone prior
to CPD in acetone as intermediary fluid.

Dried anthers were fixed to aluminium stubs with double adhesive carbon tape. If
necessary excess pollen grains were gently removed using a cactus spine to clear part of
the locule wall. Stubs were sputter coated with platinum (FE-SEM) or gold (SEM).
Orbicules were observed using a FE-SEM (Leo supra 55 VP, Zeiss, Jena, Germany) or
a SEM (JEOL JSM 6360, Jeol Ltd, Tokyo, Japan) at an accelerating voltage of 5 kV
and a working distance of 10 mm.

Literature Search

We have thoroughly screened the scientific literature from January 1997 until
December 2012 aiming to provide a state of the art of the distribution of orbicules in
angiosperms. Additional papers were found by screening reference lists in consulted
works and the palynology reprint collection of the Laboratory of Plant Systematics (KU
Leuven, Belgium). Unpublished validated data from lab members and associated
collaborators were added as well. Although we aimed to be exhaustive, the resulting
dataset might be incomplete because orbicule distribution data has been published in
very diverse research fields. Since negative observations require awareness and directed
attention, those are most likely underrepresented in many groups.

The data are presented in a phylogenetic order (Appendix S1) following the
angiosperm classification by Stevens (2001 onwards). The main arguments for this
choice are (1) the accessibility to the entire scientific community by being a free online
resource, (2) the fast inclusion of the most recent evolutionary insights in a continu-
ously updated classification, and (3) the presence of genus lists for each family that
allows reproducible genus allocation to family level.

For phylogenetic mapping of orbicule distribution data, we used both the APG III
topology at order level (APG, 2009) and an updated dahlgrenogram reflecting the
relationships between orders in flowering plants (Barthlott, Borsch & Worberg, pers.
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com., updated by Worberg). The bubble diagram represents a virtual cross section of
‘the tree of life’ of angiosperms. Distances between bubbles reflect ‘evolutionary
distances’ between orders or families; bubble size is in relative proportion to species
number. A dahlgrenogram does not depict phylogeny in the sense of a branching
evolutionary history from inferred hypothesized ancestors. But in the tradition of
Rolf Dahlgren (1932–1987), we consider bubble diagrams as powerful tools to depict
the distribution of any character in extensive taxa such as angiosperms on a single A4
sheet. Mapping data on both representations was done manually, based on the data in
Appendix S1.

Results

Morphology and Localisation of Orbicules

When orbicules are present, they are usually abundant and cover the tapetal remnants
on the inner locule surface (Fig. 1a, f). In angiosperms they are seldomly observed
adhering to the pollen grains. Size, shape and ornamentation of the orbicular wall may
vary between species, e.g. irregular orbicules with a central perforation (Fig. 1h) vs.
spherical microechinate orbicules (Fig. 1i). Often the ornamentation of the pollen
sexine is similar to that of the orbicules (compare Fig. 1b–c, d–e). Echinate pollen in
particular is often reflected in spiny orbicules (Fig. 1i). Orbicules may be more or less
embedded in the tapetal remnants (Fig. 1g). When orbicules are absent, the locule wall
is smooth and endothecium thickenings may be pronounced (Fig. 1j).

Distribution of Orbicules in Angiosperms

Appendix S1 summarizes the orbicule data at species level with orbicule absence/
presence and, if available, the occuring tapetum type. The respective references are
added. The data from Huysmans et al. (1998, 2000), covering the period 1865–1996,
are included as well, in order to deliver a review as exhaustive as possible. For these
entries only cross-reference to Huysmans et al. (1998) or (2000) is provided.

In Table 1 orbicule distribution data are given at family level for each order
recognized the in angiosperms sensu APG III (2009). Figure 2 presents a color-coded
cladogram at order level. The resulting pattern indicates that orbicules are indeed
present all over the topology. Of all orders that have been investigated for orbicules,
only five remain without any positive observations: Asterales, Cannellales,
Commelinales, Vitales, and Zingiberales. In total 17 orders (Acorales, Arecales,
Buxales, Celastrales, Ceratophyllales, Crossosomatales, Dilleniales, Escalloniales,
Garryales, Gunnerales, Huerteales, Paracryphiales, Petrosaviales, Picramniales,
Santalales, Trochodendrales, Zygophyllales) remain blank spots on the angiosperm
orbicule-map because no data on orbicules is available (Fig. 2). In the present
study we were able to increase the angiosperm dataset for orbicule presence/
absence from 88 to 149 families, an increase of 15 to 36 % of the total number
of families since Huysmans et al. (1998); (Fig. 3).

All large (informal) groups in angiosperms such as magnoliids, monocots, basal
eudicots, rosids and asterids show a patchy image with both positive and negative
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Fig. 1 General features and morphology of orbicules in angiosperms. Collections observed are specified
indicating location: BR = National Botanic Garden Belgium, E = herbarium of Royal Botanical Gardens
Edinburgh, RBGE = Royal Botanical Gardens Edinburgh, U = herbarium of Naturalis Biodiversity Center,
Utrecht University. a–c Chlorophytum alismaefolium Baker (living material, cultivated in RBGE; Agavaceae;
FE-SEM). a General view on inner locule wall densely covered with orbicules. In top right corner part of a
pollen grain visible to allow size comparison. b Detail of orbicules; note one up to several perforations in
orbicular walls. c Detail of pollen wall at aperture border showing sexine elements randomly dispersed on
apertural membrane with similar ornamentation pattern as orbicules. d–e Solanum virginianum L. (Hedge et al.
7412, E; Solanaceae; FE-SEM). d Spiny orbicules regularly spaced on the inner locule wall, which is covered
with a network-like structure. e Pollen grain with similar microechinate sexine ornamentation. f Hordeum
vulgare L. (Davis 49564, E; Poaceae; FE-SEM). View on inner locule wall evenly covered with orbicules. Note
pattern of lines without orbicules, possibly indicating the outlines of the former tapetal cells. g Polyalthia
subcordata (Bl.) Bl. (van Balgooy & van Setten 5667, U; Annonaceae; SEM). Dense layer of orbicules, partly
fused with tapetal membrane and interconnected by threads. h Didymosalpynx abbeokutae (Hiern) Keay (Hart
851, BR; Rubiaceae; SEM). Irregular shaped orbicules with perforations. i Cubanola domingensis (Britton)
Aiello (living material, cultivated in BR; Rubiaceae; SEM). Conspicuous spiny orbicules. j Boopis graminea
Phil. (Gardner et al. 4635, E; Calyceraceae; FE-SEM). Orbicules are absent; the inner locule wall is smooth.
Note the ridges of the endothecium
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Table 1 Orbicule distribution data for flowering plants summarized at order level (sensu APG III) based on
data in Appendix S1

Order Total # fam. # fam. + # fam. +/− # fam. – # fam. no data

Amborellales 1 1

Nymphaeales 3 2 1

Austrobaileyales 3 2 1

Chloranthales 1 1

Magnoliids

Cannellales 2 1 1

Piperales 5 3 2

Laurales 7 2 1 1 3

Magnoliales 6 3 1 1 1

Monocots

Acorales 1 1

Alismatales 13 2 1 10

Petrosaviales 1 1

Dioscoreales 5 2 1 2

Pandanales 5 2 3

Liliales 10 4 6

Asparagales (incl. Orchidaceae) 14 6 1 7

Commelinids

Arecales 1 1

Commelinales 5 2 3

Poales 16 5 11

Zingiberales 8 3 5

Possible sister of eudicots

Ceratophyllales 1 1

Eudicots

Ranunculales 7 2 1 1 3

Proteales 3 2 1

Sabiaceae 1 1

Trochodendrales 1 1

Buxales 2 2

Core eudicots

Gunnerales 2 2

Dilleniales 1 1

Saxifragales 14 3 11

Rosids

Vitales 1 1

Fabids

Zygophyllales 2 2

Celastrales 2 2

Oxalidales 7 1 6

Malpighiales 36 3 4 29
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Table 1 (continued)

Order Total # fam. # fam. + # fam. +/− # fam. – # fam. no data

Cucurbitales 7 1 1 5

Fabales 4 1 1 2

Fagales 7 2 5

Rosales 9 4 1 4

Malvids

Geraniales 3 1 1 1

Myrtales 9 1 1 7

Crossosomatales 7 7

Picramniales 1 1

Huerteales 3 3

Brassicales 17 3 5 9

Malvales 10 1 1 8

Sapindales 9 2 7

Berberidopsidales 2 1 1

Santalales 7 7

Caryophyllales 34 6 2 1 25

Asterids

Cornales 6 4 1 1

Ericales 22 5 1 1 15

Lamiids

Garryales 2 2

Gentianales 5 2 3

Lamiales 23 7 3 2 11

Solanales 5 1 1 1 2

Campanulids

Aquifoliales 5 1 4

Asterales 11 3 8

Escalloniales 1 1

Bruniales 2 1 1

Paracryphiales 1 1

Dipsacales 2 1 1

Apiales 7 1 6

Unplaced families 8 1 7

Total 416 90 24 35 267

# fam. number of families, + orbicules present, − orbicules absent, +/− orbicules absent or present

Fig. 2 Distribution of orbicules in angiosperms at order level. Cladogram of angiosperms (modified from
APG III) reflecting the hypothesized relationships between orders, color-coded for presence of orbicules
(based on data in Appendix S1). Orders with at least one species with orbicules present are indicated in yellow,
orders with only negative observations are marked in blue

b
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observations. At family level, however, less variation is encountered: only 24 families
(16 % of all families studied) show both presence and absence of orbicules between
their representatives, viz. Annonaceae, Apocynaceae, Aquifoliaceae, Berberidaceae,
Cactaceae, Convolvulaceae, Dioscoreaceae, Euphorbiaceae, Fabaceae, Gentianaceae,
Lamiaceae, Linaceae, Loasaceae, Malvaceae, Melianthaceae, Monimiaceae,
Nartheciaceae, Oleaceae, Passifloraceae, Plantaginaceae, Polygonaceae, Rubiaceae,
Salicaceae and Tetrameristaceae (Table 1). Within these groups, orbicule distribution
data generally are consistent at generic level. Only 8 genera deviate from this pattern:
Aletris (Nartheciaceae), Coptosapelta (Rubiaceae), Dioscorea (Dioscoreaceae),
Gentiana (Gentianaceae), Ilex (Aquifoliaceae), Ipomoea (Convolvulaceae),
Monodora (Annonaceae), and Passiflora (Passifloraceae).

In order to visualise the phylogenetic signal inherent in the distribution data at order
level compiled in Table 1, we used the bubble diagram by Barthlott, Borsch and
Worberg (pers. com., updated by Worberg, Fig. 4). The total absence of orbicules in
Orchidaceae (here depicted separately from Asparagales) is conspicuous. However,
(negative) data are extremely rare in this family and therefore orchids represent a target
group for further studies.

Discussion

Orbicules: Valuable New Systematic Character?

Orbicule production by tapetal cells in a secretory metabolic phase can be interpreted as
a primitive, possibly neotenic feature in flowering plants since orbicules occur also in
bryophytes, pteridophytes and gymnosperms. However, data in these groups are highly
fragmented. Orbicules are omnipresent in Gnetales: Ephedra (El-Ghazaly & Rowley,

Fig. 3 The present survey includes orbicule distribution data for 149 families of which 90 families only have
positive observations and 35 only negative. In merely 24 families both presence and absence of orbicules was
recorded
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1997; Doores et al., 2007), Gnetum (Carniel, 1966), and Welwitschia (Zavada &
Gabarayeva, 1991). Cryptomeria japonica, a coniferous species in Taxodiaceae and a
major cause of pollinosis in Japan, produces orbicules (e.g. Hosoo et al., 2005). Audran
(1981) described orbicule development in Ceratozamia (Cycadaceae) and Rowley and
Walles (1987) in Pinus. Blackmore et al. (2000) reported orbicules in 13 genera of
pteridophytes, but see Alarid et al. (2005) for conflicting data on Isoetes. The majority
of pteridophytes are shown to have an amoeboid tapetum (Parkinson & Pacini, 1995),
however, many homosporous ferns have globular bodies in their sporangial locules that
were considered to be homologous to orbicules in spermatophytes (Lugardon, 1981). In
bryophytes and lycopods, on the contrary, a parietal tapetum is omnipresent (Pacini
et al., 1985) and similar structures to orbicules are recorded, but their homology
remains unresolved due to lack of data.

As such the overall systematic value of orbicules in flowering plants is restricted for
not being an apomorphic feature. However, mere orbicule presence/absence data reveal
an interesting pattern in angiosperms (Appendix S1, Fig. 2). In total 149 out of 416
families (36 %) are represented in Appendix S1 with orbicule data for at least one
species. Both orbicule presence and absence is recorded from the earliest diverging
flowering plants up to most recent diversified asterid clades. All large (informal) groups
in angiosperms such as magnoliids, monocots, basal eudicots, rosids and asterids show
a patchy image with both positive and negative observations. At family level, however,
less variation is encountered: only 24 families (16 % of families studied) show both

Fig. 4 Distribution of orbicules in angiosperms at family level. Dahlgrenogram of angiosperms, adapted from
Barthlott, Borsch and Worberg (unpubl.), updated by A. Worberg, (pers. com.). Bubbles represent orders or
clusters of related orders; their size is relative to the number of species. Orders are labeled by three letter
acronyms except for Malpighiales (MALP) to distinguish it from Malvales (MAL). Bruniales, Escalloniales,
Paracryphiales and Picramniales are not represented on the figure. Orders are listed in Table 1 for reference.
Pie diagrams for each order summarize number of families with orbicules (yellow), without orbicules (blue),
both with and without orbicules (green), and without data (greyish white) respectively. For Orchidaceae (see
Discussion) and Sabiaceae (position uncertain) a pie diagram on family level was added. Notes: 1 =
Petrosaviales, 2 = Acorales, 3 = Ceratophyllales, 4 = Trochodendrales, 5 = Buxales, 6 = Gunnerales
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absence and presence of orbicules between their representatives (see Results). The
majority of families is thus surprisingly constant for orbicule data, providing a predic-
tive value that surely has potential for systematically oriented research questions. In
Brassicaceae, for instance, orbicules were never recorded; also in Arabidopsis thaliana
they are absent, despite its parietal tapetum (Murgia et al., 1991). However, Staiger
et al. (1994), in their immunocytochemical study on Sinapis alba, provided TEM
pictures of «globules resembling pro-Ubisch bodies which appeared at tetrad stage»
labelled with two tapetum specific proteins. According to the authors, the pro-orbicules
contain sporopollenin precursors but receive no polymerized sporopollenin wall later in
development (Staiger et al., 1994). Lamiaceae is a well-studied family generally
lacking orbicules on the inner locule wall. All positive observations in Appendix S1
represent former Chloanthaceae species (Ray & El-Ghazaly, 1987), a family that was
merged with Verbenaceae of which many taxa were recently accomodated in
Lamiaceae (Harley et al., 2004). On a lower level of classification, we see that orbicule
distribution data are generally consistent at generic level. The observation of both
presence and absence in a single genus is very rare and is only found in 8 genera (see
Results). In Rubiaceae for example, the most thoroughly studied angiosperm family for
orbicules, intrageneric variation was observed and described in only one
(Coptosapelta) out of 163 genera investigated (Verellen et al., 2004; Verstraete et al.,
2011). A discussion on this variation can be found in Huysmans et al. (2010) for
Monodora (Annonaceae) and in Verstraete (2009) for the other genera. These deviant
genera are interesting groups for further study into orbicule distribution and tapetal
characteristics.

Recent observations in Annonaceae showed that orbicules are much more common
in the family than previously perceived (Huysmans et al., 2010). Moreover, an un-
equivocal phylogenetic pattern appeared by plotting the available orbicule distribution
data on the most recent family phylogeny. In Anaxagorea, basal clade and sister to all
other Annonaceae, Ambavioideae and the ‘short branch clade’, orbicules were record-
ed. In the most derived ‘long branch clade’ orbicules are consistently absent
(Monodora crispata being the single exception). A recent study in Rubiaceae that
investigated the phylogenetic signal of orbicules also demonstrated an evolutionary
trend towards the absence of orbicules (Verstraete et al., 2011). The same trend emerges
at angiosperm level based on our collective data: orbicules are common in the ANITA-
grade and 85 % of the monocots studied produce orbicules, with Orchidaceae,
Commelinales and Zingiberales as notable exceptions. Within eudicots the asterids
are most densely sampled with 61 % orbicule presence. Asteraceae and the majority of
Lamiaceae lack orbicules. These observations indicate firstly that orbicules are found
all over the topology of flowering plants and, secondly, that an evolutionary trend exists
towards orbicule absence in more derived clades.

Orbicules come in a wide array of different sizes, shapes and densities (Fig. 1). Do
any of these features provide additional potential systematic characters? Orbicule
characters are systematically analysed in several taxa of Gentianales such as
Gentianaceae (Vinckier & Smets, 2003), Apocynaceae s.l. (Vinckier & Smets,
2002c), Loganiaceae s.l. (Vinckier & Smets, 2002a), and Rubiaceae (Huysmans
et al., 1997; Vinckier et al., 2000; Verstraete et al., 2011). Overall conclusion for
Gentianales was that orbicules are a common feature and that morphological charac-
teristics might be useful at tribal level (Vinckier & Smets, 2002b).
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The key issue here is the character stability at species level. Very few studies have
paid attention to the intraspecific variability of orbicule characters; mostly only a single
specimen per species is investigated. Verellen et al. (2004) observed five specimens of
Coptosapelta tomentosa (Rubiaceae) and found three different orbicule types in differ-
ent specimens and one specimen without orbicules. Orbicules are absent in most
Lamiaceae and for some species such as Heterolamium debile, Melissa officinalis,
Prunella vulgaris, Stachydeoma graveolens and Thymbra spicata, this negative obser-
vation was confirmed in more than two specimens (Moon et al., 2008b). A detailed
developmental study at ultrastructural level of Anaxagorea brevipes (Annonaceae)
showed that the parietal tapetum reluctantly invades the locule at the early tetrad stage
and secretes both orbicules and other globular lipoidal concretions (Gabarayeva, 1995).
The variety of size and chemical composition of these tapetal cytoplasmic globular
inclusions reflects the variety of the tapetal functions according to Gabarayeva (1995).

Correlation Orbicules-Tapetum Type

It is impossible to separate orbicules and the tissue where they originate if it comes to
explain their form and function. At present, identification keys are available to distin-
guish between tapetum types (e.g. Pacini, 1997). The various types, however, can be
reduced to two basic types that were already recognised by Goebel (1901): (1) parietal
(syn. secretory or glandular) tapetum and (2) amoeboid (syn. plasmodial or intrusive)
tapetum. An intermediate type, (3) invasive tapetum, is sometimes mentioned. In this
third type, the cell walls degenerate and the individual protoplasts, without formation of
a plasmodium, intrude the locules often in a cyclic pattern during microspore devel-
opment. The latter type is recorded in a few families throughout angiosperm phylogeny
(e.g. Furness & Rudall, 1998, 2001a; Furness, 2008a). Ultrastructural research of
tapetal cells during their entire development, an element of major importance, revealed
the highly dynamic nature and amazing morphological and cytological variation of this
specialized nutritious tissue (e.g. Rowley et al., 1992; Rowley, 1993). For the great
majority of plants no detailed information on tapetum type is available. When Davis
(1966) compiled embryological data for the angiosperms, information on the tapetum
type (amoeboid or parietal) was available for only 231 families. Pacini et al. (1985:
table 2) updated her results and stressed that, astonishingly, the tapetum type was not
investigated in almost half of the angiosperm families.

The positive correlation between orbicules and a parietal tapetum type is hypothe-
sized since almost a century. Our present results confirm this general pattern statistically
(Table 2). However, we also detected several additional species with a non-parietal
tapetum type and orbicules (Table 3). Tradescantia virginiana (Commelinaceae), for
example, has an amoeboid tapetum that produces tapetal derived granules but with less
obvious sporopollenin accretion on their surface and smaller in size than average
orbicules (Tiwari & Gunning, 1986c). The granules were considered analogous to the
tapetal pro-orbicules of parietal tapeta by these authors. A highly interesting observa-
tion concerns Sauromatum venosum (Araceae), which has inaperturate pollen grains
with an endexine and spines, both polysaccharidic in nature (Weber et al., 1998).
Remarkably, orbicule-like structures occur, also polysaccharidic in composition (tested
with PAS-reaction for detection of neutral polysaccharides). Both PAS-positive spines
and orbicule-like structures in Sauromatum originate from the amoeboid tapetum and
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are formed synchronously (during first pollen mitosis) with an identical pattern forma-
tion (Weber et al., 1998). In Asteraceae different tapetum types occur with several
intermediate forms (reviewed by Pacini, 1996), while orbicules appear to be consis-
tently absent throughout the entire family and also in sister clades Calyceraceae and
Goodeniaceae (Appendix S1). Therefore Asteraceae might provide an interesting case
for increasing our understanding of the relationship between tapetum metabolism and
orbicule production. An ontogenetic study of pollen and anthers of Cabomba
caroliniana (Cabombaceae; Taylor et al., 2008) indicated the presence of an amoeboid

Table 3 Species with an amoeboid or invasive tapetum type that are reported to produce orbicules

Family Species Reference

Amaranthaceae Beta vulgaris Huysmans et al., 1998; Furness, 2008a

Annonaceae Anaxagorea brevipesa Gabarayeva, 1995

Apocynaceae Vinca roseaa El-Ghazaly & Nilsson, 1991

Asteraceae Cosmos bipinnatus Blackmore & Barnes, 1985

Bromeliaceae Aechmea dichlamydea var. trinitensisa Sajo et al., 2005

Butomaceae Butomus umbellatusb Fernando & Cass, 1994

Cabombaceae Cabomba caroliniana Taylor et al., 2008

Commelinaceae Tradescantia virginianab Tiwari & Gunning, 1986c

Fabaceae Acacia conferta Kenrick & Knox, 1979

Acacia iteaphylla ″

Acacia subalata ″

Fagaceae Quercus robur Rowley & Gabarayeva, 2004

Gentianaceae Canscora decussateb Vinckier & Smets, 2003

Gentiana acaulis Lombardo & Carraro, 1976

Swertia perennisb Vinckier & Smets, 2003

Lauraceae Persea palustrisb Furness & Rudall, 2001a

Malvaceae Abutilon pictum Strittmatter et al., 2000

Modiolastrum malvifolium Galati et al., 2007

Nymphaeaceae Nymphaea colorataa Rowley et al., 1992

Nymphaea mexicanaa Gabarayeva & El-Ghazaly, 1997

a Tapetum type is specified as cyclic invasive
b Species show very small sporopollenin granules, homology with orbicules is not clear

Table 2 Summary of the numbers of species with information on tapetum type and presence/absence of
orbicules (based on data in Appendix S1). Only taxa where the observations are unambiguous are taken into
account

Orbicules present Orbicules absent Total

Parietal tapetum 211 (87.2 %) 31 (12.8 %) 242

Amoeboid tapetum 7 (20 %) 28 (80 %) 35

Invasive tapetum 4 (36.4 %) 7 (63.6 %) 11

Total 222 66 288
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tapetum. The degree of migration of tapetal cells into the locules, however, was variable
between anthers and the secretory function was conserved. The latter is expressed in the
presence of orbicules. These observations highlight the character plasticity present in
basal angiosperms and support the conclusion put forward by Furness and Rudall
(2001a) that characters present in these taxa potentially represent evolutionary exper-
imentation in early angiosperm lineages.

Finally, it should be noted that the presence of a parietal tapetum is not the single
determinative proxy to find orbicules. Of the 242 species that are indicated in
Appendix S1 as having a parietal tapetum, 31 species (=12.8 %) lack orbicules
(Table 2). This rough count does not include Orchidaceae, with over 22.000 species,
which are believed to be characterized by a parietal tapetum (Pacini, 2009). Orbicule
data are extremely scarce for orchids, possibly because negative observations require
directed attention. Doritis is actually the only orchid genus where orbicules were
reported, but we seriously doubt this interpretation judging their figures 8 and 12
(Wolter et al., 1988).

Correlation Orbicules-Pollination Syndrome

In their analytical key for tapetum types Pacini et al. (1985) correlated the occurrence of
orbicules with the presence of pollenkitt, that is with the pollination syndrome. Pacini
(1997) suggested that orbicules are absent in species with a strictly entomophilous
pollination in which pollenkitt is present, and that they only occur in anemophilous
species (without pollenkitt) and entomophilous angiosperms with a non-specific polli-
nation syndrome: «Only few taxa with a parietal tapetum with a strong entomophilous
syndrome, such as the pumpkin (Cucurbita pepo) and orchids lack Ubisch bodies
entirely» (Pacini & Franchi, 1993: 5). Our new data do not contradict this statement.
Other examples of taxa that have a parietal tapetum but lack orbicules are found in
Brassicaceae and Balsaminaceae. These two families, together with Orchidaceae, are
therefore very suitable for future studies on the correlation between orbicules and
pollination syndrome.

Orbicules have not been observed in taxa with viscin threads, elastoviscin, massulae
or compact pollinia (Pacini, 1997). On the other hand, they are present in Acacia
species that develop polyads (Kenrick & Knox, 1979; G. Prenner, pers. com.).

Orbicules as a Model System for Sporopollenin Polymerisation

Orbicules provide an interesting model to study sporopollenin biosynthesis since they
are a-cellular structures, independent of cytoplasmic control, contrary to the pollen
exine (Clément & Audran, 1993). Very little experimental work has been done
concerning the factors controlling orbicule formation. The pioneering work on Canna
(Tiwari & Gunning, 1986a) and Tradescantia (Tiwari & Gunning, 1986b, c, d), both
with amoeboid tapetum lacking orbicules, deserves special mention. The authors used
colchicine treatments to investigate the role of cortical microtubules in the developing
invasive tapetum. In Tradescantia the treatments prevented cell fusion. In both species
investigated there was a disordered deposition of sporopollenin on all available extra-
cellular lipidic surfaces and also on the outside of tapetal plasma membranes. The effect
of colchicine provided evidence that amoeboid tapeta do participate in the synthesis and
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secretion of sporopollenin even though this activity is only manifest after experimental
disturbance. Tiwari and Gunning (1986d) suggested that the availability of lipidic
surfaces and extracellular space imposes physical constraints on the amount of sporo-
pollenin deposited at any particular site.

Rowley et al. (1959: 537) accurately pointed out already half a century ago that «…
their [orbicules] morphology, composition, and position outside of the pollen wall seem
to touch upon the prime problem of pollen morphology; i.e., the source of control over
the specific ornamentation of the exine». The question as to whether the wall around
the haploid microspore, and especially its ornamentation or patterning, is controlled by
the microspore itself or by the diploid, sporophytic tapetum has long challenged
angiosperm palynologists (reviewed by Blackmore et al., 2007) and has not yet been
fully resolved. Pro-orbicules, after exocytosis and generally during tetrad stage, nest on
the tapetal plasmalemma, and it is on this lipidic surface that they receive their
sporopollenin coat. Moreover, the mode of development seems to be similar between
exine and orbicular wall (Christensen et al., 1972). Evidence is growing that orbicule
wall development also involves a glycocalyx-template and white line centred lamellae
were observed in sub-mature orbicules of Rondeletia odorata (Rubiaceae; S.
Huysmans, unpubl. data) reflecting the process of endexine development in the same
species (El-Ghazaly et al., 2001).

The study of taxa with exineless pollen might yield interesting information
concerning the potential of sporopollenin production by the tapetum. Pollen grains
possessing a much-reduced exine and elaborated intine (omniaperturate and/or
exineless) are known to occur in 54 families of angiosperms and are nearly ubiquitous
in Zingiberales (Kress, 1986). For this study we have observed Etlingera
(Zingiberaceae) with exineless pollen grains and without orbicules. In the large genus
Xylopia (Annonaceae) at least four species have sporopollenin-lacking pollen (Tsou &
Johnson, 2003) and no orbicules. It is noteworthy that in two species of Xylopia in
which the tapetum starts to degenerate before meiosis, the pollen does not develop a
typical exine wall (Tsou & Johnson, 2003).

Origin of Orbicules and Tapetal Lipid Metabolism

Insight in the complex lipid metabolism of tapetal cells appears to be crucial in our
understanding of the distribution and function of orbicules in angiosperms. Pro-
orbicules are indeed simple lipid vesicles originating from the endoplasmic reticulum
in the tapetal cytoplasm (see Staehelin, 1997 for a review of ER functional domains in
plant cells), while the sporopollenin wall of mature orbicules is considered as a
complex mixed polymer of acyl lipid precursors and phenyl-propanoids (Scott,
1994). Piffanelli et al. (1998) reviewed the biogenesis and function of four lipidic
structures associated with male gametophytes: exine and pollenkitt as extracellular
lipidic structures, and storage oil bodies and a dense membrane network as intracellular
lipidic structures. The first two are mostly controlled by the sporophytic genome, while
the other two are primarily regulated by the gametophytic genome. Piffanelli et al.
(1998) mentioned Ubisch bodies as one of the lipidic bodies produced by the anther in
Brassicaceae (their Fig. 1a), which is in conflict with our present results since there are
no reports of orbicules in Brassicaceae (but see Staiger et al., 1994). Tapetal cell
degradation appears to involve apoptosis-like programmed cell death, which indicates
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a controlled process (Parish & Li, 2010). Therefore we prefer the term tapetum
maturation above degeneration for this process since the long persistence of the tapetal
mitochondria indicate the necessity for an energy supply, confirming that it not simply
concerns necrosis (Papini et al., 1999). Wu et al. (1997) described a novel class of lipid
containing organelles in the tapetum of Brassica that they termed tapetosomes (but see
Dunbar, 1973). Whether the initiation or chemical composition of tapetosomes or
elaioplasts (Piffanelli & Murphy, 1998) is related to pro-orbicules is unknown.

Evo-Devo and Orbicule Marker Genes

Evolutionary developmental approaches have greatly expanded our understanding of
the genetic pathways that are involved in pollen wall development and the rate of
gametophytic and sporophytic factors in the patterned polymerisation of sporopollenin
on a lipidic interface, i.e. the plasmalemma of the microspores (reviewed by Wilson &
Zhang, 2009). Evo-devo studies on model plants reveal an increasing number of genes
expressed in the tapetum that when silenced (or in natural mutants) cause male-sterility
or an arrest of the wild type microspore development (e.g. Goldberg et al., 1993;
Kapoor et al., 2002; Yui et al., 2003; Ariizumi et al., 2004; Suzuki et al., 2008; Wu
et al., 2008; McNeil & Smith, 2010; Zhang et al., 2010; Li et al., 2011). In rice, two
putative orbicule marker genes, Os Raftin1 and Os Raftin2, are downregulated in Wax-
deficient anther1 (wda1) anthers that are lacking orbicules contrary to the wild-type
(Jung et al., 2006). The rice RAFTIN genes are homologs of the wheat RAFTIN1 gene
located at orbicules and exines, and supposed to have a guiding role in the proper
fixation of sporopollenin polymers in the exine (Wang et al., 2003). Jung et al. (2006)
concluded that the downregulation of both orbicule marker genes and the absence of
orbicules and cytoplasmic lipid bodies in wda1 anthers imply that the wda1 mutant
possibly affects the transfer of sporopollenin from the tapetum to the pollen walls via
these organelles. Our results strongly question this transport function attributed to
orbicules because firstly not all species with a parietal tapetum produce orbicules
(Appendix S1), and secondly to date no enzyme could be characterized that is able
to depolymerise sporopollenin. Thom et al. (1998) provided experimental evidence for
reaggregation of materials obtained after fractionation of dissolved sporopollenin. To
our knowledge there is no evidence available for reaggregation of sporopollenin
in vivo. Moreover, orbicules generally remain associated with the tapetal plasmalemma
throughout their development and thus active movement of orbicules is restricted to
intrusion into the locules of invasive parietal tapetal cells that maintain their individual
protoplasts (e.g. in Anaxagorea: Gabarayeva, 1995; Nymphaea: Gabarayeva & El-
Ghazaly, 1997 and Rowley et al., 1992; Rondeletia: S. Huysmans, unpubl. data). Cyclic
invasion of secretory tapetal cells into the locular space might be a much more common
feature than presently considered (Gabarayeva et al., 2009).

Self-Assembly Processes and Patterning

There is growing evidence on the importance of self-assembly processes in pollen wall
development. Gabarayeva and Hemsley (2006) summarized the developmental facts
during tetrad and microspore stages and suggested mechanisms of molecular interaction
to explain the wide range of variation in ornamentation patterns on angiosperm pollen
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grains. The authors concluded that in the sequence of exine development four main stages
can be recognized, eachwith a different mechanism for wall construction: (1) formation of
glycocalyx by self-assembly of micelles, (2) insertion of sporopollenin receptors under
control of genome, (3) accumulation of receptor-dependant sporopollenin under control
of sporopollenin receptors and (4) accumulation of receptor-independent sporopollenin
by self-assembly. Exine pattern determination was originally attributed to callose (e.g.
Blackmore & Barnes, 1990), however, genomic control of glycocalyx construction
components is the most likely method by which genetic control of initial patterning is
exerted (Gabarayeva & Hemsley, 2006). Evidence exists that during the middle tetrad
stage sporopollenin can be produced from both tapetum and microspore although at
present there is no data to suggest whether sporopollenin from these two sources differs in
chemistry. If sporopollenin monomer is to be derived from the microspore, a site of
production and a mechanism of transport are required. Droplets of lipid-like material
synthesised in the interior of the ER membrane (Staehelin, 1997) are likely candidates for
the monomers while the white-line-centred lamellae (see Scott, 1994) may well provide
an appropriate transport conduit (Gabarayeva & Hemsley, 2006). During late tetrad stage
sporopollenin deposition continues while callose is disintegrated by callase activity, but
the source of this sporopollenin has yet to be determined and may be from either the
microspore or the tapetum. The disintegration of callose may facilitate the penetration of
sporopollenin precursors from the tapetum. In the subsequent free microspore stage
sporopollenin is almost certainly derived from the tapetum and the mechanism of
accumulation is largely self-assembly. Consequently the ultimate pattern results from
autopolymerisation of bulk monomer (Gabarayeva & Hemsley, 2006 and references
therein).

If self-assembly processes interfere with the work of the genome in pattern deter-
mination of the sporoderm, we could hypothesize parallel mechanisms for the sporo-
pollenin polymerisation and patterning on the pro-orbicule core. The gametophytic
genomic component and a callose wall are missing in the orbicule model and yet a
patterned accumulation of sporopollenin with similar ornamentation to the pollen wall
(Hesse, 1986; Huysmans et al., 1998) is still achieved.

Function(s) of Orbicules

One of the most intriguing open questions about orbicules is their function. Although
many hypotheses on functions attributed to orbicules can be found in the literature,
none of them is yet satisfactorily proven (reviewed in Huysmans et al., 1998). Two
opposing lines of thought can be distinguished: orbicules play an active role or are just
a by-product.

One hypothesis is that the tapetum has the vestigial capacity to polymerize sporo-
pollenin because it shares a phylogenetically identical origin with the sporogenous
tissue (Hesse, 1986). Orbicules are just mere by-products of the tapetal cell metabolism.
This explains the presence of orbicules in unrelated taxa, the similarities in ornamen-
tation between pollen and orbicules of the same species, and also the absence of
orbicules in species with an amoeboid tapetum. Amoeboid tapeta may have lost the
capacity to polymerize sporopollenin during evolution. The selective pressure for the
evolution of absence of orbicules could be the conservation of resources, viz. sporo-
pollenin precursors. However, the classic model of anther development involving three
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‘germ layers’ that give rise to specific cell lineages (L1 to epidermis, L2 to endothe-
cium, middle layers, outer tapetum and archesporial cells, and L3 to connective and
inner tapetum) and the well accepted dual origin of tapetum in angiosperms, has been
challenged. Tsou and Johnson (2003) showed that tapetum differentiation in
Annonaceae may instead be induced by chemical signaling from neighbouring spo-
rogenous cells, and that ontogenetic origin has little or no significance for tapetum
formation. Tapetum differentiation might be position-dependent rather than cell
autonomous (Tsou & Johnson, 2003).

Another hypothesis is that orbicules participate actively in sporoderm formation by
representing a transport system of sporopollenin between the tapetum and the devel-
oping microspores. This idea is based on observations of connections between
orbicules and pollen sexines, mainly in grasses, or observations of a close contact
between microspores and orbicules in other species. However, orbicules do not erode
nor are they eliminated during microspore development, on the contrary their sporo-
pollenin coat grows synchronously with the pollen exine (see Christensen et al., 1972
for comparative data on Sorghum). Moreover, so far no enzyme has been found to
depolymerize sporopollenin. Since orbicules are not universally present, not even in
species with a parietal tapetum, it is unlikely that they have such a general and crucial
function as exine construction. Another active role for orbicules could be contributing
to pollen dispersal. Orbicules could form a hydrophobic locule surface from which
pollen can easily detach (Heslop-Harrison, 1968). Or, because exine and orbicules both
consist of sporopollenin, they carry the same electrical charge and therefore repel one
another (Pacini & Franchi, 1993). Orbicules could even present a reward for pollinators
and therefore help in the attraction of visiting animals (Huysmans et al., 2000). But
what about plant species that lack orbicules? Their pollen is being dispersed as well,
without the presence of a hydrophobic surface or a repelling force. Orbicules are also
very common in anemophilous species where offering a floral reward would be
superfluous. Until now, there is no evidence of a correlation between orbicules and a
particular pollination syndrome.

Conclusions and Future Directions

Orbicules might represent one of the last ‘secrets of the anther’, however, we demon-
strated that they are actually commonly occurring in all higher order taxa of flowering
plants and that they have great potential as model system to increase our knowledge in
some fundamental issues in palynology and cell biology. Our results identified families
and orders that are lacking any orbicule data. Orchidaceae, Arecales, rosids in general
with Malpighiales in particular are ‘hot’ taxa for future morphological studies. Poaceae
(rice, wheat, corn,…) and Solanaceae (tomato, tabacco,…) are plausible candidates for
directed evo-devo approaches. Many new developments and data can be expected if
functional genetic experiments on model plants, set up to identify the genes and gene
products that control sporopollenin polymerisation and patterning, take both micro-
spores and orbicules into account when screening phenotypes. We hope this review
might raise awareness of orbicules and inspire a new generation of molecular biolo-
gists, palynologists, and systematists alike to explore the potential of orbicules in their
own field of research.
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